A community-based transcriptomics classification and nomenclature of neocortical cell types
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
Grantová podpora
R01 MH115900
NIMH NIH HHS - United States
R01 EY011787
NEI NIH HHS - United States
RF1 NS110049
NINDS NIH HHS - United States
R01 NS100366
NINDS NIH HHS - United States
U19 MH114830
NIMH NIH HHS - United States
R01 EY026927
NEI NIH HHS - United States
K01 MH114022
NIMH NIH HHS - United States
R00 MH112855
NIMH NIH HHS - United States
RF1 AG057575
NIA NIH HHS - United States
PubMed
32839617
PubMed Central
PMC7683348
DOI
10.1038/s41593-020-0685-8
PII: 10.1038/s41593-020-0685-8
Knihovny.cz E-zdroje
- MeSH
- analýza jednotlivých buněk MeSH
- buňky klasifikace MeSH
- lidé MeSH
- neokortex cytologie MeSH
- neuroglie klasifikace MeSH
- neurony klasifikace MeSH
- terminologie jako téma MeSH
- transkriptom * MeSH
- výpočetní biologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
To understand the function of cortical circuits, it is necessary to catalog their cellular diversity. Past attempts to do so using anatomical, physiological or molecular features of cortical cells have not resulted in a unified taxonomy of neuronal or glial cell types, partly due to limited data. Single-cell transcriptomics is enabling, for the first time, systematic high-throughput measurements of cortical cells and generation of datasets that hold the promise of being complete, accurate and permanent. Statistical analyses of these data reveal clusters that often correspond to cell types previously defined by morphological or physiological criteria and that appear conserved across cortical areas and species. To capitalize on these new methods, we propose the adoption of a transcriptome-based taxonomy of cell types for mammalian neocortex. This classification should be hierarchical and use a standardized nomenclature. It should be based on a probabilistic definition of a cell type and incorporate data from different approaches, developmental stages and species. A community-based classification and data aggregation model, such as a knowledge graph, could provide a common foundation for the study of cortical circuits. This community-based classification, nomenclature and data aggregation could serve as an example for cell type atlases in other parts of the body.
Allen Institute for Brain Science Seattle WA USA
Bar Ilan University Ramat Gan Israel
Baylor College of Medicine Houston TX USA
BrainScope Company Inc Bethesda MD USA
Centro de Biologia Molecular Severo Ochoa Madrid Spain
Charles University Prague Czech Republic
Christian Albrechts University Kiel Kiel Germany
Cold Spring Harbor Laboratory Laurel Hollow NY USA
Columbia University New York City NY USA
Department of Biomedicine Aarhus University Aarhus Denmark
Department of Genetics Harvard Medical School Boston MA USA
Department of Neurobiology Harvard Medical School Boston MA USA
Department of Neuroscience Carleton University Ottawa Ontario Canada
Department of Neuroscience University of Copenhagen Copenhagen Denmark
Department of Pathology University of California San Diego CA USA
École Polytechnique Fédérale de Lausanne Lausanne Switzerland
European Molecular Biology Laboratory Hamburg Germany
European Molecular Biology Laboratory Heidelberg Germany
Friedrich Miescher Institute for Biological Research Basel Switzerland
George Mason University Fairfax VA USA
Harvard Medical School Cambridge MA USA
Harvard University Cambridge MA USA
Institute for Neuroanatomy University of Göttingen Göttingen Germany
J Craig Venter Institute La Jolla CA USA
Karolinska Institutet Stockholm Sweden
King's College London London UK
Krembil Research Institute Toronto Ontario Canada
Leiden University Medical Center Leiden the Netherlands
Macquarie University Sydney New South Wales Australia
Max Planck Institute for Biological Cybernetics Tübingen Germany
Max Planck Institute for Brain Research Frankfurt Germany
MSH Medical School Hamburg Germany
Research Centre for Natural Sciences Budapest Hungary
Research Centre Jülich Jülich Germany
Robarts Research Institute Western University London Ontario Canada
Ruhr University Bochum Bochum Germany
RWTH Aachen University Aachen Germany
Scuola Normale Superior Pisa Italy
Sorbonne University Paris France
Stanford University Stanford CA USA
The University of Edinburgh Edinburgh UK
Univeristy of Rochester Rochester NY USA
Universidad Politécnica de Madrid Madrid Spain
University of Copenhagen Copenhagen Denmark
University of Haifa Haifa Israel
University of Oxford Oxford UK
University of Strathclyde Glasgow UK
University of Szeged Szeged Hungary
Vanderbilt University Nashville TN USA
Zobrazit více v PubMed
Magner, L.N. A History of the Life Sciences (Marcel Dekker, 1979).
Ramón y Cajal S. Rev Ciencias Méd. Barcelona. 1892;18:361–376.
Ramón y Cajal, S. Recuerdos de Mi Vida: Vol.2. Historia de Mi Labor Científica (Imprenta y librería de Nicolás Moya, 1917).
Ramón y Cajal, S. La Textura del Sistema Nerviosa del Hombre y los Vertebrados (Imprenta y librería de Nicolás Moya, 1904).
Hubel DH, Wiesel TN. Proc. R. Soc. Lond. B Biol. Sci. 1977;198:1–59. PubMed
Douglas RJ, Martin KAC, Whitteridge D. Neural Comput. 1989;1:480–488.
Mountcastle, V.B. Perceptual Neuroscience: The Cerebral Cortex (Harvard Univ. Press, 1998).
Lorente de Nó R. Trab. Lab. Invest. Bio. (Madrid) 1922;20:41–78.
Szentágothai J. Brain Res. 1975;95:475–496. PubMed
Peters, A. & Jones, E.G. Cerebral Cortex (Plenum, New York, 1984).
Lund JS. Annu. Rev. Neurosci. 1988;11:253–288. PubMed
Jones, E.G. & Diamond, I.T. (eds.). The Barrel Cortex of Rodents (Plenum, 1995).
Kozloski J, Hamzei-Sichani F, Yuste R. Science. 2001;293:868–872. PubMed
Cauli B, et al. J. Neurosci. 1997;17:3894–3906. PubMed PMC
Tsiola A, Hamzei-Sichani F, Peterlin Z, Yuste R. J. Comp. Neurol. 2003;461:415–428. PubMed
Guerra L, et al. Dev. Neurobiol. 2011;71:71–82. PubMed PMC
Ascoli GA, et al. Nat. Rev. Neurosci. 2008;9:557–568. PubMed PMC
Pelvig DP, Pakkenberg H, Stark AK, Pakkenberg B. Neurobiol. Aging. 2008;29:1754–1762. PubMed
DeFelipe J, et al. Nat. Rev. Neurosci. 2013;14:202–216. PubMed PMC
Shepherd GM, et al. Front. Neuroanat. 2019;13:25. PubMed PMC
Markram H, et al. Nat. Rev. Neurosci. 2004;5:793–807. PubMed
McGarry LM, et al. Front. Neural Circuits. 2010;4:12. PubMed PMC
Markram H, et al. Cell. 2015;163:456–492. PubMed
Butt SJB, et al. Neuron. 2005;48:591–604. PubMed
Kawaguchi Y, Kubota Y. Cereb. Cortex. 1997;7:476–486. PubMed
Yuste R. Neuron. 2005;48:524–527. PubMed
Kessaris N, Magno L, Rubin AN, Oliveira MG. Curr. Opin. Neurobiol. 2014;26:79–87. PubMed PMC
Fishell G, Kepecs A. Annu. Rev. Neurosci. 2019;43:1–30. PubMed PMC
Arendt D, et al. Nat. Rev. Genet. 2016;17:744–757. PubMed
Tosches MA, Laurent G. Curr. Opin. Neurobiol. 2019;56:199–208. PubMed
Dumitriu D, Cossart R, Huang J, Yuste R. Cereb. Cortex. 2007;17:81–91. PubMed
Jiang X, et al. Science. 2015;350:aac9462. PubMed PMC
Wheeler DW, et al. eLife. 2015;4:e09960. PubMed PMC
Mihaljević B, et al. BMC Bioinformatics. 2018;19:511. PubMed PMC
Shekhar K, et al. Cell. 2016;166:1308–1323.e30. PubMed PMC
Tasic B, et al. Nat. Neurosci. 2016;19:335–346. PubMed PMC
Paul A, et al. Cell. 2017;171:522–539.e20. PubMed PMC
Fishell G, Heintz N. Neuron. 2013;80:602–612. PubMed
Nelson SB, Sugino K, Hempel CM. Trends Neurosci. 2006;29:339–345. PubMed
Tasic B, et al. Nature. 2018;563:72–78. PubMed PMC
Yager TD, Nickerson DA, Hood LE. Trends Biochem. Sci. 1991;16:454. PubMed
Alivisatos AP, et al. Neuron. 2012;74:970–974. PubMed PMC
Bargmann CI, Newsome WT. JAMA Neurol. 2014;71:675–676. PubMed
Macosko EZ, et al. Cell. 2015;161:1202–1214. PubMed PMC
Klein AM, et al. Cell. 2015;161:1187–1201. PubMed PMC
Zheng GX, et al. Nat. Commun. 2017;8:14049. PubMed PMC
Habib N, et al. Nat. Methods. 2017;14:955–958. PubMed PMC
Bush EC, et al. Nat. Commun. 2017;8:105. PubMed PMC
Garber M, Grabherr MG, Guttman M, Trapnell C. Nat. Methods. 2011;8:469–477. PubMed
Stuart T, Satija R. Nat. Rev. Genet. 2019;20:257–272. PubMed
White JG, Southgate E, Thomson JN, Brenner S. Philos. Trans. R. Soc. Lond., B. 1986;314:1–340. PubMed
Ecker JR, et al. The BRAIN Initiative Cell Census Consortium. Neuron. 2017;96:542–557. PubMed PMC
Regev A, et al. eLife. 2017;6:e27041. PubMed
Lein E, Borm LE, Linnarsson S. Science. 2017;358:64–69. PubMed
Zeng H, Sanes JR. Nat. Rev. Neurosci. 2017;18:530–546. PubMed
Huang ZJ, Paul A. Nat. Rev. Neurosci. 2019;20:563–572. PubMed PMC
Fu M, Zuo Y. Trends Neurosci. 2011;34:177–187. PubMed PMC
Gerfen CR, Paletzki R, Heintz N. Neuron. 2013;80:1368–1383. PubMed PMC
He M, et al. Neuron. 2016;91:1228–1243. PubMed PMC
Roselli C, et al. Nat. Genet. 2018;50:1225–1233. PubMed PMC
Hodge RD, et al. Nature. 2019;573:61–68. PubMed PMC
Nowakowski TJ, et al. Science. 2017;358:1318–1323. PubMed PMC
Mayer C, et al. Nature. 2018;555:457–462. PubMed PMC
Mi D, et al. Science. 2018;360:81–85. PubMed PMC
Winnubst J, et al. Cell. 2019;179:268–281.e13. PubMed PMC
Sugino K, et al. Nat. Neurosci. 2006;9:99–107. PubMed
Anderson SA, Eisenstat DD, Shi L, Rubenstein JL. Science. 1997;278:474–476. PubMed
Tosches MA, et al. Science. 2018;360:881–888. PubMed
Peng YR, et al. Cell. 2019;176:1222–1237.e22. PubMed PMC
Martersteck EM, et al. Cell Rep. 2017;18:2058–2072. PubMed PMC
Häring M, et al. Nat. Neurosci. 2018;21:869–880. PubMed
Rosenberg AB, et al. Science. 2018;360:176–182. PubMed PMC
Harris KD, et al. PLoS Biol. 2018;16:e2006387. PubMed PMC
Zeisel A, et al. Science. 2015;347:1138–1142. PubMed
Boldog E, et al. Nat. Neurosci. 2018;21:1185–1195. PubMed PMC
Cadwell CR, et al. Nat. Biotechnol. 2016;34:199–203. PubMed PMC
Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. Science. 2015;348:aaa6090. PubMed PMC
Durruthy-Durruthy R, et al. Cell. 2014;157:964–978. PubMed PMC
Trapnell C, et al. Nat. Biotechnol. 2014;32:381–386. PubMed PMC
Shalek AK, et al. Nature. 2014;510:363–369. PubMed PMC
Fiers MWEJ, et al. Brief. Funct. Genomics. 2018;17:246–254. PubMed PMC
Benavides-Piccione R, Hamzei-Sichani F, Ballesteros-Yáñez I, DeFelipe J, Yuste R. Cereb. Cortex. 2006;16:990–1001. PubMed
Hawrylycz MJ, et al. Nature. 2012;489:391–399. PubMed PMC
Bakken TE, et al. PLoS ONE. 2018;13:e0209648. PubMed PMC
Somogyi P. Brain Res. 1977;136:345–350. PubMed
Fairén A, Valverde F. J. Comp. Neurol. 1980;194:761–779. PubMed
Woodruff AR, et al. J. Neurosci. 2011;31:17872–17886. PubMed PMC
Cauli B, et al. Proc. Natl. Acad. Sci. USA. 2000;97:6144–6149. PubMed PMC
Krimer LS, et al. J. Neurophysiol. 2005;94:3009–3022. PubMed
Armañanzas R, Ascoli GA. Trends Neurosci. 2015;38:307–318. PubMed PMC
Andrews TS, Hemberg M. Mol. Aspects Med. 2018;59:114–122. PubMed
Kiselev VY, et al. Nat. Methods. 2017;14:483–486. PubMed PMC
Santana R, McGarry LM, Bielza C, Larrañaga P, Yuste R. Front. Neural Circuits. 2013;7:185. PubMed PMC
Liu L, Tang L, Dong W, Yao S, Zhou W. Springerplus. 2016;5:1608. PubMed PMC
van der Maaten L, Hinton G. J. Mach. Learn. Res. 2008;9:2579–2605.
Mansergh FC, Carrigan M, Hokamp K, Farrar GJ. Mol. Vis. 2015;21:61–87. PubMed PMC
Tang K, Ruozzi N, Belanger D, Jebara T. Bethe learning of graphical models via MAP decoding. Artificial Intelligence and Statistics (AISTATS). Proc. Mach. Learn. Res. 2016;51:1096–1104.
Sümbül U, Zlateski A, Vishwanathan A, Masland RH, Seung HS. Front. Neuroanat. 2014;8:139. PubMed PMC
Romesburg, H.C. Cluster Analysis for Researchers (Lifetime Learning, 1984).
Arendt D, Bertucci PY, Achim K, Musser JM. Curr. Opin. Neurobiol. 2019;56:144–152. PubMed PMC
Wiley, E.O. & Liberman, B.S. Phylogenetics: Theory and Practice of Phylogenetic Systematics (Wiley-Blackwell, 2011).
Siebert S, et al. Science. 2019;365:eaav9314. PubMed
Crow M, Paul A, Ballouz S, Huang ZJ, Gillis J. Nat. Commun. 2018;9:884. PubMed PMC
Bard J, Rhee SY, Ashburner M. Genome Biol. 2005;6:R21. PubMed PMC
Osumi-Sutherland D. BMC Bioinformatics. 2017;18:558. PubMed PMC
Masci AM, et al. BMC Bioinformatics. 2009;10:70. PubMed PMC
Smith B, et al. Nat. Biotechnol. 2007;25:1251–1255. PubMed PMC
Pereira P, Gama J, Pedroso J. IEEE Trans. Knowl. Data Eng. 2008;20:615–627.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. J. Mol. Biol. 1990;215:403–410. PubMed
Bakken T, et al. BMC Bioinformatics. 2017;18:559. PubMed PMC
The evolution of brain structure captured in stereotyped cell count and cell type distributions