Neuron numbers link innovativeness with both absolute and relative brain size in birds
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35817825
DOI
10.1038/s41559-022-01815-x
PII: 10.1038/s41559-022-01815-x
Knihovny.cz E-zdroje
- MeSH
- inteligence fyziologie MeSH
- mozek fyziologie MeSH
- neurony * fyziologie MeSH
- ptáci * fyziologie MeSH
- velikost orgánu MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A longstanding issue in biology is whether the intelligence of animals can be predicted by absolute or relative brain size. However, progress has been hampered by an insufficient understanding of how neuron numbers shape internal brain organization and cognitive performance. On the basis of estimations of neuron numbers for 111 bird species, we show here that the number of neurons in the pallial telencephalon is positively associated with a major expression of intelligence: innovation propensity. The number of pallial neurons, in turn, is greater in brains that are larger in both absolute and relative terms and positively covaries with longer post-hatching development periods. Thus, our analyses show that neuron numbers link cognitive performance to both absolute and relative brain size through developmental adjustments. These findings help unify neuro-anatomical measures at multiple levels, reconciling contradictory views over the biological significance of brain expansion. The results also highlight the value of a life history perspective to advance our understanding of the evolutionary bases of the connections between brain and cognition.
CSIC CREAF Cerdanyola del Vallès Catalonia Spain
Department of Biology McGill University Montréal Québec Canada
Department of General Zoology University of Duisburg Essen Essen Germany
Department of Zoology Faculty of Science Charles University Prague Czech Republic
Montana Cooperative Wildlife Research Unit University of Montana Missoula MT USA
Zobrazit více v PubMed
Shultz, S. & Dunbar, R. Encephalization is not a universal macroevolutionary phenomenon in mammals but is associated with sociality. Proc. Natl Acad. Sci. USA 107, 21582–21586 (2010). PubMed DOI PMC
Jerison, H. J. Animal intelligence as encephalization. Phil. Trans. R. Soc. Lond. B 308, 21–35 (1985). DOI
Roth, G. & Dicke, U. Evolution of the brain and intelligence. Trends Cogn. Sci. 9, 250–257 (2005). PubMed DOI
Lefebvre, L., Whitle, P., Lascaris, E. & Finkelstein, A. Feeding innovations and forebrain size in birds. Anim. Behav. 53, 549–560 (1997). DOI
Overington, S. E., Morand-Ferron, J., Boogert, N. J. & Lefebvre, L. Technical innovations drive the relationship between innovativeness and residual brain size in birds. Anim. Behav. 78, 1001–1010 (2009). DOI
Reader, S. M., Hager, Y. & Laland, K. N. The evolution of primate general and cultural intelligence. Phil. Trans. R. Soc. B 366, 1017–1027 (2011). PubMed DOI PMC
Benson-Amram, S., Dantzer, B., Stricker, G., Swanson, E. M. & Holekamp, K. E. Brain size predicts problem-solving ability in mammalian carnivores. Proc Natl Acad. Sci. USA 113, 2532–2537 (2016). PubMed DOI PMC
Reader, S. M. & Laland, K. N. Social intelligence, innovation, and enhanced brain size in primates. Proc. Natl Acad. Sci. USA 99, 4436–4441 (2002). PubMed DOI PMC
Fristoe, T. S., Iwaniuk, A. N. & Botero, C. A. Big brains stabilize populations and facilitate colonization of variable habitats in birds. Nat. Ecol. Evol. 1, 1706–1715 (2017). PubMed DOI
van Woerden, J. T., van Schaik, C. P. & Isler, K. Effects of seasonality on brain size evolution: evidence from Strepsirrhine primates. Am. Nat. 176, 758–767 (2010). PubMed DOI
Ducatez, S., Sol, D., Sayol, F. & Lefebvre, L. Behavioural plasticity is associated with reduced extinction risk in birds. Nat. Ecol. Evol. 4, 788–793 (2020). PubMed DOI
Herculano-Houzel, S. Brains matter, bodies maybe not: the case for examining neuron numbers irrespective of body size. Ann. NY Acad. Sci. 1225, 191–199 (2011). PubMed DOI
Logan, C. J. et al. Beyond brain size: uncovering the neural correlates of behavioral and cognitive specialization. Comp. Cogn. Behav. Rev. 13, 55–89 (2018). DOI
Jerison, H. Evolution of the Brain and Intelligence (Academic Press, 1973).
Herculano-Houzel, S. Numbers of neurons as biological correlates of cognitive capability. Curr. Opin. Behav. Sci. 16, 1–7 (2017). DOI
Van Schaik, C. P., Triki, Z., Bshary, R. & Heldstab, S. A. A farewell to the encephalization quotient: a new brain size measure for comparative primate cognition. Brain Behav. Evol. 96, 1–12 (2021). PubMed DOI
Striedter, G. F. Principles of Brain Evolution (Sinauer Associates, 2005).
MacLean, E. L. et al. The evolution of self-control. Proc. Natl Acad. Sci. USA 111, E2140–E2148 (2014). PubMed DOI PMC
Matějů, J. et al. Absolute, not relative brain size correlates with sociality in ground squirrels. Proc. R. Soc. B 283, 20152725 (2016). PubMed DOI PMC
Deaner, R. O., Isler, K., Burkart, J. & Van Schaik, C. Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates. Brain Behav. Evol. 70, 115–124 (2007). PubMed DOI
Smaers, J. B., Dechmann, D. K. N., Goswami, A., Soligo, C. & Safi, K. Comparative analyses of evolutionary rates reveal different pathways to encephalization in bats, carnivorans, and primates. Proc. Natl Acad. Sci. USA 109, 18006–18011 (2012). PubMed DOI PMC
Smaers, J. B. et al. The evolution of mammalian brain size. Sci. Adv. 7, eabe2101 (2021). PubMed DOI PMC
Němec, P. & Osten, P. The evolution of brain structure captured in stereotyped cell count and cell type distributions. Curr. Opin. Neurobiol. 60, 176–183 (2020). PubMed DOI PMC
Olkowicz, S. et al. Birds have primate-like numbers of neurons in the forebrain. Proc. Natl Acad. Sci. USA 113, 7255–7260 (2016). PubMed DOI PMC
Kverková, K. et al. The evolution of brain neuron numbers in amniotes. Proc. Natl Acad. Sci. USA 119, e2121624119 (2022). PubMed DOI PMC
Iwaniuk, A. N. & Hurd, P. L. The evolution of cerebrotypes in birds. Brain Behav. Evol. 65, 215–230 (2005). PubMed DOI
Timmermans, S., Lefebvre, L., Boire, D. & Basu, P. Relative size of the hyperstriatum ventrale is the best predictor of feeding innovation rate in birds. Brain Behav. Evol. 56, 196–203 (2000). PubMed DOI
Sayol, F., Lefebvre, L. & Sol, D. Relative brain size and its relation with the associative pallium in birds. Brain Behav. Evol. 87, 69–77 (2016). PubMed DOI
Healy, K. et al. Ecology and mode-of-life explain lifespan variation in birds and mammals. Proc. R. Soc. B 281, 20140298 (2014).
Deaner, R. O., Barton, R. A. & van Schaik, C. P. in Primate Life Histories and Socioecology (eds Kappeler, P. M. & Pereira, M. E.) 233–265 (Univ. of Chicago Press, 2003).
Sol, D., Sayol, F., Ducatez, S. & Lefebvre, L. The life-history basis of behavioural innovations. Phil. Trans. R. Soc. B 371, 20150187 (2016). PubMed DOI PMC
Dukas, R. Evolutionary biology of animal cognition. Ann. Rev. Ecol. Evol. Syst. 35, 347–374 (2004). DOI
Ricklefs, R. E. The cognitive face of life histories. Wilson Bull. 116, 119–133 (2004). DOI
Martin, T. E., Oteyza, J. C., Boyce, A. J., Lloyd, P. & Ton, R. Adult mortality probability and nest predation rates explain parental effort in warming eggs with consequences for embryonic development time. Am. Nat. 186, 223–236 (2015). PubMed DOI
Unzeta, M., Martin, T. E. & Sol, D. Daily nest predation rates decrease with body size in passerine birds. Am. Nat. 196, 743–754 (2020). PubMed DOI
Charvet, C. J. & Striedter, G. F. Developmental modes and developmental mechanisms can channel brain evolution. Front. Neuroanat. 5, 4 (2011).
Finlay, B. L. & Darlington, R. B. Linked regularities in the development and evolution of mammalian brains. Science 268, 1578–1584 (1995). PubMed DOI
Herculano-Houzel, S. Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J. Neurosci. 25, 2518–2521 (2005). PubMed DOI PMC
Massen, J. J. M. et al. Brain size and neuron numbers drive differences in yawn duration across mammals and birds. Commun. Biol. 4, 1–10 (2021). DOI
Ramsey, G., Bastian, M. L. & Schaik, C. Van Animal innovation defined and operationalized. Behav. Brain Sci. 30, 393–437 (2007). PubMed DOI
Lefebvre, L. A global database of feeding innovations in birds. Wilson J. Ornithol. 132, 803–809 (2021). DOI
Barton, R. A. Embodied cognitive evolution and the cerebellum. Phil. Trans. R. Soc. B 367, 2097–2107 (2012). PubMed DOI PMC
Gutiérrez-Ibáñez, C., Iwaniuk, A. N. & Wylie, D. R. Parrots have evolved a primate-like telencephalic–midbrain–cerebellar circuit. Sci. Rep. 8, 9960 (2018). PubMed DOI PMC
Brieuc, M. S. O. O., Waters, C. D., Drinan, D. P. & Naish, K. A. A practical introduction to random forest for genetic association studies in ecology and evolution. Mol. Ecol. Res. 18, 755–766 (2018). DOI
Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010). PubMed DOI
Güntürkün, O., Ströckens, F., Scarf, D. & Colombo, M. Apes, feathered apes, and pigeons: differences and similarities. Curr. Opin. Behav. Sci. 16, 35–40 (2017). DOI
Ströckens, F. et al. High associative neuron numbers could drive cognitive performance in corvid species. J. Comp. Neurol. 530, 1588–1605 (2022). PubMed DOI
Shanahan, M., Bingman, V. P., Shimizu, T., Wild, M. & Güntürkün, O. Large-scale network organisation in the avian forebrain: a connectivity matrix and theoretical analysis. Front. Comput. Neurosci. 7, 89 (2013).
Emery, N. J. Cognitive ornithology: the evolution of avian intelligence. Phil. Trans. R. Soc. B 361, 23–43 (2006). PubMed DOI
Lambert, M. L., Jacobs, I., Osvath, M. & von Bayern, A. M. P. Birds of a feather? Parrot and corvid cognition compared. Behaviour 156, 505–594 (2019). DOI
Ksepka, D. T. et al. Tempo and pattern of avian brain size evolution. Curr. Biol. 30, 2026–2036 (2020). PubMed DOI
Herculano-Houzel, S., Manger, P. R. & Kaas, J. H. Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size. Front. Neuroanat. 8, 77 (2014).
Smaers, J. B., Mongle, C. S., Safi, K. & Dechmann, D. K. N. Allometry, evolution and development of neocortex size in mammals. Prog. Brain Res. 250, 83–107 (2019). PubMed DOI
Cárdenas, A. & Borrell, V. Molecular and cellular evolution of corticogenesis in amniotes. Cell Mol. Life Sci. 77, 435–1460 (2020). DOI
García-Moreno, F. & Molnár, Z. Variations of telencephalic development that paved the way for neocortical evolution. Prog. Neurobiol. 194, 101865 (2020). PubMed DOI PMC
Charvet, C. J. & Striedter, G. F. Developmental basis for telencephalon expansion in waterfowl: enlargement prior to neurogenesis. Proc. R. Soc. B 276, 3421–3427 (2009). PubMed DOI PMC
Striedter, G. F. & Charvet, C. J. Developmental origins of species differences in telencephalon and tectum size: morphometric comparisons between a parakeet (Melopsittacus undulatus) and a quail (Colinus virgianus). J. Comp. Neurol. 507, 1663–1675 (2008). PubMed DOI
Sibly, R. M. & Brown, J. H. Effects of body size and lifestyle on evolution of mammal life histories. Proc. Natl Acad. Sci. USA 104, 17707–17712 (2007). PubMed DOI PMC
Uomini, N., Fairlie, J., Gray, R. D. & Griesser, M. Extended parenting and the evolution of cognition. Phil. Trans. R. Soc. Lond. B 375, 20190495 (2020). DOI
Reiner, A. et al. Revised nomenclature for avian telencephalon and some related brainstem nuclei. J. Comp. Neurol. 473, 377–414 (2004). PubMed DOI PMC
Mullen, R. J., Buck, C. R. & Smith, A. M. NeuN, a neuronal specific nuclear protein in vertebrates. Development 116, 201–211 (1992). PubMed DOI
Mezey, S. et al. Postnatal changes in the distribution and density of neuronal nuclei and doublecortin antigens in domestic chicks (Gallus domesticus). J. Comp. Neurol. 520, 100–116 (2012). PubMed DOI
Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012). DOI
Ducatez, S. & Lefebvre, L. Patterns of research effort in birds. PLoS ONE 9, e89955 (2014). PubMed DOI PMC
Sheard, C. et al. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11, 2463 (2020).
Cooney, C. R. et al. Ecology and allometry predict the evolution of avian developmental durations. Nat. Commun. 11, 2383 (2020). PubMed DOI PMC
Botelho, J. F. & Faunes, M. The evolution of developmental modes in the new avian phylogenetic tree. Evol. Dev. 17, 221–223 (2015). PubMed DOI
Bürkner, P.-C. Brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017). DOI
Pigot, A. L. et al. Macroevolutionary convergence connects morphological form to ecological function in birds. Nat. Ecol. Evol. 4, 230–239 (2020). PubMed DOI
Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012). PubMed DOI
Berk, R. A. Statistical Learning from a Regression Perspective (Springer International, 2017).
Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
Lleonart, J., Salat, J. & Torres, G. J. Removing allometric effects of body size in morphological analysis. J. Theor. Biol. 205, 85–93 (2000). PubMed DOI
Sayol, F., Downing, P. A., Iwaniuk, A. N., Maspons, J. & Sol, D. Predictable evolution towards larger brains in birds colonizing oceanic islands. Nat. Commun. 9, 2820 (2018). PubMed DOI PMC
Torres, C. R., Norell, M. A. & Clarke, J. A. Bird neurocranial and body mass evolution across the end-Cretaceous mass extinction: the avian brain shape left other dinosaurs behind. Sci. Adv. 7, eabg7099 (2021).