Absolute, not relative brain size correlates with sociality in ground squirrels

. 2016 Mar 30 ; 283 (1827) : 20152725.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27009231

The social brain hypothesis (SBH) contends that cognitive demands associated with living in cohesive social groups favour the evolution of large brains. Although the correlation between relative brain size and sociality reported in various groups of birds and mammals provides broad empirical support for this hypothesis, it has never been tested in rodents, the largest mammalian order. Here, we test the predictions of the SBH in the ground squirrels from the tribe Marmotini. These rodents exhibit levels of sociality ranging from solitary and single-family female kin groups to egalitarian polygynous harems but feature similar ecologies and life-history traits. We found little support for the association between increase in sociality and increase in relative brain size. Thus, sociality does not drive the evolution of encephalization in this group of rodents, a finding inconsistent with the SBH. However, body mass and absolute brain size increase with sociality. These findings suggest that increased social complexity in the ground squirrels goes hand in hand with larger body mass and brain size, which are tightly coupled to each other.

Zobrazit více v PubMed

Byrne R, Whiten A. 1988. Machiavellian inteligence: social expertise and the evolution of intellect in monkeys, apes and humans. Oxford, UK: Oxford University Press.

Dunbar RIM. 1998. The social brain hypothesis. Evol. Anthropol. 6, 178–190. (10.1002/(SICI)1520-6505(1998)6:5%3C178::AID-EVAN5%3E3.0.CO;2-8) DOI

Dunbar RIM, Shultz S. 2007. Evolution in the social brain. Science 317, 1344–1347. (10.1126/science.1145463) PubMed DOI

Marino L. 1996. What can dolphins tell us about primate evolution? Evol. Anthropol. 5, 81–86. (10.1002/(SICI)1520-6505(1996)5:3%3C81::AID-EVAN3%3E3.0.CO;2-Z) DOI

Pérez-Barbería F, Gordon I. 2005. Gregariousness increases brain size in ungulates. Oecologia 145, 41–52. (10.1007/s00442-005-0067-7) PubMed DOI

Shultz S, Dunbar RIM. 2006. Both social and ecological factors predict ungulate brain size. Proc. R. Soc. B 273, 207–215. (10.1098/rspb.2005.3283) PubMed DOI PMC

Pitnick S, Jones KE, Wilkinson GS. 2006. Mating system and brain size in bats. Proc. R. Soc. B 273, 719–724. (10.1098/rspb.2005.3367) PubMed DOI PMC

Shultz S, Dunbar RIM. 2007. The evolution of the social brain: anthropoid primates contrast with other vertebrates. Proc. R. Soc. B 274, 2429–2436. (10.1098/rspb.2007.0693) PubMed DOI PMC

Emery NJ, Seed AM, von Bayern AMP, Clayton NS. 2007. Cognitive adaptations of social bonding in birds. Phil. Trans. R. Soc. B 362, 489–505. (10.1098/rstb.2006.1991) PubMed DOI PMC

Shultz S, Dunbar RIM. 2010. Social bonds in birds are associated with brain size and contingent on the correlated evolution of life-history and increased parental investment. Biol. J. Linn. Soc. 100, 111–123. (10.1111/j.1095-8312.2010.01427.x) DOI

Shultz S, Dunbar RIM. 2010. Encephalization is not a universal macroevolutionary phenomenon in mammals but is associated with sociality. Proc. Natl Acad. Sci. USA 107, 21 582–21 586. (10.1073/pnas.1005246107) PubMed DOI PMC

Thorington RW Jr, Koprowski JL, Steele MA, Whatton JF. 2012. Squirrels of the world. Baltimore, MD: The John Hopkins University Press.

Nowak RM. 1999. Walker's mammals of the world. Baltimore, MD: The Johns Hopkins University Press.

Armitage KB. 1981. Sociality as a life-history tactic of ground squirrels. Oecologia 48, 36–49. (10.1007/BF00346986) PubMed DOI

Michener GR. 1983. Kin identification, matriarchies, and the evolution of sociality in ground-dwelling sciurids. In Advances in the study of mammalian behavior (eds Eisenberg F, Kleiman DG), pp. 528–572. Shippensburg, PA: American Society of Mammalogists.

Smorkatcheva AV, Lukhtanov VA. 2014. Evolutionary association between subterranean lifestyle and female sociality in rodents. Mamm. Biol. Z. Säugetierkunde 79, 101–109. (10.1016/j.mambio.2013.08.011) DOI

Kruckenhauser L, Pinsker W, Haring E, Arnold W. 1999. Marmot phylogeny revisited: molecular evidence for a diphyletic origin of sociality. J. Zool. Syst. Evol. Res. 37, 49–56. (10.1046/j.1439-0469.1999.95100.x) DOI

Munroe KE, Koprowski JL. 2014. Levels of social behaviors and genetic structure in a population of round-tailed ground squirrels (Xerospermophilus tereticaudus). Behav. Ecol. Sociobiol. 68, 629–638. (10.1007/s00265-013-1677-4) DOI

Nunes S. 2014. Juvenile social play and yearling behavior and reproductive success in female Belding's ground squirrels. J. Ethol. 32, 145–153. (10.1007/s10164-014-0403-7) DOI

Nunes S, Weidenbach JN, Lafler MR, Dever JA. 2015. Sibling relatedness and social play in juvenile ground squirrels. Behav. Ecol. Sociobiol. 69, 357–369. (10.1007/s00265-014-1848-y) DOI

Pollard KA, Blumstein DT. 2011. Social group size predicts the evolution of individuality. Curr. Biol. 21, 413–417. (10.1016/j.cub.2011.01.051) PubMed DOI

Allainé D. 2000. Sociality mating system and reproductive skew in marmots: evidence and hypotheses. Behav. Process. 51, 21–34. (10.1016/S0376-6357(00)00116-9) PubMed DOI

Blumstein DT. 2013. Yellow-bellied marmots: insights from an emergent view of sociality. Phil. Trans. R. Soc. B 368, 20120349 (10.1098/rstb.2012.0349) PubMed DOI PMC

Blumstein DT, Wey TW, Tang K. 2009. A test of the social cohesion hypothesis: interactive female marmots remain at home. Proc. R. Soc. B 276, 3007–3012. (10.1098/rspb.2009.0703) PubMed DOI PMC

Blumstein DT, Chung LK, Smith JE. 2013. Early play may predict later dominance relationships in yellow-bellied marmots (Marmota flaviventris). Proc. R. Soc. B 280, 20130485 (10.1098/rspb.2013.0485) PubMed DOI PMC

Blumstein DT, Arnold W. 1998. Ecology and social behavior of golden marmots (Marmota caudata aurea). J. Mammal. 79, 873–886. (10.2307/1383095) DOI

Waterman JM. 2007. Male mating strategies in rodents. In Rodent societies: an ecological and evolutionary perspective. (eds Wolf JO, Sherman PW), pp. 27–41. Chicago, IL: The University of Chicago Press.

Blumstein DT, Armitage KB. 1997. Does sociality drive the evolution of communicative complexity? A comparative test with ground-dwelling sciurid alarm calls. Am. Nat. 150, 179–200. (10.1086/286062) PubMed DOI

Matějů J, Kratochvíl L. 2013. Sexual size dimorphism in ground squirrels (Rodentia: Sciuridae: Marmotini) does not correlate with body size and sociality. Front. Zool. 10, 27 (10.1186/1742-9994-10-27) PubMed DOI PMC

Gittleman JL. 1994. Female brain size and parental care in carnivores. Proc. Natl Acad. Sci. USA 91, 5495–5497. (10.1073/pnas.91.12.5495) PubMed DOI PMC

Lindenfors P. 2005. Neocortex evolution in primates: the ‘social brain’ is for females. Biol. Lett. 1, 407–410. (10.1098/rsbl.2005.0362) PubMed DOI PMC

Lindenfors P, Nunn CL, Barton RA. 2007. Primate brain architecture and selection in relation to sex. BMC Biol. 5, 20 (10.1186/1741-7007-5-20) PubMed DOI PMC

Arsznov BM, Sakai ST. 2013. The procyonid social club: comparison of brain volumes in the coatimundi (Nasua nasua, N. narica), kinkajou (Potos flavus), and raccoon (Procyon lotor). Brain Behav. Evol. 82, 129–145. (10.1159/000354639) PubMed DOI

McKenna MC, Bell SK. 1997. Classification of mammals above the species level. New York, NY: Columbia University Press.

Iwaniuk AN. 2001. Interspecific variation in sexual dimorphism in brain size in Nearctic ground squirrels (Spermophilus spp.). Can. J. Zool. 79, 759–765. (10.1139/z01-037) DOI

Healy SD, Rowe C. 2007. A critique of comparative studies of brain size. Proc. R. Soc. B 274, 453–464. (10.1073/pnas.0401955101) PubMed DOI PMC

Zimmerman EG. 1972. Growth and age determination in the thirteen-lined ground squirrel, Spermophilus tridecemlineatus. Am. Midl. Nat. 87, 314–325. (10.2307/2423564) DOI

Turner BN, Iverson SL, Severson KL. 1976. Postnatal growth and development of captive Franklin's ground squirrels (Spermophilus franklinii). Am. Midl. Nat. 95, 93–102. (10.2307/2424236) DOI

Pagel MD. 2002. Modelling the evolution of continuously varying characters on phylogenetic trees. In Morphology, shape and phylogeny (eds MacLeod N, Foley PL), pp. 269–286. London, UK: Taylor & Francis.

Revell LJ. 2010. Phylogenetic signal and linear regression on species data. Methods Ecol. Evol. 1, 319–329. (10.1111/j.2041-210X.2010.00044.x) DOI

Zelditch ML, Li JC, Tran LAP, Swiderski DL. 2015. Relationships of diversity, disparity, and their evolutionary rates in squirrels (Sciuridae). Evolution 69, 1284–1300. (10.1111/evo.12642) PubMed DOI

Grafen A. 1989. The phylogenetic regression. Phil. Trans. R. Soc. Lond. B 326, 119–157. (10.1098/rstb.1989.0106) PubMed DOI

Pagel M. 1997. Inferring evolutionary processes from phylogenies. Zool. Scr. 26, 331–348. (10.1111/j.1463-6409.1997.tb00423.x) DOI

Burnham KP, Anderson DR, Huyvaert KP. 2011. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35. (10.1007/s00265-010-1029-6) DOI

Symonds MRE, Moussalli A. 2011. A brief guide to model selection, multimodel inferenceand model averaging in behavioural ecology using Akaike's information criterion. Behav. Ecol. Sociobiol. 65, 13–21. (10.1007/s00265-010-1037-6) DOI

Orme D.2012. The Caper package: comparative analysis of phylogenetics and evolution in R. http://cran.r-project.org/web/packages/caper .

Meier PT. 1983. Relative brain size within the North American Sciuridae. J. Mammal. 64, 642–647. (10.2307/1380520) DOI

MacLean EL, Barrickman NL, Johnson EM, Wall CE. 2009. Sociality, ecology, and relative brain size in lemurs. J. Hum. Evol. 56, 471–478. (10.1016/j.jhevol.2008.12.005) PubMed DOI

Pérez-Barbería FJ, Shultz S, Dunbar RIM. 2007. Evidence for coevolution of sociality and relative brain size in three orders of mammals. Evolution 61, 2811–2821. (10.1111/j.1558-5646.2007.00229.x) PubMed DOI

Finarelli JA, Flynn JJ. 2009. Brain-size evolution and sociality in Carnivora. Proc. Natl Acad. Sci. USA 106, 9345–9349. (10.1073/pnas.0901780106) PubMed DOI PMC

Jerison HJ. 1973. The evolution of the brain and intelligence. New York, NY: Academic Press.

Roth G, Dicke U. 2005. Evolution of the brain and intelligence. Trends Cogn. Sci. 9, 250–257. (10.1016/j.tics.2005.03.005) PubMed DOI

Dicke U, Roth G. 2016. Neuronal factors determining high intelligence. Phil. Trans. R. Soc. B 371, 20150180 (10.1098/rstb.2015.0180) PubMed DOI PMC

Herculano-Houzel S. 2011. Brains matter, bodies maybe not: the case for examining neuron numbers irrespective of body size. Ann. NY Acad. Sci. 1225, 191–199. (10.1111/j.1749-6632.2011.05976.x) PubMed DOI

Striedter GF. 2005. Principles of brain evolution. Sunderland, MA: Sinauer Associates, Inc.

Finlay BL, Brodsky P. 2007. Cortical evolution as the expression of a program for disproportionate growth and the proliferation of areas. In Evolution of nervous systems: a comprehensive reference—mammals (eds Kaas JH, Krubitzer LA), pp. 74–93. Amsterdam, The Netherlands: Elsevier Academic Press.

Deaner RO, Isler K, Burkart J, van Schaik C. 2007. Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates. Brain Behav. Evol. 70, 115–124. (10.1159/000102973) PubMed DOI

MacLean EL, et al. 2014. The evolution of self-control. Proc. Natl Acad. Sci. USA 111, E2140–E2148. (10.1073/pnas.1323533111) PubMed DOI PMC

Stevens JR. 2014. Evolutionary pressures on primate intertemporal choice. Proc. R. Soc. B 281, 20140499 (10.1098/rspb.2014.0499) PubMed DOI PMC

Herculano-Houzel S, Mota B, Lent R. 2006. Cellular scaling rules for rodent brains. Proc. Natl Acad. Sci. USA 103, 12 138–12 143. (10.1073/pnas.0604911103) PubMed DOI PMC

Herculano-Houzel S, Ribeiro P, Campos L, Valotta da Silva A, Torres LB, Catania KC, Kaas JH. 2011. Updated neuronal scaling rules for the brains of Glires (Rodents/Lagomorphs). Brain Behav. Evol. 78, 302–314. (10.1159/000330825) PubMed DOI PMC

Herculano-Houzel S. 2007. Encephalization, neuronal excess, and neuronal index in rodents. Anat. Rec. 290, 1280–1287. (10.1002/ar.20598) PubMed DOI

Lefebvre L, Reader SM, Sol D. 2004. Brains, innovations and evolution in birds and primates. Brain Behav. Evol. 63, 233–246. (10.1159/000076784) PubMed DOI

Sol D, Duncan RP, Blackburn TM, Cassey P, Lefebvre L. 2005. Big brains, enhanced cognition, and response of birds to novel environments. Proc. Natl Acad. Sci. USA 102, 5460–5465. (10.1073/pnas.0408145102) PubMed DOI PMC

Ratcliffe JM, Fenton MB, Shettleworth SJ. 2006. Behavioral flexibility positively correlated with relative brain volume in predatory bats. Brain Behav. Evol. 67, 165–176. (10.1159/000090980) PubMed DOI

van Woerden JT, van Schaik CP, Isler K. 2010. Effects of seasonality on brain size evolution: evidence from strepsirrhine primates. Am. Nat. 176, 758–767. (10.1086/657045) PubMed DOI

Weisbecker V, Blomberg S, Goldizen AW, Brown M, Fisher D. 2015. The evolution of relative brain size in marsupials is energetically constrained but not driven by behavioral complexity. Brain Behav. Evol. 85, 125–135. (10.1159/000377666) PubMed DOI

Isler K, van Schaik CP. 2009. The expensive brain: a framework for explaining evolutionary changes in brain size. J. Hum. Evol. 57, 392–400. (10.1016/j.jhevol.2009.04.009) PubMed DOI

Ge DY, Liu X, Lv XF, Zhang ZQ, Xia L, Yang QS. 2014. Historical biogeography and body form evolution of ground squirrels (Sciuridae: Xerinae). Evol. Biol. 41, 99–114. (10.1007/s11692-013-9250-7) DOI

Edwards EJ, Osborne CP, Strömberg CA, Smith SA. 2010. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328, 587–591. (10.1126/science.1177216) PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace