Absolute, not relative brain size correlates with sociality in ground squirrels
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27009231
PubMed Central
PMC4822454
DOI
10.1098/rspb.2015.2725
PII: rspb.2015.2725
Knihovny.cz E-zdroje
- Klíčová slova
- Sciuridae, body size, brain evolution, mating system, sexual dimorphism, sociality,
- MeSH
- biologická evoluce MeSH
- mozek anatomie a histologie MeSH
- pohlavní dimorfismus MeSH
- Sciuridae anatomie a histologie fyziologie MeSH
- sociální chování * MeSH
- velikost orgánu MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The social brain hypothesis (SBH) contends that cognitive demands associated with living in cohesive social groups favour the evolution of large brains. Although the correlation between relative brain size and sociality reported in various groups of birds and mammals provides broad empirical support for this hypothesis, it has never been tested in rodents, the largest mammalian order. Here, we test the predictions of the SBH in the ground squirrels from the tribe Marmotini. These rodents exhibit levels of sociality ranging from solitary and single-family female kin groups to egalitarian polygynous harems but feature similar ecologies and life-history traits. We found little support for the association between increase in sociality and increase in relative brain size. Thus, sociality does not drive the evolution of encephalization in this group of rodents, a finding inconsistent with the SBH. However, body mass and absolute brain size increase with sociality. These findings suggest that increased social complexity in the ground squirrels goes hand in hand with larger body mass and brain size, which are tightly coupled to each other.
Faculty of Science Charles University Prague Viničná 7 Praha 2 128 44 Czech Republic
Faculty of Science University of South Bohemia Branišovská 31 České Budějovice 370 05 Czech Republic
Museum Karlovy Vary Pod Jelením skokem 30 Karlovy Vary 360 01 Czech Republic
Zobrazit více v PubMed
Byrne R, Whiten A. 1988. Machiavellian inteligence: social expertise and the evolution of intellect in monkeys, apes and humans. Oxford, UK: Oxford University Press.
Dunbar RIM. 1998. The social brain hypothesis. Evol. Anthropol. 6, 178–190. (10.1002/(SICI)1520-6505(1998)6:5%3C178::AID-EVAN5%3E3.0.CO;2-8) DOI
Dunbar RIM, Shultz S. 2007. Evolution in the social brain. Science 317, 1344–1347. (10.1126/science.1145463) PubMed DOI
Marino L. 1996. What can dolphins tell us about primate evolution? Evol. Anthropol. 5, 81–86. (10.1002/(SICI)1520-6505(1996)5:3%3C81::AID-EVAN3%3E3.0.CO;2-Z) DOI
Pérez-Barbería F, Gordon I. 2005. Gregariousness increases brain size in ungulates. Oecologia 145, 41–52. (10.1007/s00442-005-0067-7) PubMed DOI
Shultz S, Dunbar RIM. 2006. Both social and ecological factors predict ungulate brain size. Proc. R. Soc. B 273, 207–215. (10.1098/rspb.2005.3283) PubMed DOI PMC
Pitnick S, Jones KE, Wilkinson GS. 2006. Mating system and brain size in bats. Proc. R. Soc. B 273, 719–724. (10.1098/rspb.2005.3367) PubMed DOI PMC
Shultz S, Dunbar RIM. 2007. The evolution of the social brain: anthropoid primates contrast with other vertebrates. Proc. R. Soc. B 274, 2429–2436. (10.1098/rspb.2007.0693) PubMed DOI PMC
Emery NJ, Seed AM, von Bayern AMP, Clayton NS. 2007. Cognitive adaptations of social bonding in birds. Phil. Trans. R. Soc. B 362, 489–505. (10.1098/rstb.2006.1991) PubMed DOI PMC
Shultz S, Dunbar RIM. 2010. Social bonds in birds are associated with brain size and contingent on the correlated evolution of life-history and increased parental investment. Biol. J. Linn. Soc. 100, 111–123. (10.1111/j.1095-8312.2010.01427.x) DOI
Shultz S, Dunbar RIM. 2010. Encephalization is not a universal macroevolutionary phenomenon in mammals but is associated with sociality. Proc. Natl Acad. Sci. USA 107, 21 582–21 586. (10.1073/pnas.1005246107) PubMed DOI PMC
Thorington RW Jr, Koprowski JL, Steele MA, Whatton JF. 2012. Squirrels of the world. Baltimore, MD: The John Hopkins University Press.
Nowak RM. 1999. Walker's mammals of the world. Baltimore, MD: The Johns Hopkins University Press.
Armitage KB. 1981. Sociality as a life-history tactic of ground squirrels. Oecologia 48, 36–49. (10.1007/BF00346986) PubMed DOI
Michener GR. 1983. Kin identification, matriarchies, and the evolution of sociality in ground-dwelling sciurids. In Advances in the study of mammalian behavior (eds Eisenberg F, Kleiman DG), pp. 528–572. Shippensburg, PA: American Society of Mammalogists.
Smorkatcheva AV, Lukhtanov VA. 2014. Evolutionary association between subterranean lifestyle and female sociality in rodents. Mamm. Biol. Z. Säugetierkunde 79, 101–109. (10.1016/j.mambio.2013.08.011) DOI
Kruckenhauser L, Pinsker W, Haring E, Arnold W. 1999. Marmot phylogeny revisited: molecular evidence for a diphyletic origin of sociality. J. Zool. Syst. Evol. Res. 37, 49–56. (10.1046/j.1439-0469.1999.95100.x) DOI
Munroe KE, Koprowski JL. 2014. Levels of social behaviors and genetic structure in a population of round-tailed ground squirrels (Xerospermophilus tereticaudus). Behav. Ecol. Sociobiol. 68, 629–638. (10.1007/s00265-013-1677-4) DOI
Nunes S. 2014. Juvenile social play and yearling behavior and reproductive success in female Belding's ground squirrels. J. Ethol. 32, 145–153. (10.1007/s10164-014-0403-7) DOI
Nunes S, Weidenbach JN, Lafler MR, Dever JA. 2015. Sibling relatedness and social play in juvenile ground squirrels. Behav. Ecol. Sociobiol. 69, 357–369. (10.1007/s00265-014-1848-y) DOI
Pollard KA, Blumstein DT. 2011. Social group size predicts the evolution of individuality. Curr. Biol. 21, 413–417. (10.1016/j.cub.2011.01.051) PubMed DOI
Allainé D. 2000. Sociality mating system and reproductive skew in marmots: evidence and hypotheses. Behav. Process. 51, 21–34. (10.1016/S0376-6357(00)00116-9) PubMed DOI
Blumstein DT. 2013. Yellow-bellied marmots: insights from an emergent view of sociality. Phil. Trans. R. Soc. B 368, 20120349 (10.1098/rstb.2012.0349) PubMed DOI PMC
Blumstein DT, Wey TW, Tang K. 2009. A test of the social cohesion hypothesis: interactive female marmots remain at home. Proc. R. Soc. B 276, 3007–3012. (10.1098/rspb.2009.0703) PubMed DOI PMC
Blumstein DT, Chung LK, Smith JE. 2013. Early play may predict later dominance relationships in yellow-bellied marmots (Marmota flaviventris). Proc. R. Soc. B 280, 20130485 (10.1098/rspb.2013.0485) PubMed DOI PMC
Blumstein DT, Arnold W. 1998. Ecology and social behavior of golden marmots (Marmota caudata aurea). J. Mammal. 79, 873–886. (10.2307/1383095) DOI
Waterman JM. 2007. Male mating strategies in rodents. In Rodent societies: an ecological and evolutionary perspective. (eds Wolf JO, Sherman PW), pp. 27–41. Chicago, IL: The University of Chicago Press.
Blumstein DT, Armitage KB. 1997. Does sociality drive the evolution of communicative complexity? A comparative test with ground-dwelling sciurid alarm calls. Am. Nat. 150, 179–200. (10.1086/286062) PubMed DOI
Matějů J, Kratochvíl L. 2013. Sexual size dimorphism in ground squirrels (Rodentia: Sciuridae: Marmotini) does not correlate with body size and sociality. Front. Zool. 10, 27 (10.1186/1742-9994-10-27) PubMed DOI PMC
Gittleman JL. 1994. Female brain size and parental care in carnivores. Proc. Natl Acad. Sci. USA 91, 5495–5497. (10.1073/pnas.91.12.5495) PubMed DOI PMC
Lindenfors P. 2005. Neocortex evolution in primates: the ‘social brain’ is for females. Biol. Lett. 1, 407–410. (10.1098/rsbl.2005.0362) PubMed DOI PMC
Lindenfors P, Nunn CL, Barton RA. 2007. Primate brain architecture and selection in relation to sex. BMC Biol. 5, 20 (10.1186/1741-7007-5-20) PubMed DOI PMC
Arsznov BM, Sakai ST. 2013. The procyonid social club: comparison of brain volumes in the coatimundi (Nasua nasua, N. narica), kinkajou (Potos flavus), and raccoon (Procyon lotor). Brain Behav. Evol. 82, 129–145. (10.1159/000354639) PubMed DOI
McKenna MC, Bell SK. 1997. Classification of mammals above the species level. New York, NY: Columbia University Press.
Iwaniuk AN. 2001. Interspecific variation in sexual dimorphism in brain size in Nearctic ground squirrels (Spermophilus spp.). Can. J. Zool. 79, 759–765. (10.1139/z01-037) DOI
Healy SD, Rowe C. 2007. A critique of comparative studies of brain size. Proc. R. Soc. B 274, 453–464. (10.1073/pnas.0401955101) PubMed DOI PMC
Zimmerman EG. 1972. Growth and age determination in the thirteen-lined ground squirrel, Spermophilus tridecemlineatus. Am. Midl. Nat. 87, 314–325. (10.2307/2423564) DOI
Turner BN, Iverson SL, Severson KL. 1976. Postnatal growth and development of captive Franklin's ground squirrels (Spermophilus franklinii). Am. Midl. Nat. 95, 93–102. (10.2307/2424236) DOI
Pagel MD. 2002. Modelling the evolution of continuously varying characters on phylogenetic trees. In Morphology, shape and phylogeny (eds MacLeod N, Foley PL), pp. 269–286. London, UK: Taylor & Francis.
Revell LJ. 2010. Phylogenetic signal and linear regression on species data. Methods Ecol. Evol. 1, 319–329. (10.1111/j.2041-210X.2010.00044.x) DOI
Zelditch ML, Li JC, Tran LAP, Swiderski DL. 2015. Relationships of diversity, disparity, and their evolutionary rates in squirrels (Sciuridae). Evolution 69, 1284–1300. (10.1111/evo.12642) PubMed DOI
Grafen A. 1989. The phylogenetic regression. Phil. Trans. R. Soc. Lond. B 326, 119–157. (10.1098/rstb.1989.0106) PubMed DOI
Pagel M. 1997. Inferring evolutionary processes from phylogenies. Zool. Scr. 26, 331–348. (10.1111/j.1463-6409.1997.tb00423.x) DOI
Burnham KP, Anderson DR, Huyvaert KP. 2011. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35. (10.1007/s00265-010-1029-6) DOI
Symonds MRE, Moussalli A. 2011. A brief guide to model selection, multimodel inferenceand model averaging in behavioural ecology using Akaike's information criterion. Behav. Ecol. Sociobiol. 65, 13–21. (10.1007/s00265-010-1037-6) DOI
Orme D.2012. The Caper package: comparative analysis of phylogenetics and evolution in R. http://cran.r-project.org/web/packages/caper .
Meier PT. 1983. Relative brain size within the North American Sciuridae. J. Mammal. 64, 642–647. (10.2307/1380520) DOI
MacLean EL, Barrickman NL, Johnson EM, Wall CE. 2009. Sociality, ecology, and relative brain size in lemurs. J. Hum. Evol. 56, 471–478. (10.1016/j.jhevol.2008.12.005) PubMed DOI
Pérez-Barbería FJ, Shultz S, Dunbar RIM. 2007. Evidence for coevolution of sociality and relative brain size in three orders of mammals. Evolution 61, 2811–2821. (10.1111/j.1558-5646.2007.00229.x) PubMed DOI
Finarelli JA, Flynn JJ. 2009. Brain-size evolution and sociality in Carnivora. Proc. Natl Acad. Sci. USA 106, 9345–9349. (10.1073/pnas.0901780106) PubMed DOI PMC
Jerison HJ. 1973. The evolution of the brain and intelligence. New York, NY: Academic Press.
Roth G, Dicke U. 2005. Evolution of the brain and intelligence. Trends Cogn. Sci. 9, 250–257. (10.1016/j.tics.2005.03.005) PubMed DOI
Dicke U, Roth G. 2016. Neuronal factors determining high intelligence. Phil. Trans. R. Soc. B 371, 20150180 (10.1098/rstb.2015.0180) PubMed DOI PMC
Herculano-Houzel S. 2011. Brains matter, bodies maybe not: the case for examining neuron numbers irrespective of body size. Ann. NY Acad. Sci. 1225, 191–199. (10.1111/j.1749-6632.2011.05976.x) PubMed DOI
Striedter GF. 2005. Principles of brain evolution. Sunderland, MA: Sinauer Associates, Inc.
Finlay BL, Brodsky P. 2007. Cortical evolution as the expression of a program for disproportionate growth and the proliferation of areas. In Evolution of nervous systems: a comprehensive reference—mammals (eds Kaas JH, Krubitzer LA), pp. 74–93. Amsterdam, The Netherlands: Elsevier Academic Press.
Deaner RO, Isler K, Burkart J, van Schaik C. 2007. Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates. Brain Behav. Evol. 70, 115–124. (10.1159/000102973) PubMed DOI
MacLean EL, et al. 2014. The evolution of self-control. Proc. Natl Acad. Sci. USA 111, E2140–E2148. (10.1073/pnas.1323533111) PubMed DOI PMC
Stevens JR. 2014. Evolutionary pressures on primate intertemporal choice. Proc. R. Soc. B 281, 20140499 (10.1098/rspb.2014.0499) PubMed DOI PMC
Herculano-Houzel S, Mota B, Lent R. 2006. Cellular scaling rules for rodent brains. Proc. Natl Acad. Sci. USA 103, 12 138–12 143. (10.1073/pnas.0604911103) PubMed DOI PMC
Herculano-Houzel S, Ribeiro P, Campos L, Valotta da Silva A, Torres LB, Catania KC, Kaas JH. 2011. Updated neuronal scaling rules for the brains of Glires (Rodents/Lagomorphs). Brain Behav. Evol. 78, 302–314. (10.1159/000330825) PubMed DOI PMC
Herculano-Houzel S. 2007. Encephalization, neuronal excess, and neuronal index in rodents. Anat. Rec. 290, 1280–1287. (10.1002/ar.20598) PubMed DOI
Lefebvre L, Reader SM, Sol D. 2004. Brains, innovations and evolution in birds and primates. Brain Behav. Evol. 63, 233–246. (10.1159/000076784) PubMed DOI
Sol D, Duncan RP, Blackburn TM, Cassey P, Lefebvre L. 2005. Big brains, enhanced cognition, and response of birds to novel environments. Proc. Natl Acad. Sci. USA 102, 5460–5465. (10.1073/pnas.0408145102) PubMed DOI PMC
Ratcliffe JM, Fenton MB, Shettleworth SJ. 2006. Behavioral flexibility positively correlated with relative brain volume in predatory bats. Brain Behav. Evol. 67, 165–176. (10.1159/000090980) PubMed DOI
van Woerden JT, van Schaik CP, Isler K. 2010. Effects of seasonality on brain size evolution: evidence from strepsirrhine primates. Am. Nat. 176, 758–767. (10.1086/657045) PubMed DOI
Weisbecker V, Blomberg S, Goldizen AW, Brown M, Fisher D. 2015. The evolution of relative brain size in marsupials is energetically constrained but not driven by behavioral complexity. Brain Behav. Evol. 85, 125–135. (10.1159/000377666) PubMed DOI
Isler K, van Schaik CP. 2009. The expensive brain: a framework for explaining evolutionary changes in brain size. J. Hum. Evol. 57, 392–400. (10.1016/j.jhevol.2009.04.009) PubMed DOI
Ge DY, Liu X, Lv XF, Zhang ZQ, Xia L, Yang QS. 2014. Historical biogeography and body form evolution of ground squirrels (Sciuridae: Xerinae). Evol. Biol. 41, 99–114. (10.1007/s11692-013-9250-7) DOI
Edwards EJ, Osborne CP, Strömberg CA, Smith SA. 2010. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328, 587–591. (10.1126/science.1177216) PubMed DOI
Neuron numbers link innovativeness with both absolute and relative brain size in birds
Sociality does not drive the evolution of large brains in eusocial African mole-rats