Robust stability of fractional order polynomials with complicated uncertainty structure
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28662173
PubMed Central
PMC5491189
DOI
10.1371/journal.pone.0180274
PII: PONE-D-17-04292
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- nejistota * MeSH
- teoretické modely * MeSH
- Publikační typ
- časopisecké články MeSH
The main aim of this article is to present a graphical approach to robust stability analysis for families of fractional order (quasi-)polynomials with complicated uncertainty structure. More specifically, the work emphasizes the multilinear, polynomial and general structures of uncertainty and, moreover, the retarded quasi-polynomials with parametric uncertainty are studied. Since the families with these complex uncertainty structures suffer from the lack of analytical tools, their robust stability is investigated by numerical calculation and depiction of the value sets and subsequent application of the zero exclusion condition.
Zobrazit více v PubMed
Oldham KB, Spanier J. Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. New York–London: Academic Press; 1974.
Miller KS, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations. New York, USA: John Wiley and Sons; 1993.
Podlubný I. Fractional Differential Equations. San Diego, CA, USA: Academic Press; 1999.
Machado JAT, Kiryakova V, Mainardi F. Recent history of fractional calculus. Communications in Nonlinear Science and Numerical Simulation. 2011; 16(3): 1140–1153.
Gutiérrez RE, Rosário JM, Machado JAT. Fractional Order Calculus: Basic Concepts and Engineering Applications. Mathematical Problems in Engineering. 2010; 19 p.
Dzieliński A, Sierociuk D, Sarwas G. Some applications of fractional order calculus. Bulletin of the Polish Academy of Sciences: Technical Sciences. 2011; 58(4): 583–592.
Hilfer R. Applications of fractional calculus in physics. Singapore: World Scientific; 2000.
Sabatier J, Agrawal OP, Machado JAT. Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Dordrecht, Netherlands: Springer; 2007.
Magin RL. Fractional Calculus in Bioengineering. Connecticut, USA: Begell House; 2006.
Magin RL. Fractional Calculus in Bioengineering: A Tool to Model Complex Dynamics. In: Proceedings of the 13th International Carpathian Control Conference. High Tatras, Slovakia; 2012.
Magin RL, Ovadia M. Modeling the cardiac tissue electrode interface using fractional calculus. Journal of Vibration and Control. 2008; 14(9–10): 1431–1442.
Perdikaris P, Karniadakis GE. Fractional-Order Viscoelasticity in One-Dimensional Blood Flow Models. Annals of Biomedical Engineering. 2014; 42(5): 1012–1023. doi: 10.1007/s10439-014-0970-3 PubMed DOI
Adolfsson K, Enelund M, Olsson P. On the Fractional Order Model of Viscoelasticity. Mechanics of Time-Dependent Materials. 2005; 9(1): 15–34.
Heymans N. Dynamic measurements in long-memory materials: fractional calculus evaluation of approach to steady state. Journal of Vibration and Control. 2008; 14(9–10): 1587–1596.
Petráš I, Bednárová D. Fractional-order chaotic systems. In: Proceedings of the 14th IEEE International Conference on Emerging Technologies & Factory Automation. Palma de Mallorca, Spain; 2009: 1031–1038.
Radwan AG, Moaddy K, Salama KN, Momani S, Hashim I. Control and switching synchronization of fractional order chaotic systems using active control technique. Journal of Advanced Research. 2014; 5(1): 125–132. doi: 10.1016/j.jare.2013.01.003 PubMed DOI PMC
Li C, Chen G. Chaos in the fractional order Chen system and its control. Chaos, Solitons & Fractals. 2004; 22(3): 549–554.
Atangana A, Koca I. Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order. Chaos, Solitons & Fractals. 2016; 89: 447–454.
Dorčák Ľ, Terpák J, Petráš I, Dorčáková F. Electronic realization of the fractional-order systems. Acta Montanistica Slovaca. 2007; 12(3): 231–237.
Krishna BT, Reddy KVVS. Active and passive realization of fractance device of order 1/2. Active and Passive Electronic Components. 2008; 5 p.
Zhang L, Hu X, Wang Z, Sun F, Dorrell DG. Fractional-order modeling and State-of-Charge estimation for ultracapacitors. Journal of Power Sources. 2016; 314: 28–34.
Silva MF, Machado JAT, Lopes AM. Fractional order control of a hexapod robot. Nonlinear Dynamics. 2004; 38(1–4): 417–433.
Lima MFM, Machado JAT, Crisóstomo M. Experimental signal analysis of robot impacts in a fractional calculus perspective. Journal of Advanced Computational Intelligence and Intelligent Informatics. 2007; 11(9): 1079–1085.
Ostalczyk P, Stolarski M. Fractional-Order PID Controllers in a Mobile Robot Control. IFAC Proceedings Volumes. 2009; 42(13): 268–271.
Delavari H, Lanusse P, Sabatier J. Fractional Order Controller Design for A Flexible Link Manipulator Robot. Asian Journal of Control. 2013; 15(3): 783–795.
Sheng H, Chen YQ, Qiu TS. Fractional Processes and Fractional-Order Signal Processing: Techniques and Applications. London, UK: Springer; 2012.
Das S, Pan I. Fractional Order Signal Processing: Introductory Concepts and Applications. Heidelberg, Germany: Springer; 2012.
Chen Y, Petráš I, Xue D. Fractional Order Control–A Tutorial In: Proceedings of the 2009 American Control Conference. St. Louis, MO, USA; 2009.
Podlubný I. Fractional-Order Systems and PIλDμ-Controllers. IEEE Transactions on Automatic Control. 1999; 44(1): 208–214.
Petráš I. Stability of fractional-order systems with rational orders: A survey. Fractional Calculus & Applied Analysis. 2009; 12(3): 269–298.
Ahmed BS, Sahib MA, Gambardella LM, Afzal W, Zamli KZ. Optimum Design of PIλDμ Controller for an Automatic Voltage Regulator System Using Combinatorial Test Design. PLOS ONE. 2016; 11(11): e0166150 doi: 10.1371/journal.pone.0166150 PubMed DOI PMC
Doyle J, Francis B, Tannenbaum A. Feedback Control Theory. New York, USA: Macmillan; 1992.
Barmish BR. New Tools for Robustness of Linear Systems. New York, USA: Macmillan; 1994.
Bhattacharyya SP, Chapellat H, Keel LH. Robust control: The parametric approach. Englewood Cliffs, New Jersey, USA: Prentice Hall; 1995.
Skogestad S, Postlethwaite I. Multivariable Feedback Control: Analysis and Design. Chichester, UK: John Wiley and Sons; 2005.
Bhattacharyya SP, Datta A, Keel LH, Linear Control Theory: Structure, Robustness, and Optimization. USA: CRC Press, Taylor & Francis Group; 2009.
Kasnakoğlu C. Investigation of Multi-Input Multi-Output Robust Control Methods to Handle Parametric Uncertainties in Autopilot Design. PLOS ONE. 2016; 11(10): e0165017 doi: 10.1371/journal.pone.0165017 PubMed DOI PMC
Petráš I, Chen YQ, Vinagre BM. A robust stability test procedure for a class of uncertain LTI fractional order systems, In: Proceedings of the International Carpathian Control Conference. Malenovice, Czech Republic; 2002.
Petráš I, Chen YQ, Vinagre BM, Podlubný I. Stability of linear time invariant systems with interval fractional orders and interval coefficients In: Proceedings of the International Conference on Computation Cybernetics. Vienna, Austria; 2005.
Petráš I, Chen YQ, Vinagre BM. Robust stability test for interval fractional order linear systems In: Unsolved Problems in the Mathematics of Systems and Control. Blondel VD, Megretski A, Eds. Princeton, NJ: Princeton University Press; 2004; 208–211.
Chen YQ, Ahn H-S, Podlubný I. Robust Stability Check of Fractional Order Linear Time Invariant Systems With Interval Uncertainties In: Proceedings of the IEEE International Conference on Mechatronics & Automation. Niagara Falls, Canada; 2005.
Ahn H-S, Chen YQ, Podlubný I. Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality. Applied Mathematics and Computation. 2007; 187(1): 27–34.
Ahn H-S, Chen YQ. Necessary and sufficient stability condition of fractional-order interval linear systems. Automatica. 2008; 44(11): 2985–2988.
Lu J-G, Chen G. Robust Stability and Stabilization of Fractional-Order Interval Systems: An LMI Approach. IEEE Transactions on Automatic Control. 2009; 54(6): 1294–1299.
Lu J-G, Chen YQ. Robust Stability and Stabilization of Fractional-Order Interval Systems with the Fractional Order α: The 0 < α <1 Case. IEEE Transactions on Automatic Control. 2010; 55(1): 152–158.
Liao Z, Peng C, Li W, Wang Y. Robust stability analysis for a class of fractional order systems with uncertain parameters. Journal of The Franklin Institute. 2011; 348(6): 1101–1113.
Li C, Wang J. Robust stability and stabilization of fractional order interval systems with coupling relationships: The 0 < α <1 case. Journal of The Franklin Institute. 2012; 349(7): 2406–2419.
Lu J-G, Chen YQ. Stability and stabilization of fractional-order linear systems with convex polytopic uncertainties. Fractional Calculus & Applied Analysis. 2013; 16(1): 142–157.
Tan N, Özgüven ÖF, Özyetkin MM. Robust stability analysis of fractional order interval polynomials. ISA Transactions. 2009; 48(2): 166–172. doi: 10.1016/j.isatra.2009.01.002 PubMed DOI
Şenol B, Yeroğlu C. Computation of the Value Set of Fractional Order Uncertain Polynomials: A 2q Convex Parpolygonal Approach In: Proceedings of the 2012 IEEE International Conference on Control Applications. Dubrovnik, Croatia; 2012.
Şenol B, Yeroğlu C. Robust Stability Analysis of Fractional Order Uncertain Polynomials In: Proceedings of the 5th IFAC Workshop on Fractional Differentiation and its Applications. Nanjing, China; 2012.
Yeroğlu C, Şenol B. Investigation of robust stability of fractional order multilinear affine systems: 2q-convex parpolygon approach. Systems & Control Letters. 2013; 62(10): 845–855.
Şenol B, Ateş A, Alagoz BB, Yeroğlu C. A numerical investigation for robust stability of fractional-order uncertain systems. ISA Transactions. 2014; 53(2): 189–198. doi: 10.1016/j.isatra.2013.09.004 PubMed DOI
Moornani KA, Haeri M. Robust stability testing function and Kharitonov-like theorem for fractional order interval systems. IET Control Theory and Applications. 2010; 4(10): 2097–2108.
Şenol B, Yeroğlu C. Frequency boundary of fractional order systems with nonlinear uncertainties. Journal of The Franklin Institute. 2013; 350(7): 1908–1925.
Yeroğlu C, Tan N. Classical controller design techniques for fractional order case. ISA Transactions. 2011; 50(3): 461–472. doi: 10.1016/j.isatra.2011.03.004 PubMed DOI
Yeroğlu C, Özyetkin MM, Tan N. Frequency Response Computation of Fractional Order Interval Transfer Functions. International Journal of Control, Automation, and Systems. 2010; 8(5): 1009–1017.
Matušů R, Prokop R. Robust Stability of Fractional Order Time-Delay Control Systems: A Graphical Approach. Mathematical Problems in Engineering. 2015; 9 p.
Ma Y, Lu J-G, Chen W, Chen Y. Robust stability bounds of uncertain fractional-order systems. Fractional Calculus & Applied Analysis. 2014; 17(1): 136–153.
Lu J, Ma Y, Chen W. Maximal perturbation bounds for robust stabilizability of fractional-order systems with norm bounded perturbations. Journal of The Franklin Institute. 2013; 350(10): 3365–3383.
Jiao Z, Zhong Y. Robust stability for fractional-order systems with structured and unstructured uncertainties. Computers & Mathematics with Applications. 2012; 64(10): 3258–3266.
Liu S, Jiang W, Li X, Zhou X-F. Lyapunov stability analysis of fractional nonlinear systems, Applied Mathematics Letters, 2016, Vol. 51, pp. 13–19.
Yin C, Zhong S, Huang X, Cheng Y. Robust stability analysis of fractional-order uncertain singular nonlinear system with external disturbance. Applied Mathematics and Computation. 2015; 269: 351–362.
Chang X-H, Xiong J, Park JH. Fuzzy robust dynamic output feedback control of nonlinear systems with linear fractional parametric uncertainties. Applied Mathematics and Computation. 2016; 291: 213–225.
Matušů R, Prokop R. Graphical analysis of robust stability for systems with parametric uncertainty: an overview. Transactions of the Institute of Measurement and Control. 2011; 33(2): 274–290.
Matušů R, Prokop R. Robust Stability Analysis for Systems with Real Parametric Uncertainty: Implementation of Graphical Tests in Matlab. International Journal of Circuits, Systems and Signal Processing. 2013; 7(1): 26–33.
Matušů R, Pekař L. Robust Stability of Thermal Control Systems with Uncertain Parameters: The Graphical Analysis Examples. Manuscript submitted to Applied Thermal Engineering. 2017.
Gu K, Kharitonov VL, Chen J. Stability of Time-Delay Systems. Boston, USA: Birkhäuser; 2003.
Luo Y, Chen Y. Stabilizing and robust fractional order PI controller synthesis for first order plus time delay systems. Automatica. 2012; 48(9): 2159–2167. PubMed
Matušů R. Spherical Families of Polynomials: A Graphical Approach to Robust Stability Analysis. International Journal of Circuits, Systems and Signal Processing. 2016; 10: 326–332.