High Cycle Fatigue Behaviour of 316L Stainless Steel Produced via Selective Laser Melting Method and Post Processed by Hot Rotary Swaging
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37176281
PubMed Central
PMC10180031
DOI
10.3390/ma16093400
PII: ma16093400
Knihovny.cz E-zdroje
- Klíčová slova
- 316L steel, high cycle fatigue, hot compression testing, hot rotary swaging, microstructure, selective laser melting,
- Publikační typ
- časopisecké články MeSH
This paper deals with a study of additively manufactured (by the Selective Laser Melting, SLM, method) and conventionally produced AISI 316L stainless steel and their comparison. With the intention to enhance the performance of the workpieces, each material was post-processed via hot rotary swaging under a temperature of 900 °C. The samples of each particular material were analysed regarding porosity, microhardness, high cycle fatigue, and microstructure. The obtained data has shown a significant reduction in the residual porosity and the microhardness increase to 310 HV in the sample after the hot rotary swaging. Based on the acquired data, the sample produced via SLM and post-processed by hot rotary swaging featured higher fatigue resistance compared to conventionally produced samples where the stress was set to 540 MPa. The structure of the printed samples changed from the characteristic melting pools to a structure with a lower average grain size accompanied by a decrease of a high fraction of high-angle grain boundaries and higher geometrically necessary dislocation density. Specifically, the grain size decreased from the average diameters of more than 20 µm to 3.9 µm and 4.1 µm for the SLM and conventionally prepared samples, respectively. In addition, the presented research has brought in the material constants of the Hensel-Spittel formula adapted to predict the hot flow stress evolution of the studied steel with respect to its 3D printed state.
Faculty of Mechanical Engineering Brno University of Technology 61600 Brno Czech Republic
Institute of Physics of Materials Czech Academy of Sciences Žižkova 22 61600 Brno Czech Republic
Zobrazit více v PubMed
Liu Y., Sun J., Fu Y., Xu B., Li B., Xu S., Huang P., Cheng J., Han Y., Han J., et al. Tuning strength-ductility combination on selective laser melted 316L stainless steel through gradient heterogeneous structure. Addit. Manuf. 2021;48:102373. doi: 10.1016/j.addma.2021.102373. DOI
Bandyopadhyay A., Traxel K. Invited review article: Metal-additive manufacturing—Modeling strategies for application-optimized designs. Addit. Manuf. 2018;22:758–774. doi: 10.1016/j.addma.2018.06.024. PubMed DOI PMC
Zhu Z., Li W., Nguyen Q., An X., Lu W., Li Z., Ng F., Ling Nai S., Wei J. Enhanced strength–ductility synergy and transformation-induced plasticity of the selective laser melting fabricated 304L stainless steel. Addit. Manuf. 2020;35:101300. doi: 10.1016/j.addma.2020.101300. DOI
Yuhua C., Yuqing M., Weiwei L., Peng H. Investigation of welding crack in micro laser welded NiTiNb shape memory alloy and Ti6Al4V alloy dissimilar metals joints. Opt. Laser Technol. 2017;91:197–202. doi: 10.1016/j.optlastec.2016.12.028. DOI
Delacroix T., Lomello F., Schuster F., Maskrot H., Garandet J. Influence of powder recycling on 316L stainless steel feedstocks and printed parts in laser powder bed fusion. Addit. Manuf. 2022;50:102553. doi: 10.1016/j.addma.2021.102553. DOI
Simson T., Emmel A., Dwars A., Böhm J. Residual stress measurements on AISI 316L samples manufactured by selective laser melting. Addit. Manuf. 2017;17:183–189. doi: 10.1016/j.addma.2017.07.007. DOI
Richter J., Vollmer M., Bartzsch G., Scherbring S., Volkova O., Mola J., Niendorf T. Novel austenitic Cr-Mn-Ni TWIP-steel with superior strength enabled by laser powder bed fusion–On the role of substrate temperatures. Addit. Manuf. Lett. 2022;3:100065. doi: 10.1016/j.addlet.2022.100065. DOI
Kale A., Alluri P., Singh A., Choi S. The deformation and fracture behavior of 316L SS fabricated by SLM under mini V-bending test. Int. J. Mech. Sci. 2021;196:106292. doi: 10.1016/j.ijmecsci.2021.106292. DOI
Zach L., Kunčická L., Růžička P., Kocich R. Design, Analysis and Verification of a Knee Joint Oncological Prosthesis Finite Element Model. Comput. Biol. Med. 2014;54:53–60. doi: 10.1016/j.compbiomed.2014.08.021. PubMed DOI
Praneeth J., Venkatesh S., Sivarama Krishna L. Process parameters influence on mechanical properties of AlSi10Mg by SLM. Mater. Today Proc. 2023 doi: 10.1016/j.matpr.2022.12.222. DOI
Keller C., Tabalaiev K., Marnier G., Noudem J., Sauvage X., Hug E. Influence of spark plasma sintering conditions on the sintering and functional properties of an ultra-fine grained 316L stainless steel obtained from ball-milled powder. Mater. Sci. Eng. A. 2016;665:125–134. doi: 10.1016/j.msea.2016.04.039. DOI
Kunčická L., Kocich R., Lowe T.C. Advances in Metals and Alloys for Joint Replacement. Prog. Mater. Sci. 2017;88:232–280. doi: 10.1016/j.pmatsci.2017.04.002. DOI
Dwivedi S., Rai Dixit A., Kumar Das A. Wetting behavior of selective laser melted (SLM) bio-medical grade stainless steel 316L. Mater. Today Proc. 2022;56:46–50. doi: 10.1016/j.matpr.2021.12.046. DOI
Yadroitsev I., Krakhmalev P., Yadroitsava I. Selective Laser Melting of Ti6Al4V Alloy for Biomedical Applications: Temperature Monitoring and Microstructural Evolution. J. Alloys Compd. 2014;583:404–409. doi: 10.1016/j.jallcom.2013.08.183. DOI
Kořínek M., Halama R., Fojtík F., Pagáč M., Krček J., Krzikalla D., Kocich R., Kunčická L. Monotonic Tension-Torsion Experiments and FE Modeling on Notched Specimens Produced by SLM Technology from SS316L. Materials. 2021;14:33. doi: 10.3390/ma14010033. PubMed DOI PMC
Sun S., Hagihara K., Nakano T. Effect of scanning strategy on texture formation in Ni-25 at.%Mo alloys fabricated by selective laser melting. Mater. Des. 2018;140:307–316. doi: 10.1016/j.matdes.2017.11.060. DOI
Zhang X., Xu H., Li Z., Dong A., Du D., Lei L., Zhang G., Wang D., Zhu G., Sun B. Effect of the scanning strategy on microstructure and mechanical anisotropy of Hastelloy X superalloy produced by Laser Powder Bed Fusion. Mater. Charact. 2021;173:110951. doi: 10.1016/j.matchar.2021.110951. DOI
Prasad K., Obana M., Ishii Y., Ito A., Torizuka S. The effect of laser scanning strategies on the microstructure, texture and crystallography of grains exhibiting hot cracks in additively manufactured Hastelloy X. Mech. Mater. 2021;157:103816. doi: 10.1016/j.mechmat.2021.103816. DOI
Wan H., Zhou Z., Li C., Chen G., Zhang G. Effect of scanning strategy on grain structure and crystallographic texture of Inconel 718 processed by selective laser melting. J. Mater. Sci. Technol. 2018;34:1799–1804. doi: 10.1016/j.jmst.2018.02.002. DOI
Liu J., Li G., Sun Q., Li H., Sun J., Wang X. Understanding the effect of scanning strategies on the microstructure and crystallographic texture of Ti-6Al-4V alloy manufactured by laser powder bed fusion. J. Mater. Process. Technol. 2022;299:117366. doi: 10.1016/j.jmatprotec.2021.117366. DOI
Nong X., Zhou X. Effect of scanning strategy on the microstructure, texture, and mechanical properties of 15-5PH stainless steel processed by selective laser melting. Mater. Charact. 2021;174:111012. doi: 10.1016/j.matchar.2021.111012. DOI
Song Y., Sun Q., Guo K., Wang X., Liu J., Sun J. Effect of scanning strategies on the microstructure and mechanical behavior of 316L stainless steel fabricated by selective laser melting. Mater. Sci. Eng. A. 2020;793:139879. doi: 10.1016/j.msea.2020.139879. DOI
Kunčická L., Kocich R. Effect of Activated Slip Systems on Dynamic Recrystallization during Rotary Swaging of Electro-Conductive Al-Cu Composites. Mater. Lett. 2022;321:10–13. doi: 10.1016/j.matlet.2022.132436. DOI
Kunčická L., Macháčková A., Lavery N.P., Kocich R., Cullen J.C.T., Hlaváč L. Effect of thermomechanical processing via rotary swaging on properties and residual stress within tungsten heavy alloy. Int. J. Refract. Met. Hard Mater. 2020;87:105120. doi: 10.1016/j.ijrmhm.2019.105120. DOI
Kolomy S., Sedlak J., Zouhar J., Slany M., Benc M., Dobrocky D., Barenyi I., Majerik J. Influence of Aging Temperature on Mechanical Properties and Structure of M300 Maraging Steel Produced by Selective Laser Melting. Materials. 2023;16:977. doi: 10.3390/ma16030977. PubMed DOI PMC
Kekana N., Shongwe M., Johnson O., Babalola B. Densification behaviour and the effect of heat treatment on microstructure, and mechanical properties of sintered nickel-based alloys. Int. J. Adv. Manuf. Technol. 2019;103:2227–2233. doi: 10.1007/s00170-019-03698-y. DOI
Liu Z., Zhao Z., Liu J., Wang Q., Guo Z., Liu Z., Zeng Y., Yang G., Gong S. Effects of solution-aging treatments on microstructure features, mechanical properties and damage behaviors of additive manufactured Ti–6Al–4V alloy. Mater. Sci. Eng. A. 2021;800:140380. doi: 10.1016/j.msea.2020.140380. DOI
Chen C., Yan K., Qin L., Zhang M., Wang X., Zou T., Hu Z. Effect of Heat Treatment on Microstructure and Mechanical Properties of Laser Additively Manufactured AISI H13 Tool Steel. J. Mater. Eng. Perform. 2017;26:5577–5589. doi: 10.1007/s11665-017-2992-0. DOI
Shin W., Son B., Song W., Sohn H., Jang H., Kim Y., Park C. Heat treatment effect on the microstructure, mechanical properties, and wear behaviors of stainless steel 316L prepared via selective laser melting. Mater. Sci. Eng. A. 2021;806:140805. doi: 10.1016/j.msea.2021.140805. DOI
Liang L., Xu M., Chen Y., Zhang T., Tong W., Liu H., Wang H., Li H. Effect of welding thermal treatment on the microstructure and mechanical properties of nickel-based superalloy fabricated by selective laser melting. Mater. Sci. Eng. A. 2021;819:141507. doi: 10.1016/j.msea.2021.141507. DOI
Qu S., Sun F., Yuan Z., Li G., Li X. Effect of annealing treatment on microstructure and mechanical properties of hot isostatic pressing compacts fabricated using Ti-6Al-4V powder. Powder Metall. 2015;58:312–319. doi: 10.1179/1743290115Y.0000000014. DOI
Topping T., Ahn B., Nutt S., Lavernia E. Influence of hot isostatic pressing on microstructure and mechanical behaviour of nanostructured Al alloy. Powder Metall. 2013;56:276–287. doi: 10.1179/1743290112Y.0000000034. DOI
Liverani E., Lutey A., Ascari A., Fortunato A. The effects of hot isostatic pressing (HIP) and solubilization heat treatment on the density, mechanical properties, and microstructure of austenitic stainless steel parts produced by selective laser melting (SLM) Int. J. Adv. Manuf. Technol. 2020;107:109–122. doi: 10.1007/s00170-020-05072-9. DOI
Wang Z.F., Chen J.W., Besnard C., Kunčická L., Kocich R., Korsunsky A.M. In situ neutron diffraction investigation of texture-dependent Shape Memory Effect in a near equiatomic NiTi alloy. Acta Mater. 2021;202:135–148. doi: 10.1016/j.actamat.2020.10.049. DOI
Lukáč P., Kocich R., Greger M., Padalka O., Szaraz Z. Microstructure of AZ31 and AZ61 Mg alloys prepared by rolling and ECAP. Kov. Mater. 2007;45:115–120.
Kunčická L., Kocich R., Drapala J., Andreyachshenko V. FEM simulations and comparison of the ECAP and ECAP-PBP influence on ti6al4v alloy’s deformation behaviour; Proceedings of the METAL 22nd International Conference on Metallurgy and Materials, Conference Proceedings; Brno, Czech Republic. 15–17 May 2013; pp. 391–396.
Jamili A., Zarei-hanzaki A., Abedi H., Mosayebi M., Kocich R., Kunčická L. Development of fresh and fully recrystallized microstructures through friction stir processing of a rare earth bearing magnesium alloy. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2020;775:138837. doi: 10.1016/j.msea.2019.138837. DOI
Kunčická L., Kocich R., Král P., Pohludka M., Marek M. Effect of strain path on severely deformed aluminium. Mater. Lett. 2016;180:280–283. doi: 10.1016/j.matlet.2016.05.163. DOI
Estrin Y., Martynenko N., Lukyanova E., Serebryany V., Gorshenkov M., Morozov M., Yusupov V., Dobatkin S. Effect of Rotary Swaging on Microstructure, Texture, and Mechanical Properties of a Mg-Al-Zn Alloy. Adv. Eng. Mater. 2020;22:1900506. doi: 10.1002/adem.201900506. DOI
Macháčková A., Krátká L., Petrmichl R., Kunčická L., Kocich R. Affecting structure characteristics of rotary swaged tungsten heavy alloy via variable deformation temperature. Materials. 2020;12:4200. doi: 10.3390/ma12244200. PubMed DOI PMC
Kunčická L., Kocich R., Strunz P., Macháčková A.M. Texture and residual stress within rotary swaged Cu/Al clad composites. Mater. Lett. 2018;230:88–91. doi: 10.1016/j.matlet.2018.07.085. PubMed DOI
Zhang H., Xu M., Kumar P., Li C., Dai W., Liu Z., Li Z., Zhang Y. Enhancement of fatigue resistance of additively manufactured 304L SS by unique heterogeneous microstructure. Virtual Phys. Prototyp. 2021;16:125–145. doi: 10.1080/17452759.2021.1881869. DOI
Benedetti M., Fontanari V., Bandini M., Zanini F., Carmignato S. Low- and high-cycle fatigue resistance of Ti-6Al-4V ELI additively manufactured via selective laser melting: Mean stress and defect sensitivity. Int. J. Fatigue. 2018;107:96–109. doi: 10.1016/j.ijfatigue.2017.10.021. DOI
Benedetti M., Santus C. Notch fatigue and crack growth resistance of Ti-6Al-4V ELI additively manufactured via selective laser melting: A critical distance approach to defect sensitivity. Int. J. Fatigue. 2019;121:281–292. doi: 10.1016/j.ijfatigue.2018.12.020. DOI
Cui L., Jiang F., Peng R., Mousavian R., Yang Z., Moverare J. Dependence of microstructures on fatigue performance of polycrystals: A comparative study of conventional and additively manufactured 316L stainless steel. Int. J. Plast. 2022;149:103172. doi: 10.1016/j.ijplas.2021.103172. DOI
Yu C., Leicht A., Peng R., Moverare J. Low cycle fatigue of additively manufactured thin-walled stainless steel 316L. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2021;821:141598. doi: 10.1016/j.msea.2021.141598. DOI
Kumar P., Jayaraj R., Suryawanshi J., Satwik U., Mckinnell J., Ramamurty U. Fatigue strength of additively manufactured 316L austenitic stainless steel. Acta Mater. 2020;199:225–239. doi: 10.1016/j.actamat.2020.08.033. DOI
Solberg K., Guan S., Razavi S., Welo T., Chan K., Berto F. Fatigue of additively manufactured 316L stainless steel: The influence of porosity and surface roughness. Fatigue Fract. Eng. Mater. Struct. 2019;42:2043–2052. doi: 10.1111/ffe.13077. DOI
Niu X., Zhu S., He J., Liao D., Correia J., Berto F., Wang Q. Defect tolerant fatigue assessment of AM materials: Size effect and probabilistic prospects. Int. J. Fatigue. 2022;160:106884. doi: 10.1016/j.ijfatigue.2022.106884. DOI
Liao D., Zhu S., Keshtegar B., Qian G., Wang G. Probabilistic framework for fatigue life assessment of notched components under size effects. Int. J. Mech. Sci. 2020;181:105685. doi: 10.1016/j.ijmecsci.2020.105685. DOI
Pitassi D. Finite Element Thermal Analysis of Metal Parts Additively Manufactured via Selective Laser Melting. IntechOpen; London, UK: 2018. DOI
Król M., Snopiński P., Hajnyš J., Pagáč M., Łukowiec D. Selective laser melting of 18Ni-300 maraging steel. Materials. 2020;13:4268. doi: 10.3390/ma13194268. PubMed DOI PMC
Song S. A comparison study of constitutive equation, neural networks, and support vector regression for modeling hot deformation of 316L stainless steel. Materials. 2020;13:3766. doi: 10.3390/ma13173766. PubMed DOI PMC
Savaedi Z., Motallebi R., Mirzadeh H. A review of hot deformation behavior and constitutive models to predict flow stress of high-entropy alloys. J. Alloys Compd. 2022;903:163964. doi: 10.1016/j.jallcom.2022.163964. DOI
Hensel A., Spittel T. Kraft- und Arbeitsbedarf bildsamer Formgebungsverfahren. 1st ed. VEB Deutscher Verlag für Grundstoffindustrie; Leipzig, Germany: 1978.
Levenberg K. A Method for the Solution of Certain Problems in Least Squares. Q. Appl. Math. 1944;2:164–168. doi: 10.1090/qam/10666. DOI
Marquardt D. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 1963;11:431–441. doi: 10.1137/0111030. DOI
Wang P., Huang P., Ng F., Sin W., Lu S., Nai M., Dong Z., Wei J. Additively manufactured CoCrFeNiMn high-entropy alloy via pre-alloyed powder. Mater. Des. 2019;168:107576. doi: 10.1016/j.matdes.2018.107576. DOI
Kunčická L., Kocich R., Németh G., Dvořák K., Pagáč M. Effect of post process shear straining on structure and mechanical properties of 316 L stainless steel manufactured via powder bed fusion. Addit. Manuf. 2022;59:103128. doi: 10.1016/j.addma.2022.103128. DOI
Grove C., Jerram D. jPOR: An ImageJ macro to quantify total optical porosity from blue-stained thin sections. Comput. Geosci. 2011;37:1850–1859. doi: 10.1016/j.cageo.2011.03.002. DOI
Deirmina F., Peghini N., Almangour B., Grzesiak D., Pellizzari M. Heat treatment and properties of a hot work tool steel fabricated by additive manufacturing. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2019;753:109–121. doi: 10.1016/j.msea.2019.03.027. DOI
Mazumder J., Choi J., Nagarathnam K., Koch J., Hetzner D. The direct metal deposition of H13 tool steel for 3-D components. JOM. 1997;49:55–60. doi: 10.1007/BF02914687. DOI
Chen Y., Sun S., Zhang T., Zhou X., Li S. Effects of post-weld heat treatment on the microstructure and mechanical properties of laser-welded NiTi/304SS joint with Ni filler. Mater. Sci. Eng. A. 2020;771:138545. doi: 10.1016/j.msea.2019.138545. DOI
Carneiro L., Wang X., Jiang Y. Cyclic deformation and fatigue behavior of 316L stainless steel processed by surface mechanical rolling treatment. Int. J. Fatigue. 2020;134:105469. doi: 10.1016/j.ijfatigue.2019.105469. DOI
Voloskov B., Evlashin S., Dagesyan S., Abaimov S., Akhatov I., Sergeichev I. Very high cycle fatigue behavior of additively manufactured 316L stainless steel. Materials. 2020;13:3293. doi: 10.3390/ma13153293. PubMed DOI PMC
Spierings A., Starr T., Wegener K. Fatigue performance of additive manufactured metallic parts. Rapid Prototyp. J. 2013;19:88–94. doi: 10.1108/13552541311302932. DOI
Leuders S., Lieneke T., Lammers S., Tröster T., Niendorf T. On the fatigue properties of metals manufactured by selective laser melting–The role of ductility. J. Mater. Res. 2014;29:1911–1919. doi: 10.1557/jmr.2014.157. DOI
Xiong Z., Naoe T., Futakawa M. Effect of artificial defects on the very high cycle fatigue behavior of 316L stainless steel. Metals. 2019;9:412. doi: 10.3390/met9040412. DOI
Riemer A., Leuders S., Thöne M., Richard H., Tröster T., Niendorf T. On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting. Eng. Fract. Mech. 2014;120:15–25. doi: 10.1016/j.engfracmech.2014.03.008. DOI
Fu Z., Yang B., Shan M., Li T., Zhu Z., Ma C., Zhang X., Gou G., Wang Z., Gao W. Hydrogen embrittlement behavior of SUS301L-MT stainless steel laser-arc hybrid welded joint localized zones. Corros. Sci. 2020;164:108337. doi: 10.1016/j.corsci.2019.108337. DOI
Kunčická L., Kocich R. Comprehensive Characterisation of a Newly Developed Mg-Dy-Al-Zn-Zr Alloy Structure. Metals. 2018;8:73. doi: 10.3390/met8010073. DOI
Canelo-Yubero D., Kocich R., Šaroun J., Strunz P. Residual Stress Distribution in a Copper-Aluminum Multifilament Composite Fabricated by Rotary Swaging. Materials. 2023;16:2102. doi: 10.3390/ma16052102. PubMed DOI PMC
Canelo-Yubero D., Kocich R., Hervoches C., Strunz P., Kunčická L., Krátká L. Neutron Diffraction Study of Residual Stresses in a W–Ni–Co Heavy Alloy Processed by Rotary Swaging at Room and High Temperatures. Met. Mater. Int. 2022;28:919–930. doi: 10.1007/s12540-020-00963-8. DOI
Kunčická L., Kocich R., Benč M., Dvořák J. Affecting Microstructure and Properties of Additively Manufactured AISI 316L Steel by Rotary Swaging. Materials. 2022;15:6291. doi: 10.3390/ma15186291. PubMed DOI PMC
Eroglu S. Sintering and Cold Swaging of Tungsten Heavy Alloys Prepared from Various Grades of W Powder. JOM. 2017;69:2014–2018. doi: 10.1007/s11837-017-2519-z. DOI
Svoboda J., Kunčická L., Luptáková N., Weiser A., Dymáček P. Fundamental Improvement of Creep Resistance of New-Generation Nano-Oxide Strengthened Alloys via Hot Rotary Swaging Consolidation. Materials. 2020;13:5217. doi: 10.3390/ma13225217. PubMed DOI PMC
Chlupová A., Šulák I., Kunčická L., Kocich R., Svoboda J. Microstructural Aspects of New Grade ODS Alloy Consolidated by Rotary Swaging. Mater. Charact. 2021;181:111477. doi: 10.1016/j.matchar.2021.111477. DOI