Influence of Structure Development on Performance of Copper Composites Processed via Intensive Plastic Deformation
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
22-11949S
Czech Science Foundation
PubMed
37445093
PubMed Central
PMC10343469
DOI
10.3390/ma16134780
PII: ma16134780
Knihovny.cz E-resources
- Keywords
- composite, copper, microstructure, oxide dispersion, rotary swaging,
- Publication type
- Journal Article MeSH
Designing a composite, possibly strengthened by a dispersion of (fine) oxides, is a favorable way to improve the mechanical characteristics of Cu while maintaining its advantageous electric conductivity. The aim of this study was to perform mechanical alloying of a Cu powder with a powder of Al2O3 oxide, seal the powder mixture into evacuated Cu tubular containers, i.e., cans, and apply gradual direct consolidation via rotary swaging at elevated temperatures, as well as at room temperature (final passes) to find the most convenient way to produce the designed Al2O3 particle-strengthened Cu composite. The composites swaged with the total swaging degree of 1.83 to consolidated rods with a diameter of 10 mm were subjected to measurements of electroconductivity, investigations of mechanical behavior via compression testing, and detailed microstructure observations. The results revealed that the applied swaging degree was sufficient to fully consolidate the canned powders, even at moderate and ambient temperatures. In other words, the final structures, featuring ultra-fine grains, did not exhibit voids or remnants of unconsolidated powder particles. The swaged composites featured favorable plasticity regardless of the selected processing route. The flow stress curves exhibited the establishment of steady states with increasing strain, regardless of the applied strain rate. The electroconductivity of the composite swaged at elevated temperatures, featuring homogeneous distribution of strengthening oxide particles and the average grain size of 1.8 µm2, reaching 80% IACS (International Annealed Copper Standard).
See more in PubMed
Vityaz P.A., Ilyushchanka A.P., Savich V.V. Powder Metallurgy in Belarus and Global Developmental Trends. Russ. J. Non-Ferrous Met. 2019;60:775–781. doi: 10.3103/S1067821219060191. DOI
Rojas-Díaz L.M., Verano-Jiménez L.E., Muñoz-García E., Esguerra-Arce J., Esguerra-Arce A. Production and Characterization of Aluminum Powder Derived from Mechanical Saw Chips and Its Processing through Powder Metallurgy. Powder Technol. 2020;360:301–311. doi: 10.1016/j.powtec.2019.10.028. DOI
Bharathi P., Kumar T.S. Mechanical Characteristics and Wear Behaviour of Al/SiC and Al/SiC/B4C Hybrid Metal Matrix Composites Fabricated through Powder Metallurgy Route. Silicon. 2023 doi: 10.1007/s12633-023-02347-0. DOI
Dewangan S.K., Nagarjuna C., Lee H., Sharma A., Ahn B. Surface Morphology Transformation and Densification Behaviour of Conventionally Sintered AlFeCoNiSi High Entropy Alloys. Powder Metall. 2023:1–12. doi: 10.1080/00325899.2023.2223019. DOI
Johnson J.L. Enhanced Sintering of Tungsten. Int. J. Refract. Met. Hard Mater. 2023;110:106017. doi: 10.1016/j.ijrmhm.2022.106017. DOI
Yoon J.-W., Back J.-H. Effect of Sintering Conditions on the Mechanical Strength of Cu-Sintered Joints for High-Power Applications. Materials. 2018;11:2105. doi: 10.3390/ma11112105. PubMed DOI PMC
Martínez C., Briones F., Rojas P., Aguilar C., Guzman D., Ordoñez S. Microstructural and Mechanical Characterization of Copper, Nickel, and Cu-Based Alloys Obtained by Mechanical Alloying and Hot Pressing. Mater. Lett. 2017;209:509–512. doi: 10.1016/j.matlet.2017.08.082. DOI
Rabiee M., Mirzadeh H., Ataie A. Mechanical Alloying and Consolidation of Copper-iron-silicon Carbide Nanocomposites. Mater. Werkst. 2020;51:1700–1704. doi: 10.1002/mawe.202000141. DOI
Jamal N.A., Farazila Y., Ramesh S., Anuar H. Role of Mechanical Alloying Parameters on Powder Distribution of Al/Cu Alloy and Al/Cu Composite. Mater. Res. Innov. 2014;18:S6–S190. doi: 10.1179/1432891714Z.000000000956. DOI
Seltzman A.H., Wukitch S.J. Precipitate Size in GRCop-42 and GRCop-84 Cu-Cr-Nb Alloy Gas Atomized Powder and L-PBF Additive Manufactured Material. Fusion Sci. Technol. 2023;79:503–516. doi: 10.1080/15361055.2022.2147765. DOI
Kunčická L., Kocich R., Németh G., Dvořák K., Pagáč M. Effect of Post Process Shear Straining on Structure and Mechanical Properties of 316 L Stainless Steel Manufactured via Powder Bed Fusion. Addit. Manuf. 2022;59:103128. doi: 10.1016/j.addma.2022.103128. DOI
Rajaguru K., Karthikeyan T., Vijayan V. Additive Manufacturing—State of Art. Mater. Today Proc. 2020;21:628–633. doi: 10.1016/j.matpr.2019.06.728. DOI
Kunčická L., Macháčková A., Petrmichl R., Klečková Z., Marek M. Optimizing Induction Heating of WNiCo Billets Processed via Intensive Plastic Deformation. Appl. Sci. 2020;10:8125. doi: 10.3390/app10228125. DOI
Macháčková A., Krátká L., Petrmichl R., Kunčická L., Kocich R. Affecting Structure Characteristics of Rotary Swaged Tungsten Heavy Alloy Via Variable Deformation Temperature. Materials. 2019;12:4200. doi: 10.3390/ma12244200. PubMed DOI PMC
Kunčická L., Macháčková A., Lavery N.P., Kocich R., Cullen J.C.T., Hlaváč L.M. Effect of Thermomechanical Processing via Rotary Swaging on Properties and Residual Stress within Tungsten Heavy Alloy. Int. J. Refract. Met. Hard Mater. 2020;87:105120. doi: 10.1016/j.ijrmhm.2019.105120. DOI
Sharma A., Zadorozhnyy M., Stepashkin A., Kvaratskheliya A., Korol A., Moskovskikh D., Kaloshkin S., Zadorozhnyy V. Investigation of Thermophysical Properties of Zr-Based Metallic Glass-Polymer Composite. Metals. 2021;11:1412. doi: 10.3390/met11091412. DOI
Stef J., Poulon-Quintin A., Redjaimia A., Ghanbaja J., Ferry O., De Sousa M., Gouné M. Mechanism of Porosity Formation and Influence on Mechanical Properties in Selective Laser Melting of Ti-6Al-4V Parts. Mater. Des. 2018;156:480–493. doi: 10.1016/j.matdes.2018.06.049. DOI
Opěla P., Benč M., Kolomy S., Jakůbek Z., Beranová D. High Cycle Fatigue Behaviour of 316L Stainless Steel Produced via Selective Laser Melting Method and Post Processed by Hot Rotary Swaging. Materials. 2023;16:3400. doi: 10.3390/ma16093400. PubMed DOI PMC
Jhunjhunwala P., Gupta A. Effect of Porosity on the Quality of 3D Printed Structures. Int. J. Adv. Manuf. Technol. 2023;127:899–909. doi: 10.1007/s00170-023-11592-x. DOI
Tusher M.M.H., Ince A. High Cycle Fatigue and Very High Cycle Fatigue Performance of Selective Laser Melting Ti-6Al-4V Titanium Alloy—A Review. Mater. Perform. Charact. 2023;12:20220088. doi: 10.1520/MPC20220088. DOI
Tamegai T., Pyon S., Ito T., Kajitani H., Koizumi N., Awaji S., Kito H., Ishida S., Yoshida Y. Fabrication of Small Magnets Using Mono- and Seven-Core (Ba, A)Fe 2 As 2 (A : K, Na) HIP Round Wires. IEEE Trans. Appl. Supercond. 2023;33:6900104. doi: 10.1109/TASC.2023.3246003. DOI
Carvajal A.H.R., Ríos J.M., Zuleta A.A., Bolívar F.J., Castaño J.G., Correa E., Echeverria F., Lambrecht M., Lasanta M.I., Trujillo F.J.P. Development of Low Content Ti-X%wt. Mg Alloys by Mechanical Milling plus Hot Isostatic Pressing. Int. J. Adv. Manuf. Technol. 2023;126:1733–1746. doi: 10.1007/s00170-023-11126-5. DOI
Staab F., Bruder E., Schäfer L., Skokov K., Koch D., Zingsem B., Adabifiroozjaei E., Molina-Luna L., Gutfleisch O., Durst K. Hard Magnetic SmCo5-Cu Nanocomposites Produced by Severe Plastic Deformation. Acta Mater. 2023;246:118709. doi: 10.1016/j.actamat.2023.118709. DOI
Evdokimov I.A., Khayrullin R.R., Bagramov R.K., Perfilov S.A., Pozdnyakov A.A., Aksenenkov V.V., Kulnitskiy B.A. Nanostructured Strain-Hardened Aluminum–Magnesium Alloys Modified by C60 Fullerene Obtained by Powder Metallurgy: 2. The Effect of Magnesium Concentration on Physical and Mechanical Properties. Russ. J. Non-Ferrous Met. 2021;62:368–374. doi: 10.3103/S1067821221030081. DOI
Huang M., Jiang J., Wang Y., Liu Y., Zhang Y., Dong J., Xiao G. Deformation Behavior, Microstructure Evolution, Phase Transformation and Plastic Instability Origin of Powder Metallurgy Al0.8Co0.5Cr1.5CuFeNi Alloy during High Temperature Deformation. Mater. Sci. Eng. A. 2022;861:144373. doi: 10.1016/j.msea.2022.144373. DOI
Orlov D., Lapovok R., Toth L.S., Timokhina I.B., Hodgson P.D., Haldar A., Bhattacharjee D. Asymmetric Rolling of Interstitial-Free Steel Using Differential Roll Diameters. Part II: Microstructure and Annealing Effects. Metall. Mater. Trans. A. 2014;45:447–454. doi: 10.1007/s11661-013-1958-6. DOI
Hedicke-Claus Y., Kriwall M., Stonis M., Behrens B.-A. Automated Design of Multi-Stage Forging Sequences for Die Forging. Prod. Eng. 2023 doi: 10.1007/s11740-023-01190-x. DOI
Cvijović Z., Rakin M., Vratnica M., Cvijović I. Microstructural Dependence of Fracture Toughness in High-Strength 7000 Forging Alloys. Eng. Fract. Mech. 2008;75:2115–2129. doi: 10.1016/j.engfracmech.2007.10.010. DOI
Haase M., Tekkaya A.E. Cold Extrusion of Hot Extruded Aluminum Chips. J. Mater. Process. Technol. 2015;217:356–367. doi: 10.1016/j.jmatprotec.2014.11.028. DOI
Peretyat’ko V.N., Smetanin S.V. Energy-Efficient Four-Roll Rail Rolling Technology. Metallurgist. 2016;60:699–705. doi: 10.1007/s11015-016-0354-z. DOI
Kunčická L., Klečková Z. Structure Characteristics Affected by Material Plastic Flow in Twist Channel Angular Pressed Al/Cu Clad Composites. Materials. 2020;13:4161. doi: 10.3390/ma13184161. PubMed DOI PMC
Kocich R., Kunčická L. Development of Structure and Properties in Bimetallic Al/Cu Sandwich Composite during Cumulative Severe Plastic Deformation. J. Sandw. Struct. Mater. 2021;23:4252–4275. doi: 10.1177/1099636221993886. DOI
Vargas M., Lathabai S., Uggowitzer P.J., Qi Y., Orlov D., Estrin Y. Microstructure, Crystallographic Texture and Mechanical Behaviour of Friction Stir Processed Mg-Zn-Ca-Zr Alloy ZKX50. Mater. Sci. Eng. A. 2017;685:253–264. doi: 10.1016/j.msea.2016.12.125. DOI
Kunčická L., Kocich R., Drápala J., Andreyachshenko V.A. FEM Simulations and Comparison of the Ecap and ECAP-PBP Influence on Ti6Al4V Alloy’s Deformation Behaviour; Proceedings of the METAL 2013 22nd International Conference on Metallurgy and Materials; Brno, Czech Republic. 15–17 May 2013; pp. 391–396.
Jamili A.M., Zarei-Hanzaki A., Abedi H.R., Mosayebi M., Kocich R., Kunčická L. Development of Fresh and Fully Recrystallized Microstructures through Friction Stir Processing of a Rare Earth Bearing Magnesium Alloy. Mater. Sci. Eng. A. 2019;775:138837. doi: 10.1016/j.msea.2019.138837. DOI
Kunčická L., Kocich R., Král P., Pohludka M., Marek M. Effect of Strain Path on Severely Deformed Aluminium. Mater. Lett. 2016;180:280–283. doi: 10.1016/j.matlet.2016.05.163. DOI
Liang W., Bian L., Xie G., Zhang W., Wang H., Wang S. Transformation Matrix Analysis on the Shear Characteristics in Multi-Pass ECAP Processing and Predictive Design of New ECAP Routes. Mater. Sci. Eng. A. 2010;527:5557–5564. doi: 10.1016/j.msea.2010.05.058. DOI
Şimşir C., Karpuz P., Gür C.H. Quantitative Analysis of the Influence of Strain Hardening on Equal Channel Angular Pressing Process. Comput. Mater. Sci. 2010;48:633–639. doi: 10.1016/j.commatsci.2010.02.032. DOI
Martynenko N.S., Bochvar N.R., Rybalchenko O.V., Bodyakova A.I., Morozov M.M., Leonova N.P., Yusupov V.S., Dobatkin S.V. Effect of Rotary Swaging and Subsequent Aging on the Structure and Mechanical Properties of a Cu–0.5% Cr–0.08% Zr Alloy. Russ. Metall. 2022;2022:512–519. doi: 10.1134/S0036029522050081. DOI
Estrin Y., Martynenko N., Lukyanova E., Serebryany V., Gorshenkov M., Morozov M., Yusupov V., Dobatkin S. Effect of Rotary Swaging on Microstructure, Texture, and Mechanical Properties of a Mg-Al-Zn Alloy. Adv. Eng. Mater. 2020;22:1900506. doi: 10.1002/adem.201900506. DOI
Panov D., Kudryavtsev E., Naumov S., Klimenko D., Chernichenko R., Mirontsov V., Stepanov N., Zherebtsov S., Salishchev G., Pertcev A. Gradient Microstructure and Texture Formation in a Metastable Austenitic Stainless Steel during Cold Rotary Swaging. Materials. 2023;16:1706. doi: 10.3390/ma16041706. PubMed DOI PMC
Droste M., Ullrich C., Motylenko M., Fleischer M., Weidner A., Freudenberger J., Rafaja D., Biermann H. Fatigue Behavior of an Ultrafine-Grained Metastable CrMnNi Steel Tested under Total Strain Control. Int. J. Fatigue. 2018;106:143–152. doi: 10.1016/j.ijfatigue.2017.10.001. DOI
Wang Z., Chen J., Besnard C., Kunčická L., Kocich R., Korsunsky A.M. In Situ Neutron Diffraction Investigation of Texture-Dependent Shape Memory Effect in a near Equiatomic NiTi Alloy. Acta Mater. 2021;202:135–148. doi: 10.1016/j.actamat.2020.10.049. DOI
Kunčická L., Kocich R. Effect of Activated Slip Systems on Dynamic Recrystallization during Rotary Swaging of Electro-Conductive Al-Cu Composites. Mater. Lett. 2022;321:10–13. doi: 10.1016/j.matlet.2022.132436. DOI
Rogachev S.O., Sundeev R.V., Andreev V.A., Andreev N.V., Tabachkova N.Y., Korotkova N.O. The Microstructure and Conductivity of Copper–Aluminum Composites Prepared by Rotary Swaging. Phys. Met. Metallogr. 2022;123:1193–1200. doi: 10.1134/S0031918X22601640. DOI
Giribaskar S., Gouthama, Prasad R. Ultra-Fine Grained Al-SiC Metal Matrix Composite by Rotary Swaging Process. Mater. Sci. Forum. 2011;702–703:320–323. doi: 10.4028/www.scientific.net/MSF.702-703.320. DOI
Tian W., Zhang F., Han S., Chen X., Gao P., Zheng K. Analysis of Microstructure and Properties in Cold Rotary Swaged Copper-Clad Magnesium Wires. Metals. 2023;13:467. doi: 10.3390/met13030467. DOI
Chen C., Wang W., Guo Z., Sun C., Volinsky A.A., Paley V. Annealing Effects on Microstructure and Mechanical Properties of Ultrafine-Grained Al Composites Reinforced with Nano-Al2O3by Rotary Swaging. J. Mater. Eng. Perform. 2018;27:1738–1745. doi: 10.1007/s11665-018-3301-2. DOI
Seixas M.R., Bortolini C., Pereira A., Nakazato R.Z., Popat K.C., Alves Claro A.P.R. Development of a New Quaternary Alloy Ti–25Ta–25Nb–3Sn for Biomedical Applications. Mater. Res. Express. 2018;5:025402. doi: 10.1088/2053-1591/aa87c8. DOI
Chi F., Wießner L., Gröb T., Bruder E., Sawatzki S., Löwe K., Gassmann J., Müller C., Durst K., Gutfleisch O., et al. Towards Manufacturing of Nd-Fe-B Magnets by Continuous Rotary Swaging of Cast Alloy. J. Magn. Magn. Mater. 2019;490:165405. doi: 10.1016/j.jmmm.2019.165405. DOI
Kataoka K., Matsuura M., Tezuka N., Sugimoto S. Influence of Swaging on the Magnetic Properties of Zn-Bonded Sm-Fe-N Magnets. Mater. Trans. 2015;56:1698–1702. doi: 10.2320/matertrans.M2015190. DOI
Rogachev S.O., Andreev V.A., Gorshenkov M.V., Ten D.V., Kuznetsova A.S., Shcherbakov A.B. Rotary Forging to Improve the Strength Properties of the Zr–2.5% Nb Alloy. Phys. Met. Metallogr. 2022;123:939–944. doi: 10.1134/S0031918X22090113. DOI
Martynenko N., Rybalchenko O., Bodyakova A., Prosvirnin D., Rybalchenko G., Morozov M., Yusupov V., Dobatkin S. Effect of Rotary Swaging on the Structure, Mechanical Characteristics and Aging Behavior of Cu-0.5%Cr-0.08%Zr Alloy. Materials. 2022;16:105. doi: 10.3390/ma16010105. PubMed DOI PMC
Martynenko N., Anisimova N., Kiselevskiy M., Tabachkova N., Temralieva D., Prosvirnin D., Terentiev V., Koltygin A., Belov V., Morosov M., et al. Structure, Mechanical Characteristics, Biodegradation, and in Vitro Cytotoxicity of Magnesium Alloy ZX11 Processed by Rotary Swaging. J. Magnes. Alloy. 2020;8:1038–1046. doi: 10.1016/j.jma.2020.08.008. DOI
Svoboda J., Kunčická L., Luptáková N., Weiser A., Dymáček P. Fundamental Improvement of Creep Resistance of New-Generation Nano-Oxide Strengthened Alloys via Hot Rotary Swaging Consolidation. Materials. 2020;13:5217. doi: 10.3390/ma13225217. PubMed DOI PMC
Gnanasambandam P., Kumar A., Nandy T.K. Effect of Yttrium Oxide Dispersion on the Microstructure and Properties of Tungsten Heavy Alloys. Def. Sci. J. 2018;68:406. doi: 10.14429/dsj.68.12255. DOI
Hupalo M.F., Padilha A.F., Sandim H.R.Z., Kliauga A.M. Cold Swaging, Recovery and Recrystallization of Oligocrystalline INCOLOY MA 956-Part I: Deformed State. ISIJ Int. 2004;44:1894–1901. doi: 10.2355/isijinternational.44.1894. DOI
Mateus R., Carvalho P.A., Nunes D., Alves L.C., Franco N., Correia J.B., Alves E. Microstructural Characterization of the ODS Eurofer 97 EU-Batch. Fusion Eng. Des. 2011;86:2386–2389. doi: 10.1016/j.fusengdes.2011.01.011. DOI
Russell A., Lee K.L. Structure-Property Relations in Nonferrous Metals. 1st ed. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2005.
Miyoshi H., Kimizuka H., Ishii A., Ogata S. Competing Nucleation of Single- and Double-Layer Guinier–Preston Zones in Al–Cu Alloys. Sci. Rep. 2021;11:4503. doi: 10.1038/s41598-021-83920-8. PubMed DOI PMC
Kashyap K.T., Koppad P.G. Small-Angle Scattering from GP Zones in Al-Cu Alloy. Bull. Mater. Sci. 2011;34:1455–1458. doi: 10.1007/s12034-011-0342-7. DOI
Fukamachi K. Detailed Relationship between the Microstructure and Properties of Age-Hardened Cu–4 At% Ti Alloy. Mater. Today Commun. 2023;34:105202. doi: 10.1016/j.mtcomm.2022.105202. DOI
Lomakin I., Nigmatullina A., Sauvage X. Mechanism of Large Strain Accommodation Assisted by Shear Localization in a Precipitation-Hardened Cu–Be Alloy. Mater. Sci. Eng. A. 2021;823:141760. doi: 10.1016/j.msea.2021.141760. DOI
Jiang Y., Zhang X., Cai P., Li P., Cao F., Gao F., Liang S. Precipitation Behavior and Microstructural Evolution during Thermo-Mechanical Processing of Precipitation Hardened Cu-Hf Based Alloys. Acta Mater. 2023;245:118659. doi: 10.1016/j.actamat.2022.118659. DOI
Carneiro Í., Monteiro B., Ribeiro B., Fernandes J.V., Simões S. Production and Characterization of Cu/CNT Nanocomposites. Appl. Sci. 2023;13:3378. doi: 10.3390/app13063378. DOI
Moustafa S., Abdel-Hamid Z., Abd-Elhay A. Copper Matrix SiC and Al2O3 Particulate Composites by Powder Metallurgy Technique. Mater. Lett. 2002;53:244–249. doi: 10.1016/S0167-577X(01)00485-2. DOI
Marzun G., Bönnemann H., Lehmann C., Spliethoff B., Weidenthaler C., Barcikowski S. Role of Dissolved and Molecular Oxygen on Cu and PtCu Alloy Particle Structure during Laser Ablation Synthesis in Liquids. ChemPhysChem. 2017;18:1175–1184. doi: 10.1002/cphc.201601315. PubMed DOI
Jeyaprakash N., Kumar M.S., Yang C.-H. Enhanced Nano-Level Mechanical Responses on Additively Manufactured Cu-Cr-Zr Copper Alloy Containing Cu2O Nano Precipitates. J. Alloys Compd. 2023;930:167425. doi: 10.1016/j.jallcom.2022.167425. DOI
Rajkovic V., Bozic D., Jovanovic M.T. Properties of Copper Matrix Reinforced with Various Size and Amount of Al2O3 Particles. J. Mater. Process. Technol. 2008;200:106–114. doi: 10.1016/j.jmatprotec.2007.08.019. DOI
Feng J., Song K., Liang S., Guo X., Li S. Mechanical Properties and Electrical Conductivity of Oriented-SiC-Whisker-Reinforced Al2O3/Cu Composites. J. Mater. Res. Technol. 2022;20:1470–1480. doi: 10.1016/j.jmrt.2022.07.131. DOI
Kocich R., Kunčická L. Optimizing Structure and Properties of Al/Cu Laminated Conductors via Severe Shear Strain. J. Alloys Compd. 2023;953:170124. doi: 10.1016/j.jallcom.2023.170124. DOI
Kunčická L., Kocich R. Optimizing Electric Conductivity of Innovative Al-Cu Laminated Composites via Thermomechanical Treatment. Mater. Des. 2022;215:110441. doi: 10.1016/j.matdes.2022.110441. DOI
Humphreys F.J., Hetherly M., Rollett A., Rohrer G.S. Recrystallization and Related Annealing Phenomena. 2nd ed. Elsevier Ltd.; Oxford, UK: 2004.
Freudenberger M., Vernes A., Fotiu P.A. An Analytical Model of Brinell Hardness for Power-Law Hardening Materials. Results Eng. 2023;18:101056. doi: 10.1016/j.rineng.2023.101056. DOI
Verlinden B., Driver J., Samajdar I., Doherty R.D. Thermo-Mechanical Processing of Metallic Materials. Elsevier; Amsterdam, The Netherlands: 2007.
Canelo-Yubero D., Kocich R., Hervoches C., Strunz P., Kunčická L., Krátká L. Neutron Diffraction Study of Residual Stresses in a W–Ni–Co Heavy Alloy Processed by Rotary Swaging at Room and High Temperatures. Met. Mater. Int. 2021;28:919–930. doi: 10.1007/s12540-020-00963-8. DOI
Langdon T.G. Grain Boundary Sliding Revisited: Developments in Sliding over Four Decades. J. Mater. Sci. 2006;41:597–609. doi: 10.1007/s10853-006-6476-0. DOI
Sharififar M., Akbari Mousavi S.A.A. Tensile Deformation and Fracture Behavior of CuZn5 Brass Alloy at High Temperature. Mater. Sci. Eng. A. 2014;594:118–124. doi: 10.1016/j.msea.2013.11.051. DOI
Structural Phenomena Introduced by Rotary Swaging: A Review