Structure Characteristics Affected by Material Plastic Flow in Twist Channel Angular Pressed Al/Cu Clad Composites
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FV40286
Ministerstvo Průmyslu a Obchodu
PubMed
32962158
PubMed Central
PMC7560371
DOI
10.3390/ma13184161
PII: ma13184161
Knihovny.cz E-zdroje
- Klíčová slova
- clad composite, effective strain, finite element analysis, residual stress, rotary swaging,
- Publikační typ
- časopisecké články MeSH
The study focuses on structure analyses, texture analyses in particular, of an Al/Cu clad composite manufactured by single and double pass of the twist channel angular pressing (TCAP) method. Microscopic analyses were supplemented with numerical predictions focused on the effective imposed strain and material plastic flow, and microhardness measurements. Both the TCAP passes imparted characteristic texture orientations to the reinforcing Cu wires, however, the individual preferential grains' orientations throughout the composite differed and depended on the location of the particular wire within the Al sheath during extrusion, i.e., on the dominant acting strain path. The second TCAP pass resulted in texture homogenization; all the Cu wires finally exhibited dominant A fiber shear texture. This finding was in accordance with the homogenization of the imposed strain predicted after the second TCAP pass. The results also revealed that both the component metals exhibited significant deformation strengthening (which also caused bending of the ends of the Cu wires within the Al sheath after extrusion). The average microhardness of the Cu wires after the second pass reached up to 128 HV, while for the Al sheath the value was 86 HV.
Zobrazit více v PubMed
Matthews F.L., Rawlings R.D. Composite Materials: Engineering and Science. CRC Press; Boca Raton, FL, USA: 1999.
Kocich R., Kunčická L., Král P., Strunz P. Characterization of innovative rotary swaged Cu-Al clad composite wire conductors. Mater. Des. 2018;160:828–835. doi: 10.1016/j.matdes.2018.10.027. DOI
Kunčická L., Kocich R., Dvořák K., Macháčková A. Rotary swaged laminated Cu-Al composites: Effect of structure on residual stress and mechanical and electric properties. Mater. Sci. Eng. A. 2019;742:743–750. doi: 10.1016/j.msea.2018.11.026. DOI
Kunčická L., Kocich R. Deformation behaviour of Cu-Al clad composites produced by rotary swaging. IOP Conf. Ser. Mater. Sci. Eng. 2018;369:012029. doi: 10.1088/1757-899X/369/1/012029. DOI
Clyne T.W., Withers P.J. An Introduction to Metal Matrix Composites. Cambridge University Press; New York, NY, USA: 1993.
Tjong S., Ma Z. Microstructural and mechanical characteristics of in situ metal matrix composites. Mater. Sci. Eng. R Rep. 2000;29:49–113. doi: 10.1016/S0927-796X(00)00024-3. DOI
Viswanathan V., Laha T., Balani K., Agarwal A., Seal S. Challenges and advances in nanocomposite processing techniques. Mater. Sci. Eng. R Rep. 2006;54:121–285. doi: 10.1016/j.mser.2006.11.002. DOI
Moya J.S., Lopez-Esteban S., Pecharromán C. The challenge of ceramic/metal microcomposites and nanocomposites. Prog. Mater. Sci. 2007;52:1017–1090. doi: 10.1016/j.pmatsci.2006.09.003. DOI
Meilakh A.G., Kontsevoi Y.V., Shubin A.B., Pastukhov E.A. Steel composites based on copper-clad iron powder. Steel Transl. 2015;45:712–715. doi: 10.3103/S0967091215090119. DOI
Wang D., Dong X., Zhou P., Sun A., Duan B. The sintering behavior of ultra-fine Mo–Cu composite powders and the sintering properties of the composite compacts. Int. J. Refract. Met. Hard Mater. 2014;42:240–245. doi: 10.1016/j.ijrmhm.2013.09.012. DOI
Rhee K.Y., Han W.Y., Park H.J., Kim S.S. Fabrication of aluminum/copper clad composite using hot hydrostatic extrusion process and its material characteristics. Mater. Sci. Eng. A. 2004;384:70–76. doi: 10.1016/j.msea.2004.05.051. DOI
Kwon H.C., Jung T.K., Lim S.C., Kim M.S. Fabrication of Copper Clad Aluminum Wire (CCAW) by Indirect Extrusion and Drawing. Mater. Sci. Forum. 2004;449–452:317–320. doi: 10.4028/www.scientific.net/MSF.449-452.317. DOI
Mehr V.Y., Toroghinejad M.R., Rezaeian A. The effects of oxide film and annealing treatment on the bond strength of Al–Cu strips in cold roll bonding process. Mater. Des. 2014;53:174–181. doi: 10.1016/j.matdes.2013.06.028. DOI
Kunčická L., Kocich R., Strunz P., Macháčková A. Texture and residual stress within rotary swaged Cu/Al clad composites. Mater. Lett. 2018;230:88–91. doi: 10.1016/j.matlet.2018.07.085. DOI
Sapanathan T., Khoddam S., Zahiri S.H., Zarei-Hanzaki A. Strength changes and bonded interface investigations in a spiral extruded aluminum/copper composite. Mater. Des. 2014;57:306–314. doi: 10.1016/j.matdes.2014.01.030. DOI
Zebardast M., Taheri A.K. The cold welding of copper to aluminum using equal channel angular extrusion (ECAE) process. J. Mater. Process. Technol. 2011;211:1034–1043. doi: 10.1016/j.jmatprotec.2011.01.004. DOI
Lapovok R., Ng H.P., Tomus D., Estrin Y. Bimetallic copper–aluminium tube by severe plastic deformation. Scr. Mater. 2012;66:1081–1084. doi: 10.1016/j.scriptamat.2012.03.004. DOI
Kocich R., Szurman I., Kursa M., Fiala J. Investigation of influence of preparation and heat treatment on deformation behaviour of the alloy NiTi after ECAE. Mater. Sci. Eng. A. 2009;512:100–104. doi: 10.1016/j.msea.2009.01.054. DOI
Naizabekov A.B., Andreyachshenko V.A., Kocich R. Study of deformation behavior, structure and mechanical properties of the AlSiMnFe alloy during ECAP-PBP. Micron. 2013;44:210–217. doi: 10.1016/j.micron.2012.06.011. PubMed DOI
Hlaváč L.M., Kocich R., Gembalová L., Jonšta P., Hlaváčová I.M. AWJ cutting of copper processed by ECAP. Int. J. Adv. Manuf. Technol. 2016;86:885–894. doi: 10.1007/s00170-015-8236-2. DOI
Kunčická L., Kocich R., Drápala J., Andreyachshenko V.A. FEM simulations and comparison of the ecap and ECAP-PBP influence on Ti6Al4V alloy’s deformation behaviour; Proceedings of the 22nd International Metallurgy and Materials Conference; Brno, Czech Republic. 15–17 May 2013; pp. 391–396.
Kunčická L., Kocich R., Ryukhtin V., Cullen J.C.T., Lavery N.P. Study of structure of naturally aged aluminium after twist channel angular pressing. Mater. Charact. 2019;152:94–100. doi: 10.1016/j.matchar.2019.03.045. DOI
Kunčická L., Lowe T.C., Davis C.F., Kocich R., Pohludka M. Synthesis of an Al/Al2O3 composite by severe plastic deformation. Mater. Sci. Eng. A. 2015;646:234–241. doi: 10.1016/j.msea.2015.08.075. DOI
Kocich R., Macháčková A., Fojtík F. Comparison of strain and stress conditions in conventional and ARB rolling processes. Int. J. Mech. Sci. 2012;64:54–61. doi: 10.1016/j.ijmecsci.2012.08.003. DOI
Bachmaier A., Pippan R. Generation of metallic nanocomposites by severe plastic deformation. Int. Mater. Rev. 2013;58:41–62. doi: 10.1179/1743280412Y.0000000003. DOI
Huang X., Tsuji N., Hansen N., Minamino Y. Microstructural evolution during accumulative roll-bonding of commercial purity aluminum. Mater. Sci. Eng. A. 2003;340:265–271. doi: 10.1016/S0921-5093(02)00182-X. DOI
Dinda G.P., Rösner H., Wilde G. Synthesis of bulk nanostructured Ni, Ti and Zr by repeated cold-rolling. Scr. Mater. 2005;52:577–582. doi: 10.1016/j.scriptamat.2004.11.034. DOI
Pippan R., Scheriau S., Taylor A., Hafok M., Hohenwarter A., Bachmaier A. Saturation of Fragmentation during Severe Plastic Deformation. Annu. Rev. Mater. Res. 2010 doi: 10.1146/annurev-matsci-070909-104445. DOI
Tolaminejad B., Taheri A.K., Shahmiri M., Arabi H. Development of Crystallographic Texture and Grain Refinement in the Aluminum Layer of Cu-Al-Cu Tri-Layer Composite Deformed by Equal Channel Angular Extrusion. Int. J. Mod. Phys. Conf. Ser. 2012;5:325–334. doi: 10.1142/S201019451200219X. DOI
Suehiro K., Nishimura S., Horita Z., Mitani S., Takanashi K., Fujimori H. High-pressure torsion for production of magnetoresistance in Cu–Co alloy. J. Mater. Sci. 2008;43:7349–7353. doi: 10.1007/s10853-008-2813-9. DOI
Ohsaki S., Kato S., Tsuji N., Ohkubo T., Hono K. Bulk mechanical alloying of Cu–Ag and Cu/Zr two-phase microstructures by accumulative roll-bonding process. Acta Mater. 2007;55:2885–2895. doi: 10.1016/j.actamat.2006.12.027. DOI
Wilde G., Rösner H. Stability aspects of bulk nanostructured metals and composites. J. Mater. Sci. 2007;42:1772–1781. doi: 10.1007/s10853-006-0986-7. DOI
Sabirov I., Schöberl T., Pippan R. Fabrication of a W-25%Cu Nanocomposite by high pressure torsion. Mater. Sci. Forum. 2006;503–504:561–566. doi: 10.4028/www.scientific.net/MSF.503-504.561. DOI
Kim W.N., Hong S.I. Interactive deformation and enhanced ductility of tri-layered Cu/Al/Cu clad composite. Mater. Sci. Eng. A. 2016;651:976–986. doi: 10.1016/j.msea.2015.11.062. DOI
Movahedi M., Kokabi A.H., Reihani S.M.S. Investigation on the bond strength of Al-1100/St-12 roll bonded sheets, optimization and characterization. Mater. Des. 2011;32:3143–3149. doi: 10.1016/j.matdes.2011.02.057. DOI
Hosseini M., Manesh H.D. Bond strength optimization of Ti/Cu/Ti clad composites produced by roll-bonding. Mater. Des. 2015;81:122–132. doi: 10.1016/j.matdes.2015.05.010. DOI
Polyanskii S.N., Kolnogorov V.S. Cladded steel for the oil and gas industries. Chem. Pet. Eng. 2002;38:703–707. doi: 10.1023/A:1023355018056. DOI
Li X., Zu G., Ding M., Mu Y., Wang P. Interfacial microstructure and mechanical properties of Cu/Al clad sheet fabricated by asymmetrical roll bonding and annealing. Mater. Sci. Eng. A. 2011;529:485–491. doi: 10.1016/j.msea.2011.09.087. DOI
Li X., Zu G., Wang P. Effect of strain rate on tensile performance of Al/Cu/Al laminated composites produced by asymmetrical roll bonding. Mater. Sci. Eng. A. 2013;575:61–64. doi: 10.1016/j.msea.2013.03.056. DOI
Matli P.R., Fareeha U., Shakoor R.A., Mohamed A.M.A. A comparative study of structural and mechanical properties of Al–Cu composites prepared by vacuum and microwave sintering techniques. J. Mater. Res. Technol. 2018;7:165–172. doi: 10.1016/j.jmrt.2017.10.003. DOI
Matvienko Y.I., Polishchuk S.S., Rud A.D., Popov O.Y., Demchenkov S.A., Fesenko O.M. Effect of graphite additives on microstructure and mechanical properties of Al–Cu composites prepared by mechanical alloying and sintering. Mater. Chem. Phys. 2020;254:123437. doi: 10.1016/j.matchemphys.2020.123437. DOI
Zhang J., Wang B., Chen G., Wang R., Miao C., Zheng Z., Tang W. Formation and growth of Cu–Al IMCs and their effect on electrical property of electroplated Cu/Al laminar composites. Trans. Nonferrous Met. Soc. Chin. 2016;26:3283–3291. doi: 10.1016/S1003-6326(16)64462-X. DOI
Bouaziz O., Bréchet Y., Embury J.D. Heterogeneous and architectured materials: A possible strategy for design of structural materials. Adv. Eng. Mater. 2008;10:24–36. doi: 10.1002/adem.200700289. DOI
Martinsen K., Hu S.J., Carlson B.E. Joining of dissimilar materials. CIRP Ann. 2015;64:679–699. doi: 10.1016/j.cirp.2015.05.006. DOI
Bouaziz O., Kim H.S., Estrin Y. Architecturing of metal-based composites with concurrent nanostructuring: A new paradigm of materials design. Adv. Eng. Mater. 2013;15:336–340. doi: 10.1002/adem.201200261. DOI
Khoddam S., Estrin Y., Kim H.S., Bouaziz O. Torsional and compressive behaviours of a hybrid material: Spiral fibre reinforced metal matrix composite. Mater. Des. 2015;85:404–411. doi: 10.1016/j.matdes.2015.06.165. DOI
Khoddam S., Sapanathan T., Zahiri S., Hodgson P.D., Zarei-Hanzaki A., Ibrahim R. Inner architecture of bonded splats under combined high pressure and shear. Adv. Eng. Mater. 2016;18:501–505. doi: 10.1002/adem.201500418. DOI
Kocich R., Greger M., Kursa M., Szurman I., Macháčková A. Twist channel angular pressing (TCAP) as a method for increasing the efficiency of SPD. Mater. Sci. Eng. A. 2010;527:6386–6392. doi: 10.1016/j.msea.2010.06.057. DOI
Kocich R., Kunčická L., Mihola M., Skotnicová K. Numerical and experimental analysis of twist channel angular pressing (TCAP) as a SPD process. Mater. Sci. Eng. A. 2013;563:86–94. doi: 10.1016/j.msea.2012.11.047. DOI
Kocich R., Kunčická L., Král P., Macháčková A. Sub-structure and mechanical properties of twist channel angular pressed aluminium. Mater. Charact. 2016;119:75–83. doi: 10.1016/j.matchar.2016.07.020. DOI
Kunčická L., Kocich R., Král P., Pohludka M., Marek M. Effect of strain path on severely deformed aluminium. Mater. Lett. 2016;180:280–283. doi: 10.1016/j.matlet.2016.05.163. DOI
Kocich R., Fiala J., Szurman I., Macháčková A., Mihola M. Twist-channel angular pressing: Effect of the strain path on grain refinement and mechanical properties of copper. J. Mater. Sci. 2011;46:7865–7876. doi: 10.1007/s10853-011-5768-1. DOI
Macháčková A. Decade of twist channel angular pressing: A review. Materials. 2020;13:1725. doi: 10.3390/ma13071725. PubMed DOI PMC
Beausir B., Fundenberger J.J. Analysis Tools for Electron and X-ray Diffraction. [(accessed on 20 July 2020)];2017 ATEX—Software. Available online: www.atex-software.eu.
Kocich R., Greger M., Macháčková A. Finite element investigation of influence of selected factors on ECAP process; Proceedings of the METAL 2010—19th International Conference on Metallurgy and Materials, Roznov pod Radhostem; Czech Republic. 18–20 May 2010; Ostrava, Czech Republic: Tanger Ltd.; 2010. pp. 166–171.
Beyerlein I.J., Tóth L.S. Texture evolution in equal-channel angular extrusion. Prog. Mater. Sci. 2009;54:427–510. doi: 10.1016/j.pmatsci.2009.01.001. DOI
Li S., Beyerlein I.J., Alexander D.J., Vogel S.C. Texture evolution during multi-pass equal channel angular extrusion of copper: Neutron diffraction characterization and polycrystal modeling. Acta Mater. 2005;53:2111–2125. doi: 10.1016/j.actamat.2005.01.023. DOI
Engler O., Randle V. Introduction to Texture Analysis, Macrotexture, Microtexture, and Orientation Mapping. 2nd ed. Taylor and Francis Group; Milton, UK: 2010.
Russell A., Lee K.L. Structure-Property Relations in Nonferrous Metals. 1st ed. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2005.
Optimizing Thermomechanical Processing of Bimetallic Laminates
Special Issue: Mechanical Properties in Progressive Mechanically Processed Metallic Materials