Optimizing Thermomechanical Processing of Bimetallic Laminates
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
22-11949S
Czech Science Foundation
SP2023/022
VSB - Technical University of Ostrava
PubMed
37176362
PubMed Central
PMC10180101
DOI
10.3390/ma16093480
PII: ma16093480
Knihovny.cz E-zdroje
- Klíčová slova
- bimetallic laminate, electric conductivity, microhardness, microstructure, rotary swaging,
- Publikační typ
- časopisecké články MeSH
Thermomechanical processing combining plastic deformation and heat treatment is a favorable way to enhance the performance and lifetime of bimetallic laminates, especially those consisting of metals, which tend to form intermetallic layers on the interfaces when produced using methods involving increased temperatures. The presented work focuses on optimizing the conditions of thermomechanical treatment for an Al + Cu bimetallic laminate of innovative design involving a shear-strain-based deformation procedure (rotary swaging) and post-process heat treatment in order to acquire microstructures providing advantageous characteristics during the transfer of direct and alternate electric currents. The specific electric resistivity, as well as microhardness, was particularly affected by the structural features, e.g., grain size, the types of grain boundaries, and grain orientations, which were closely related to the applied thermomechanical procedure. The microhardness increased considerably after swaging (up to 116 HV02 for the Cu components), but it decreased after the subsequent heat treatment at 350 °C. Nevertheless, the heat-treated laminates still featured increased mechanical properties. The measured electric characteristics for DC transfer were the most favorable for the heat-treated 15 mm bimetallic laminate featuring the lowest measured specific electric resistivity of 22.70 × 10-9 Ωm, while the 10 mm bimetallic laminates exhibited advantageous behavior during AC transfer due to a very low power loss coefficient of 1.001.
Zobrazit více v PubMed
Jia X., Hao K., Luo Z., Fan Z. Plastic Deformation Behavior of Metal Materials: A Review of Constitutive Models. Metals. 2022;12:2077. doi: 10.3390/met12122077. DOI
Segal V.M. Deformation Mode and Plastic Flow in Ultra Fine Grained Metals. Mater. Sci. Eng. A. 2005;406:205–216. doi: 10.1016/j.msea.2005.06.035. DOI
Kunčická L., Klečková Z. Structure Characteristics Affected by Material Plastic Flow in Twist Channel Angular Pressed Al/Cu Clad Composites. Materials. 2020;13:4161. doi: 10.3390/ma13184161. PubMed DOI PMC
Král P., Dvořák J., Sklenička V., Masuda T., Tang Y., Horita Z., Kunčická L., Kuchařová K., Kvapilová M., Svobodová M. Effect of Severe Plastic Deformation on Creep Behaviour and Microstructure Changes of P92 at 923 K. Met. Mater. 2021;59:141–148. doi: 10.4149/km_2021_3_141. DOI
Mohan Agarwal K., Tyagi R.K., Chaubey V.K., Dixit A. Comparison of Different Methods of Severe Plastic Deformation for Grain Refinement. IOP Conf. Ser. Mater. Sci. Eng. 2019;691:012074. doi: 10.1088/1757-899X/691/1/012074. DOI
Kunčická L., Macháčková A., Lavery N.P., Kocich R., Cullen J.C.T., Hlaváč L.M. Effect of Thermomechanical Processing via Rotary Swaging on Properties and Residual Stress within Tungsten Heavy Alloy. Int. J. Refract. Met. Hard Mater. 2020;87:105120. doi: 10.1016/j.ijrmhm.2019.105120. DOI
Hosseinzadeh A., Radi A., Richter J., Wegener T., Sajadifar S.V., Niendorf T., Yapici G.G. Severe Plastic Deformation as a Processing Tool for Strengthening of Additive Manufactured Alloys. J. Manuf. Process. 2021;68:788–795. doi: 10.1016/j.jmapro.2021.05.070. DOI
Hansen N., Huang X., Hughes D.A. Microstructural Evolution and Hardening Parameters. Mater. Sci. Eng. A. 2001;317:3–11. doi: 10.1016/S0921-5093(01)01191-1. DOI
Vega M.C.V., Bolmaro R.E., Ferrante M., Sordi V.L., Kliauga A.M. The Influence of Deformation Path on Strain Characteristics of AA1050 Aluminium Processed by Equal-Channel Angular Pressing Followed by Rolling. Mater. Sci. Eng. A. 2015;646:154–162. doi: 10.1016/j.msea.2015.07.083. DOI
Kocich R., Greger M., Macháčková A. Proceedings of the METAL 2010: 19th International Metallurgical and Materials Conference. Tanger Ltd.; Ostrava, Czech Republic: 2010. Finite Element Investigation of Influence of Selected Factors on ECAP Process; pp. 166–171.
Tóth L.S., Arruffat Massion R., Germain L., Baik S.C., Suwas S. Analysis of Texture Evolution in Equal Channel Angular Extrusion of Copper Using a New Flow Field. Acta Mater. 2004;52:1885–1898. doi: 10.1016/j.actamat.2003.12.027. DOI
Kunčická L., Kocich R., Drápala J., Andreyachshenko V.A. Proceedings of the METAL 2013: 22nd International Metallurgical and Materials Conference. Tanger Ltd.; Ostrava, Czech Republic: 2013. FEM Simulations and Comparison of the Ecap and ECAP-PBP Influence on Ti6Al4V Alloy’s Deformation Behaviour; pp. 391–396.
Kunčická L., Kocich R., Král P., Pohludka M., Marek M. Effect of Strain Path on Severely Deformed Aluminium. Mater. Lett. 2016;180:280–283. doi: 10.1016/j.matlet.2016.05.163. DOI
Kocich R., Kunčická L., Macháčková A. Twist Channel Multi-Angular Pressing (TCMAP) as a Method for Increasing the Efficiency of SPD. IOP Conf. Ser. Mater. Sci. Eng. 2014;63:012006. doi: 10.1088/1757-899X/63/1/012006. DOI
Orlov D., Beygelzimer Y., Synkov S., Varyukhin V., Tsuji N., Horita Z. Plastic Flow, Structure and Mechanical Properties in Pure Al Deformed by Twist Extrusion. Mater. Sci. Eng. A. 2009;519:105–111. doi: 10.1016/j.msea.2009.06.005. DOI
Mahdavian M.M., Ghalandari L., Reihanian M. Accumulative Roll Bonding of Multilayered Cu/Zn/Al: An Evaluation of Microstructure and Mechanical Properties. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2013;579:99–107. doi: 10.1016/j.msea.2013.05.002. DOI
Král P., Staněk J., Kunčická L., Seitl F., Petrich L., Schmidt V., Beneš V., Sklenička V. Microstructure Changes in HPT-Processed Copper Occurring at Room Temperature. Mater. Charact. 2019;151:602–611. doi: 10.1016/j.matchar.2019.03.046. DOI
Jamili A.M., Zarei-Hanzaki A., Abedi H.R., Mosayebi M., Kocich R., Kunčická L. Development of Fresh and Fully Recrystallized Microstructures through Friction Stir Processing of a Rare Earth Bearing Magnesium Alloy. Mater. Sci. Eng. A. 2019;775:138837. doi: 10.1016/j.msea.2019.138837. DOI
Xu W.F.F., Liu J.H.H., Chen D.L.L. Material Flow and Core/Multi-Shell Structures in a Friction Stir Welded Aluminum Alloy with Embedded Copper Markers. J. Alloys Compd. 2011;509:8449–8454. doi: 10.1016/j.jallcom.2011.05.118. DOI
Segal V. Review: Modes and Processes of Severe Plastic Deformation (SPD) Materials. 2018;11:1175. doi: 10.3390/ma11071175. PubMed DOI PMC
Pippan R., Scheriau S., Hohenwarter A., Hafok M. Advantages and Limitations of HPT: A Review. Mater. Sci. Forum. 2008;584–586:16–21. doi: 10.4028/www.scientific.net/MSF.584-586.16. DOI
Kunčická L., Kocich R., Strunz P., Macháčková A. Texture and Residual Stress within Rotary Swaged Cu/Al Clad Composites. Mater. Lett. 2018;230:88–91. doi: 10.1016/j.matlet.2018.07.085. DOI
Herrmann M., Schenck C., Kuhfuss B. Dry Rotary Swaging with Structured Tools. Procedia CIRP. 2016;40:653–658. doi: 10.1016/j.procir.2016.01.150. DOI
Rogachev S.O., Sundeev R.V., Andreev V.A., Andreev N.V., Ten D.V., Nikolaev E.V., Tabachkova N.Y., Khatkevich V.M. Structure, Mechanical and Physical Properties of Cu/Al–10% La Composite Produced by Rotary Forging. Metals. 2022;12:1755. doi: 10.3390/met12101755. DOI
Chen X., Liu C., Jiang S., Chen Z., Wan Y. Fabrication of Nanocrystalline High-Strength Magnesium−Lithium Alloy by Rotary Swaging. Adv. Eng. Mater. 2022;24:2100666. doi: 10.1002/adem.202100666. DOI
MacAskill I.A., LaDepha A.D.P., Milligan J.H., Fulton J.J., Bishop D.P. Effects of Cold and Hot Densification on the Mechanical Properties of a 7XXX Series Powder Metallurgy Alloy. Powder Metall. 2009;52:304–310. doi: 10.1179/174329009X409723. DOI
Wang Z., Chen J., Besnard C., Kunčická L., Kocich R., Korsunsky A.M. In Situ Neutron Diffraction Investigation of Texture-Dependent Shape Memory Effect in a near Equiatomic NiTi Alloy. Acta Mater. 2021;202:135–148. doi: 10.1016/j.actamat.2020.10.049. DOI
Svoboda J., Kunčická L., Luptáková N., Weiser A., Dymáček P. Fundamental Improvement of Creep Resistance of New-Generation Nano-Oxide Strengthened Alloys via Hot Rotary Swaging Consolidation. Materials. 2020;13:5217. doi: 10.3390/ma13225217. PubMed DOI PMC
Kral P., Blum W., Dvorak J., Yurchenko N., Stepanov N., Zherebtsov S., Kunčická L., Kvapilova M., Sklenicka V. Creep Behavior of an AlTiVNbZr0.25 High Entropy Alloy at 1073 K. Mater. Sci. Eng. A. 2020;783:139291. doi: 10.1016/j.msea.2020.139291. DOI
Huang A.H., Wang Y.F., Wang M.S., Song L.Y., Li Y.S., Gao L., Huang C.X., Zhu Y.T. Optimizing the Strength, Ductility and Electrical Conductivity of a Cu-Cr-Zr Alloy by Rotary Swaging and Aging Treatment. Mater. Sci. Eng. A. 2019;746:211–216. doi: 10.1016/j.msea.2019.01.002. DOI
Kral P., Dvorak J., Sklenicka V., Horita Z., Takizawa Y., Tang Y., Kunčická L., Kvapilova M., Ohankova M. Influence of High Pressure Sliding and Rotary Swaging on Creep Behavior of P92 Steel at 500 °C. Metals. 2021;11:2044. doi: 10.3390/met11122044. DOI
Kunčická L., Macháčková A., Petrmichl R., Klečková Z., Marek M. Optimizing Induction Heating of WNiCo Billets Processed via Intensive Plastic Deformation. Appl. Sci. 2020;10:8125. doi: 10.3390/app10228125. DOI
Kunčická L., Kocich R. Effect of Activated Slip Systems on Dynamic Recrystallization during Rotary Swaging of Electro-Conductive Al-Cu Composites. Mater. Lett. 2022;321:10–13. doi: 10.1016/j.matlet.2022.132436. DOI
Kocich R., Kunčická L., Dohnalík D., Macháčková A., Šofer M. Cold Rotary Swaging of a Tungsten Heavy Alloy: Numerical and Experimental Investigations. Int. J. Refract. Met. Hard Mater. 2016;61:264–272. doi: 10.1016/j.ijrmhm.2016.10.005. DOI
Li X., Zu G., Wang P. Effect of Strain Rate on Tensile Performance of Al/Cu/Al Laminated Composites Produced by Asymmetrical Roll Bonding. Mater. Sci. Eng. A. 2013;575:61–64. doi: 10.1016/j.msea.2013.03.056. DOI
Ma M., Huo P., Liu W.C., Wang G.J., Wang D.M. Microstructure and Mechanical Properties of Al/Ti/Al Laminated Composites Prepared by Roll Bonding. Mater. Sci. Eng. A. 2015;636:301–310. doi: 10.1016/j.msea.2015.03.086. DOI
Lee J., Park J., Jeong H. Effect of Strain on Mechanical and Microstructural Properties of Al/Cu Claddings during Caliber-Rolling. Mater. Lett. 2018;222:122–125. doi: 10.1016/j.matlet.2018.03.193. DOI
Yang X., Li W., Xu Y., Wen Q., Feng W., Wang Y. Effect of Welding Speed on Microstructures and Mechanical Properties of Al/Cu Bimetal Composite Tubes by a Novel Friction-Based Welding Process. Weld. World. 2019;63:127–136. doi: 10.1007/s40194-018-0652-0. DOI
Zheng H., Zhang R., Xu Q., Kong X., Sun W., Fu Y., Wu M., Liu K. Fabrication of Cu/Al/Cu Laminated Composites Reinforced with Graphene by Hot Pressing and Evaluation of Their Electrical Conductivity. Materials. 2023;16:622. doi: 10.3390/ma16020622. PubMed DOI PMC
Kunčická L., Macháčková A., Krátká L., Kocich R. Analysis of Deformation Behaviour and Residual Stress in Rotary Swaged Cu/Al Clad Composite Wires. Materials. 2019;12:3462. doi: 10.3390/ma12213462. PubMed DOI PMC
Lohit R.B., Bhovi P.M. Development of Ni-WC Composite Clad Using Microwave Energy. Mater. Today Proc. 2017;4:2975–2980. doi: 10.1016/j.matpr.2017.02.179. DOI
Liu B.X.X., Huang L.J.J., Geng L., Wang B., Liu C., Zhang W.C.C. Fabrication and Superior Ductility of Laminated Ti–TiBw/Ti Composites by Diffusion Welding. J. Alloys Compd. 2014;602:187–192. doi: 10.1016/j.jallcom.2014.02.140. DOI
Wang C., Han J., Zhang C., Su Y., Zhang S., Zhang Z., Wang T. Temperature Dependence of Interface Characterization and Mechanical Properties of TA1/Q235 Composite Fabricated by Explosive Welding. Adv. Eng. Mater. 2023:2201759. doi: 10.1002/adem.202201759. DOI
Won D.H., Park W.S., Yi J.-H., Han S.-H., Han T.H. Effect of Welding Heat on Precast Steel Composite Hollow Columns. Struct. Concr. 2014;15:350–360. doi: 10.1002/suco.201300060. DOI
Didi M., Mitschang P. Joining of Polymer-Metal Hybrid Structures. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2017. Induction Welding of Metal/Composite Hybrid Structures; pp. 101–125.
Cui X., Tian L., Wang D.S., Dong J.P. Summary of Thermosetting Composite Material Welding. J. Phys. Conf. Ser. 2021;1765:012021. doi: 10.1088/1742-6596/1765/1/012021. DOI
Keller C., Moisy F., Nguyen N., Eve S., Dashti A., Vieille B., Guillet A., Sauvage X., Hug E. Microstructure and Mechanical Properties Characterization of Architectured Copper Aluminum Composites Manufactured by Cold-Drawing. Mater. Charact. 2021;172:110824. doi: 10.1016/j.matchar.2020.110824. DOI
Kim I.-K., Hong S.I. Mechanochemical Joining in Cold Roll-Cladding of Tri-Layered Cu/Al/Cu Composite and the Interface Cracking Behavior. Mater. Des. 2014;57:625–631. doi: 10.1016/j.matdes.2014.01.054. DOI
Kocich R., Kunčická L., Macháčková A., Šofer M. Improvement of Mechanical and Electrical Properties of Rotary Swaged Al-Cu Clad Composites. Mater. Des. 2017;123:137–146. doi: 10.1016/j.matdes.2017.03.048. DOI
Li T., Wang Y., Shi H., Xi L., Xue D. Impact of Skin Effect on Permeability of Permalloy Films. J. Magn. Magn. Mater. 2022;545:168750. doi: 10.1016/j.jmmm.2021.168750. DOI
Grimm T.J., Mears L.M. Skin Effects in Electrically Assisted Manufacturing. Manuf. Lett. 2022;34:67–70. doi: 10.1016/j.mfglet.2022.09.006. DOI
Kunčická L., Jambor M., Král P. High Pressure Torsion of Copper; Effect of Processing Temperature on Structural Features, Microhardness and Electric Conductivity. Materials. 2023;16:2738. doi: 10.3390/ma16072738. PubMed DOI PMC
Verlinden B., Driver J., Samajdar I., Doherty R.D. Thermo-Mechanical Processing of Metallic Materials. Elsevier; Amsterdam, The Netherlands: 2007.
Humphreys F.J., Hetherly M., Rollett A., Rohrer G.S. Recrystallization and Related Annealing Phenomena. 2nd ed. Elsevier; Oxford, UK: 2004.
Dalla Torre F.H., Pereloma E.V., Davies C.H.J. Strain Hardening Behaviour and Deformation Kinetics of Cu Deformed by Equal Channel Angular Extrusion from 1 to 16 Passes. Acta Mater. 2006;54:1135–1146. doi: 10.1016/j.actamat.2005.10.041. DOI
Russell A., Lee K.L. Structure-Property Relations in Nonferrous Metals. 1st ed. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2005.
Liao X.Z., Zhao Y.H., Srinivasan S.G., Zhu Y.T., Valiev R.Z., Gunderov D.V. Deformation Twinning in Nanocrystalline Copper at Room Temperature and Low Strain Rate. Appl. Phys. Lett. 2004;84:592–594. doi: 10.1063/1.1644051. DOI
Picu R.C., Li R., Xu Z. Strain Rate Sensitivity of Thermally Activated Dislocation Motion across Fields of Obstacles of Different Kind. Mater. Sci. Eng. A. 2009;502:164–171. doi: 10.1016/j.msea.2008.10.046. DOI
Murashkin M.Y., Sabirov I., Sauvage X., Valiev R.Z., Sabirov I., Sauvage X., Valiev R.Z., Sabirov I., Sauvage X., Valiev R.Z. Nanostructured Al and Cu Alloys with Superior Strength and Electrical Conductivity. J. Mater. Sci. 2016;51:33–49. doi: 10.1007/s10853-015-9354-9. DOI
Effect of Oxide Systems on Purity of Tool Steels Fabricated by Electro Slag Remelting
Structural Phenomena Introduced by Rotary Swaging: A Review