High Pressure Torsion of Copper; Effect of Processing Temperature on Structural Features, Microhardness and Electric Conductivity

. 2023 Mar 29 ; 16 (7) : . [epub] 20230329

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37049029

Grantová podpora
22-11949S Czech Science Foundation

By optimizing the fabrication method, copper components featuring (typically contradicting) advantageous electric conductivity and favorable mechanical properties can be acquired. In this study, we subjected conventional electroconductive copper to a single revolution of high pressure torsion (HPT) at room temperature (RT), searched for the conditions which would yield comparable structure characteristics (grain size) when deformed at a cryogenic temperature, and finally compared the mechanical and electric behaviors to assess specific differences and correlate them with the (sub)structural development. 180° revolution of cryo-HPT imparted structure refinement comparable to 360° revolution of room temperature HPT, i.e., the average grain size at the periphery of both the specimens was ~7 µm. The 360° RT HPT specimen exhibited preferential (111)||SD (shear direction) texture fiber in all the examined regions, whereas the 180° cryo-HPT specimen exhibited more or less randomly oriented grains of equiaxed shapes featuring substantial substructure development of a relatively homogeneous character and massive occurrence of (nano)twins. These structural features resulted in the increase in microhardness to the average value of 118.2 HV0.2 and the increase in the electric conductivity to 59.66 MS·m-1 (compared to 105 HV0.2 and 59.14 MS·m-1 acquired for the 360° RT HPT specimen). The deformation under the cryogenic conditions also imparted higher homogeneity of microhardness distribution when compared to RT processing.

Zobrazit více v PubMed

Russell A., Lee K.L. Structure-Property Relations in Nonferrous Metals. 1st ed. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2005.

Zhou M., Geng Y., Zhang Y., Ban Y., Li X., Jia Y., Liang S., Tian B., Liu Y., Volinsky A.A. Enhanced Mechanical Properties and High Electrical Conductivity of Copper Alloy via Dual-Nanoprecipitation. Mater. Charact. 2023;195:112494. doi: 10.1016/j.matchar.2022.112494. DOI

Wu J., Li Z., Luo Y., Gao Z., Li Y., Zhao Y., Liao Y., Wu C., Jin M. Influence of Synergistic Strengthening Effect of B4C and TiC on Tribological Behavior of Copper-Based Powder Metallurgy. Ceram. Int. 2023;49:2978–2990. doi: 10.1016/j.ceramint.2022.09.282. DOI

Dvořák K., Všianský D., Ravaszová S., Jančíků A. Synthesis of M1 and M3 Alite Polymorphs and Accuracy of Their Quantification. Cem. Concr. Res. 2023;163:107016. doi: 10.1016/j.cemconres.2022.107016. DOI

Rogachev A.S., Kuskov K.V., Moskovskikh D.O., Usenko A.A., Orlov A.O., Shkodich N.F., Alymov M.I., Mukasyan A.S. Effect of Mechanical Activation on Thermal and Electrical Conductivity of Sintered Cu, Cr, and Cu/Cr Composite Powders. Dokl. Phys. 2016;61:257–260. doi: 10.1134/S1028335816060082. DOI

Mukhtar A., Zhang D.L., Kong C., Munroe P. Consolidation of Ultrafine-Grained Cu Powder and Nanostructured Cu-(2.5–10) Vol%Al2O3 Composite Powders by Powder Compact Forging. J. Mater. Sci. 2010;45:4594–4605. doi: 10.1007/s10853-010-4653-7. DOI

Li D., Xue J., Zuo T., Gao Z., Xiao L., Han L., Li S., Yang Y. Copper/Functionalized-Carbon Nanotubes Composite Films with Ultrahigh Electrical Conductivity Prepared by Pulse Reverse Electrodeposition. J. Mater. Sci. Mater. Electron. 2020;31:14184–14191. doi: 10.1007/s10854-020-03974-8. DOI

Kunčická L., Kocich R., Strunz P., Macháčková A. Texture and Residual Stress within Rotary Swaged Cu/Al Clad Composites. Mater. Lett. 2018;230:88–91. doi: 10.1016/j.matlet.2018.07.085. DOI

Zheng H., Zhang R., Xu Q., Kong X., Sun W., Fu Y., Wu M., Liu K. Fabrication of Cu/Al/Cu Laminated Composites Reinforced with Graphene by Hot Pressing and Evaluation of Their Electrical Conductivity. Materials. 2023;16:622. doi: 10.3390/ma16020622. PubMed DOI PMC

Kocich R., Kunčická L. Development of Structure and Properties in Bimetallic Al/Cu Sandwich Composite during Cumulative Severe Plastic Deformation. J. Sandw. Struct. Mater. 2021;23:4252–4275. doi: 10.1177/1099636221993886. DOI

Cepeda-Jiménez C.M., Pozuelo M., García-Infanta J.M., Ruano O.A., Carreño F. Interface Effects on the Fracture Mechanism of a High-Toughness Aluminum-Composite Laminate. Metall. Mater. Trans. A. 2009;40:69–79. doi: 10.1007/s11661-008-9679-y. DOI

Tayyebi M., Adhami M., Karimi A., Rahmatabadi D., Alizadeh M., Hashemi R. Effects of Strain Accumulation and Annealing on Interfacial Microstructure and Grain Structure (Mg and Al3Mg2 Layers) of Al/Cu/Mg Multilayered Composite Fabricated by ARB Process. J. Mater. Res. Technol. 2021;14:392–406. doi: 10.1016/j.jmrt.2021.06.032. DOI

Carpenter J.S., Miller C., Savage D.J., Coughlin D.R., Tegtmeier E.L., Winter W.P. The Impact of Rolling at Temperature on Conductivity and Texture in Nanolamellar Cu/Nb Bimetallic Composites. Metall. Mater. Trans. A. 2022;53:2208–2213. doi: 10.1007/s11661-022-06662-w. DOI

Xu W., Qi J., Zhang Y., Zeng G., Zhou Y., Ou H., Zhou H., Wu Y., Yang Y. Effect of Annealing Treatment on Electromagnetic Shielding Effectiveness of Double-Layer FeSiBCuNb/Cu Composite Strips. J. Mater. Sci. Mater. Electron. 2023;34:376. doi: 10.1007/s10854-022-09740-2. DOI

Kunčická L., Kocich R. Optimizing Electric Conductivity of Innovative Al-Cu Laminated Composites via Thermomechanical Treatment. Mater. Des. 2022;215:110441. doi: 10.1016/j.matdes.2022.110441. DOI

Kunčická L., Kocich R., Ryukhtin V., Cullen J.C.T., Lavery N.P. Study of Structure of Naturally Aged Aluminium after Twist Channel Angular Pressing. Mater. Charact. 2019;152:94–100. doi: 10.1016/j.matchar.2019.03.045. DOI

Kocich R., Lukáč P. Handbook of Mechanical Nanostructuring. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2015. SPD Processes—Methods for Mechanical Nanostructuring; pp. 235–262.

Hansen N., Huang X., Hughes D.A. Microstructural Evolution and Hardening Parameters. Mater. Sci. Eng. A. 2001;317:3–11. doi: 10.1016/S0921-5093(01)01191-1. DOI

Kocich R., Szurman I., Kursa M., Fiala J. Investigation of Influence of Preparation and Heat Treatment on Deformation Behaviour of the Alloy NiTi after ECAE. Mater. Sci. Eng. A. 2009;512:100–104. doi: 10.1016/j.msea.2009.01.054. DOI

Kocich R., Greger M., Macháčková A. Finite Element Investigation of Influence of Selected Factors on ECAP Process; Proceedings of the METAL 2010: 19th International Metallurgical and Materials Conference; Roznov Pod Radhostem, Czech Republic. 18–20 May 2010; Greensboro, NC, USA: Tanger Ltd.; 2010. pp. 166–171.

Kunčická L., Kocich R., Král P., Pohludka M., Marek M. Effect of Strain Path on Severely Deformed Aluminium. Mater. Lett. 2016;180:280–283. doi: 10.1016/j.matlet.2016.05.163. DOI

Kocich R., Fiala J., Szurman I., Macháčková A., Mihola M. Twist-channel angular pressing: Effect of the strain path on grain refinement and mechanical properties of copper. J. Mater. Sci. 2011;46:7865–7876. doi: 10.1007/s10853-011-5768-1. DOI

Asgari M., Fereshteh-Saniee F., Pezeshki S.M., Barati M. Non-Equal Channel Angular Pressing (NECAP) of AZ80 Magnesium Alloy: Effects of Process Parameters on Strain Homogeneity, Grain Refinement and Mechanical Properties. Mater. Sci. Eng. A. 2016;678:320–328. doi: 10.1016/j.msea.2016.09.102. DOI

Kunčická L., Kocich R., Drápala J., Andreyachshenko V.A. FEM Simulations and Comparison of the Ecap and ECAP-PBP Influence on Ti6Al4V Alloy’s Deformation Behaviour; Proceedings of the METAL 2013-22nd International Conference on Metallurgy and Materials; Brno, Czech Republic. 15–17 May 2013; pp. 391–396.

Volokitina I.E. Evolution of the Microstructure and Mechanical Properties of Copper under ECAP with Intense Cooling. Met. Sci. Heat Treat. 2020;62:253–258. doi: 10.1007/s11041-020-00544-x. DOI

Hlaváč L.M., Kocich R., Gembalová L., Jonšta P., Hlaváčová I.M. AWJ Cutting of Copper Processed by ECAP. Int. J. Adv. Manuf. Technol. 2016;86:885–894. doi: 10.1007/s00170-015-8236-2. DOI

Guo T., Wang J., Wu Y., Tai X., Jia Z., Ding Y. Fabricate of High-Strength and High-Conductivity Cu-Cr-Si Alloys through ECAP-Bc and Aging Heat Treatment. Materials. 2020;13:1603. doi: 10.3390/ma13071603. PubMed DOI PMC

Huang R., Zhu D., Liao X., Yan Q. Effect of ECAP Process and Subsequent Annealing on Microstructure and Properties of Cu-0.25Se-0.25Te Alloy. J. Electron. Mater. 2020;49:2617–2624. doi: 10.1007/s11664-020-07975-5. DOI

Kocich R., Macháčková A., Fojtík F. Comparison of Strain and Stress Conditions in Conventional and ARB Rolling Processes. Int. J. Mech. Sci. 2012;64:54–61. doi: 10.1016/j.ijmecsci.2012.08.003. DOI

Rahmatabadi D., Pahlavani M., Gholami M.D., Marzbanrad J., Hashemi R. Production of Al/Mg-Li Composite by the Accumulative Roll Bonding Process. J. Mater. Res. Technol. 2020;9:7880–7886. doi: 10.1016/j.jmrt.2020.05.084. DOI

Jamili A.M., Zarei-Hanzaki A., Abedi H.R., Mosayebi M., Kocich R., Kunčická L. Development of Fresh and Fully Recrystallized Microstructures through Friction Stir Processing of a Rare Earth Bearing Magnesium Alloy. Mater. Sci. Eng. A. 2019;775:138837. doi: 10.1016/j.msea.2019.138837. DOI

Lu Y., Hanh H., Ivanisenko Y. Carbon Segregation in CoCrFeMnNi High-Entropy Alloy Driven by High-Pressure Torsion at Room and Cryogenic Temperatures. Adv. Eng. Mater. 2022. Early View . DOI

Zhilyaev A.P., Langdon T.G. Using High-Pressure Torsion for Metal Processing: Fundamentals and Applications. Prog. Mater. Sci. 2008;53:893–979. doi: 10.1016/j.pmatsci.2008.03.002. DOI

Thiel C., Voss J., Martin R.J., Neff P. Shear, Pure and Simple. Int. J. Non-Linear Mech. 2019;112:57–72. doi: 10.1016/j.ijnonlinmec.2018.10.002. DOI

An X.H., Lin Q.Y., Wu S.D., Zhang Z.F., Figueiredo R.B., Gao N., Langdon T.G. The Influence of Stacking Fault Energy on the Mechanical Properties of Nanostructured Cu and Cu-Al Alloys Processed by High-Pressure Torsion. Scr. Mater. 2011;64:954–957. doi: 10.1016/j.scriptamat.2011.01.041. DOI

Huang Y., Sabbaghianrad S., Almazrouee A.I., Al-Fadhalah K.J., Alhajeri S.N., Langdon T.G. The Significance of Self-Annealing at Room Temperature in High Purity Copper Processed by High-Pressure Torsion. Mater. Sci. Eng. A. 2016;656:55–66. doi: 10.1016/j.msea.2016.01.027. DOI

Schafler E., Kerber M.B. Microstructural investigation of the annealing behaviour of high-pressure torsion (HPT) deformed copper. Mater. Sci. Eng. A. 2007;462:139–143. doi: 10.1016/j.msea.2005.11.085. DOI

Verlinden B., Driver J., Samajdar I., Doherty R.D. Thermo-Mechanical Processing of Metallic Materials. Elsevier; Amsterdam, The Netherlands: 2007.

Picu R.C., Li R., Xu Z. Strain rate sensitivity of thermally activated dislocation motion across fields of obstacles of different kind. Mater. Sci. Eng. A. 2008;502:164–171. doi: 10.1016/j.msea.2008.10.046. DOI

Pan H., He Y., Zhang X. Interactions between Dislocations and Boundaries during Deformation. Materials. 2021;14:1012. doi: 10.3390/ma14041012. PubMed DOI PMC

El Kadiri H., Oppedal A.L. A crystal plasticity theory for latent hardening by glide twinning through dislocation transmutation and twin accommodation effects. J. Mech. Phys. Solids. 2010;58:613–624. doi: 10.1016/j.jmps.2009.12.004. DOI

Murashkin M.Y., Sabirov I., Sauvage X., Valiev R.Z. Nanostructured Al and Cu Alloys with Superior Strength and Electrical Conductivity. J. Mater. Sci. 2016;51:33–49. doi: 10.1007/s10853-015-9354-9. DOI

Mao Q., Zhang Y., Guo Y., Zhao Y. Enhanced Electrical Conductivity and Mechanical Properties in Thermally Stable Fine-Grained Copper Wire. Commun. Mater. 2021;2:46. doi: 10.1038/s43246-021-00150-1. DOI

Edalati K., Imamura K., Kiss T., Horita Z. Equal-Channel Angular Pressing and High-Pressure Torsion of Pure Copper: Evolution of Electrical Conductivity and Hardness with Strain. Mater. Trans. 2012;53:123–127. doi: 10.2320/matertrans.MD201109. DOI

Jamalian M., Hamid M., De Vincentis N., Buck Q., Field D.P., Zbib H.M. Creation of Heterogeneous Microstructures in Copper Using High-Pressure Torsion to Enhance Mechanical Properties. Mater. Sci. Eng. A. 2019;756:142–148. doi: 10.1016/j.msea.2019.04.024. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Optimizing Thermomechanical Processing of Bimetallic Laminates

. 2023 Apr 30 ; 16 (9) : . [epub] 20230430

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...