Analysis of Deformation Behaviour and Residual Stress in Rotary Swaged Cu/Al Clad Composite Wires
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-15479S
Grantová Agentura České Republiky
PubMed
31652684
PubMed Central
PMC6861943
DOI
10.3390/ma12213462
PII: ma12213462
Knihovny.cz E-zdroje
- Klíčová slova
- clad composite, finite element analysis, residual stress, rotary swaging, substructure,
- Publikační typ
- časopisecké články MeSH
Both copper and aluminum are widely applicable throughout a variety of industrial and commercial branches, however, joining them in a composite provides the possibility of combining all their advantageous properties in one material. This study investigates uniquely sequenced copper-aluminum clad composite wires, fabricated via rotary swaging technology. The composites were processed at 20 °C and 250 °C to a diameter of 5 mm. Structural observations and the determination of residual stress within both elements of the swaged wires were performed via electron microscopy; the experimental results were correlated with numerical predictions. As shown in the results, both the applied swaging force and temperature affected the plastic flow, which had a direct influence on residual stress and texture development; the Alsheath elements exhibited ideal rolling textures, whereas the Cuwires elements featured ideal shear texture orientation. The grains within both the Alsheath elements of the 5 mm composite wire were refined down to sub-micron size. Structural restoration also had a positive influence on residual stress.
Zobrazit více v PubMed
Bae J.H., Prasada Rao A.K., Kim K.H., Kim N.J. Cladding of Mg alloy with Al by twin-roll casting. Scr. Mater. 2011;64:836–839. doi: 10.1016/j.scriptamat.2011.01.013. DOI
Uscinowicz R. Impact of temperature on shear strength of single lap Al–Cu bimetallic joint. Compos. Part. B Eng. 2013;44:344–356. doi: 10.1016/j.compositesb.2012.04.073. DOI
Kappel E. Distortions of composite aerospace frames due to processing, thermal loads and trimming operations and an assessment from an assembly perspective. Compos. Struct. 2019;220:338–346. doi: 10.1016/j.compstruct.2019.03.099. DOI
Kocich R., Kunčická L., Král P., Strunz P. Characterization of innovative rotary swaged Cu-Al clad composite wire conductors. Mater. Des. 2018;160:828–835. doi: 10.1016/j.matdes.2018.10.027. DOI
Elanchezhian C., Vijaya Ramnath B., Ramakrishnan G., Sripada Raghavendra K.N., Muralidharan M., Kishore V. Review on metal matrix composites for marine applications. Mater. Today Proc. 2018;5:1211–1218. doi: 10.1016/j.matpr.2017.11.203. DOI
Ambli K.G., Dodamani B.M., Jagadeesh A., Vanarotti M.B. Heterogeneous composites for low and medium temperature thermal insulation: A review. Energy Build. 2019;199:455–460. doi: 10.1016/j.enbuild.2019.07.024. DOI
Kunčická L., Kocich R., Lowe T.C. Advances in metals and alloys for joint replacement. Prog. Mater. Sci. 2017;88:232–280. doi: 10.1016/j.pmatsci.2017.04.002. DOI
Kunčická L., Kocich R., Dvořák K., Macháčková A. Rotary swaged laminated Cu-Al composites: Effect of structure on residual stress and mechanical and electric properties. Mater. Sci. Eng. A. 2019;742:743–750. doi: 10.1016/j.msea.2018.11.026. DOI
Geng L., Huang L. High Temperature Properties of Discontinuously Reinforced Titanium Matrix Composites: A Review. Acta Metall. Sin. Engl. Lett. 2014;27:787–797. doi: 10.1007/s40195-014-0155-y. DOI
Rajan T.P.D., Pai B.C. Developments in Processing of Functionally Gradient Metals and Metal–Ceramic Composites: A Review. Acta Metall. Sin. Engl. Lett. 2014;27:825–838. doi: 10.1007/s40195-014-0142-3. DOI
Wu K., Chang H., Maawad E., Gan W.M., Brokmeier H.G., Zheng M.Y. Microstructure and mechanical properties of the Mg/Al laminated composite fabricated by accumulative roll bonding (ARB) Mater. Sci. Eng. A. 2010;527:3073–3078. doi: 10.1016/j.msea.2010.02.001. DOI
Kim I.K., Hong S.I. Effect of component layer thickness on the bending behaviors of roll-bonded tri-layered Mg/Al/STS clad composites. Mater. Des. 2013;49:935–944. doi: 10.1016/j.matdes.2013.02.052. DOI
Jin K., Yuan Q., Tao J., Domblesky J., Guo X. Analysis of the forming characteristics for Cu/Al bimetal tubes produced by the spinning process. Int. J. Adv. Manuf. Tech. 2019;101:147–155. doi: 10.1007/s00170-018-2836-6. DOI
Kim W.N., Hong S.I. Interactive deformation and enhanced ductility of tri-layered Cu/Al/Cu clad composite. Mater. Sci. Eng. A. 2016;651:976–986. doi: 10.1016/j.msea.2015.11.062. DOI
Gladkovsky S.V., Kuteneva S.V., Sergeev S.N. Microstructure and mechanical properties of sandwich copper/steel composites produced by explosive welding. Mater. Charact. 2019;154:294–303. doi: 10.1016/j.matchar.2019.06.008. DOI
Zeng X., Wang Y., Li X., Li X., Zhao T. Effect of inert gas-shielding on the interface and mechanical properties of Mg/Al explosive welding composite plate. J. Manuf. Process. 2019;45:166–175. doi: 10.1016/j.jmapro.2019.07.007. DOI
Fronczek D.M., Wojewoda-Budka J., Chulist R., Sypien A., Korneva A., Szulc Z., Schell N., Zieba P. Structural properties of Ti/Al clads manufactured by explosive welding and annealing. Mater. Des. 2016;91:80–89. doi: 10.1016/j.matdes.2015.11.087. DOI
Deqing W., Ziyuan S., Ruobin Q. Cladding of stainless steel on aluminum and carbon steel by interlayer diffusion bonding. Scr. Mater. 2007;56:369–372. doi: 10.1016/j.scriptamat.2006.11.003. DOI
Yu Y., Xu P., Li K., Zhao J., Dai Y., Ma H., Yang M. Study on modalities and microdefects of Al-Cu bimetallic tube by underwater explosive cladding. Arch. Civ. Mech. Eng. 2019;19:1390–1398. doi: 10.1016/j.acme.2019.09.002. DOI
Lesuer D.R., Syn C.K., Sherby O.D., Wadsworth J., Lewandowski J.J., Hunt W.H. Mechanical behaviour of laminated metal composites. Int. Mater. Rev. 1996;41:169–197. doi: 10.1179/imr.1996.41.5.169. DOI
Kocich R., Szurman I., Kursa M., Fiala J. Investigation of influence of preparation and heat treatment on deformation behaviour of the alloy NiTi after ECAE. Mater. Sci. Eng. A. 2009;512:100–104. doi: 10.1016/j.msea.2009.01.054. DOI
Ha J.S., Hong S.I. Deformation and fracture of Ti/439 stainless steel clad composite at intermediate temperatures. Mater. Sci. Eng. A. 2016;651:805–809. doi: 10.1016/j.msea.2015.11.041. DOI
Atrian A., Fereshteh-Saniee F. Deep drawing process of steel/brass laminated sheets. Compos. Part. B Eng. 2013;47:75–81. doi: 10.1016/j.compositesb.2012.10.023. DOI
Lee J.S., Son H.T., Oh I.H., Kang C.S., Yun C.H., Lim S.C., Kwon H.C. Fabrication and characterization of Ti–Cu clad materials by indirect extrusion. J. Mater. Process. Technol. 2007;187–188:653–656. doi: 10.1016/j.jmatprotec.2006.11.144. DOI
Kocich R., Macháčková A., Fojtík F. Comparison of strain and stress conditions in conventional and ARB rolling processes. Int. J. Mech. Sci. 2012;64:54–61. doi: 10.1016/j.ijmecsci.2012.08.003. DOI
Lukáč P., Kocich R., Greger M., Padalka O., Szaraz Z. Microstructure of AZ31 and AZ61 Mg alloys prepared by rolling and ECAP. Kov. Mater. 2007;45:115–120.
Movahedi M., Kokabi A.H., Seyed Reihani S.M. Investigation on the bond strength of Al-1100/St-12 roll bonded sheets, optimization and characterization. Mater. Des. 2011;32:3143–3149. doi: 10.1016/j.matdes.2011.02.057. DOI
Masahashi N., Komatsu K., Watanabe S., Hanada S. Microstructure and properties of iron aluminum alloy/CrMo steel composite prepared by clad rolling. J. Alloys Compd. 2004;379:272–279. doi: 10.1016/j.jallcom.2004.02.043. DOI
Hosseini M., Danesh Manesh H. Bond strength optimization of Ti/Cu/Ti clad composites produced by roll-bonding. Mater. Des. 2015;81:122–132. doi: 10.1016/j.matdes.2015.05.010. DOI
Gao J.H., Guan S.K., Ren Z.W., Sun Y.F., Zhu S.J., Wang B. Homogeneous corrosion of high pressure torsion treated Mg–Zn–Ca alloy in simulated body fluid. Mater. Lett. 2011;65:691–693. doi: 10.1016/j.matlet.2010.11.015. DOI
Kunčická L., Lowe T.C., Davis C.F., Kocich R., Pohludka M. Synthesis of an Al/Al2O3 composite by severe plastic deformation. Mater. Sci. Eng. A. 2015;646:234–241. doi: 10.1016/j.msea.2015.08.075. DOI
Kocich R., Greger M., Macháčková A. Finite element investigation of influence of selected factors on ECAP process; Proceedings of the Metal 2010, 19th International Conference on Metallurgy and Materials; Brno, Czech Republic. 18–20 May 2010; Ostrava, Czech Republic: Tanger Ltd.; 2010. pp. 166–171.
Naizabekov A.B., Andreyachshenko V.A., Kocich R. Study of deformation behavior, structure and mechanical properties of the AlSiMnFe alloy during ECAP-PBP. Micron. 2013;44:210–217. doi: 10.1016/j.micron.2012.06.011. PubMed DOI
Kocich R., Kunčická L., Král P., Macháčková A. Sub-structure and mechanical properties of twist channel angular pressed aluminium. Mater. Charact. 2016;119:75–83. doi: 10.1016/j.matchar.2016.07.020. DOI
Kunčická L., Kocich R., Drápala J., Andreyachshenko V.A. FEM simulations and comparison of the ECAP and ECAP-PBP influence on Ti6Al4V alloy’s deformation behavior; Proceedings of the Metal 2013, 22nd International Conference on Metallurgy and Materials; Brno, Czech Republic. 15–17 May 2013; Ostrava, Czech Republic: Tanger Ltd.; 2013. pp. 391–396.
Kocich R., Kunčická L., Macháčková A. Twist Channel Multi-Angular Pressing (TCMAP) as a method for increasing the efficiency of SPD; Proceedings of the IOP Conference Series: Materials Science and Engineering; Metz, France. 30 June–4 July 2014; DOI
Jamali G., Nourouzi S., Jamaati R. Microstructure and mechanical properties of AA6063 aluminum alloy wire fabricated by friction stir back extrusion (FSBE) process. Int. J. Miner. Metall. Mater. 2019;26:1005–1012. doi: 10.1007/s12613-019-1806-9. DOI
Zhang D.T., Cao G.H., Qiu C., Chen D.L. Multi-pass submerged friction stir processing of AZ61 magnesium alloy: Strengthening mechanisms and fracture behavior. J. Mater. Sci. 2019;54:8640–8654. doi: 10.1007/s10853-018-03259-w. DOI
Eschke A., Scharnweber J., Oertel C.-G., Skrotzki W., Marr T., Romberg J., Freudenberger J.J., Schultz L., Okulov I., Kühn U., et al. Texture development in Ti/Al filament wires produced by accumulative swaging and bundling. Mater. Sci. Eng. A. 2014;607:360–367. doi: 10.1016/j.msea.2014.04.003. DOI
Kocich R., Macháčková A., Kunčická L., Fojtík F. Fabrication and characterization of cold-swaged multilayered Al–Cu clad composites. Mater. Des. 2015;71:36–47. doi: 10.1016/j.matdes.2015.01.008. DOI
Kunčická L., Kocich R., Strunz P., Macháčková A. Texture and residual stress within rotary swaged Cu/Al clad composites. Mater. Lett. 2018;230:88–91. doi: 10.1016/j.matlet.2018.07.085. PubMed DOI
Kunčická L., Kocich R., Hervoches C., Macháčková A. Study of structure and residual stresses in cold rotary swaged tungsten heavy alloy. Mater. Sci. Eng. A. 2017;704:25–31. doi: 10.1016/j.msea.2017.07.096. DOI
Beausir B., Fundenberger J.J. Analysis Tools for Electron and X-ray diffraction, ATEX Software. [(accessed on 21 November 2018)]; Available online: www.atex-software.eu.
Kocich R., Kunčická L., Macháčková A., Šofer M. Improvement of mechanical and electrical properties of rotary swaged Al-Cu clad composites. Mater. Des. 2017;123:137–146. doi: 10.1016/j.matdes.2017.03.048. DOI
Kocich R., Kunčická L., Davis C.F., Lowe T.C., Szurman I., Macháčková A. Deformation behavior of multilayered Al-Cu clad composite during cold-swaging. Mater. Des. 2016;90:379–388. doi: 10.1016/j.matdes.2015.10.145. DOI
Humphreys F.J., Hetherly M. Recrystallization and Related Annealing Phenomena. 2nd ed. Elsevier Ltd.; Oxford, UK: 2004.
Li H., Zhang C., Liu H., Li M. Bonding interface characteristic and shear strength of diffusion bonded Ti-17 titanium alloy. Trans. Nonferrous Met. Soc. China. 2015;25:80–87. doi: 10.1016/S1003-6326(15)63581-6. DOI
Beyerlein I.J., Tóth L.S. Texture evolution in equal-channel angular extrusion. Prog. Mater. Sci. 2009;54:427–510. doi: 10.1016/j.pmatsci.2009.01.001. DOI
Engler O., Randle V. Introduction to Texture Analysis, Macrotexture, Microtexture, and Orientation Mapping. 2nd ed. Taylor and Francis Group, CRC Press; Boca Raton, FL, USA: 2010.
Verlinden B., Driver J., Samajdar I., Doherty R.H. Thermo-Mechanical Processing of Metallic Materials. Elsevier; Amsterdam, The Netherlands: 2007.
Structural Phenomena Introduced by Rotary Swaging: A Review
(Sub)structure Development in Gradually Swaged Electroconductive Bars
Optimizing Thermomechanical Processing of Bimetallic Laminates