Analysis of Deformation Behaviour and Residual Stress in Rotary Swaged Cu/Al Clad Composite Wires

. 2019 Oct 23 ; 12 (21) : . [epub] 20191023

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31652684

Grantová podpora
19-15479S Grantová Agentura České Republiky

Both copper and aluminum are widely applicable throughout a variety of industrial and commercial branches, however, joining them in a composite provides the possibility of combining all their advantageous properties in one material. This study investigates uniquely sequenced copper-aluminum clad composite wires, fabricated via rotary swaging technology. The composites were processed at 20 °C and 250 °C to a diameter of 5 mm. Structural observations and the determination of residual stress within both elements of the swaged wires were performed via electron microscopy; the experimental results were correlated with numerical predictions. As shown in the results, both the applied swaging force and temperature affected the plastic flow, which had a direct influence on residual stress and texture development; the Alsheath elements exhibited ideal rolling textures, whereas the Cuwires elements featured ideal shear texture orientation. The grains within both the Alsheath elements of the 5 mm composite wire were refined down to sub-micron size. Structural restoration also had a positive influence on residual stress.

Zobrazit více v PubMed

Bae J.H., Prasada Rao A.K., Kim K.H., Kim N.J. Cladding of Mg alloy with Al by twin-roll casting. Scr. Mater. 2011;64:836–839. doi: 10.1016/j.scriptamat.2011.01.013. DOI

Uscinowicz R. Impact of temperature on shear strength of single lap Al–Cu bimetallic joint. Compos. Part. B Eng. 2013;44:344–356. doi: 10.1016/j.compositesb.2012.04.073. DOI

Kappel E. Distortions of composite aerospace frames due to processing, thermal loads and trimming operations and an assessment from an assembly perspective. Compos. Struct. 2019;220:338–346. doi: 10.1016/j.compstruct.2019.03.099. DOI

Kocich R., Kunčická L., Král P., Strunz P. Characterization of innovative rotary swaged Cu-Al clad composite wire conductors. Mater. Des. 2018;160:828–835. doi: 10.1016/j.matdes.2018.10.027. DOI

Elanchezhian C., Vijaya Ramnath B., Ramakrishnan G., Sripada Raghavendra K.N., Muralidharan M., Kishore V. Review on metal matrix composites for marine applications. Mater. Today Proc. 2018;5:1211–1218. doi: 10.1016/j.matpr.2017.11.203. DOI

Ambli K.G., Dodamani B.M., Jagadeesh A., Vanarotti M.B. Heterogeneous composites for low and medium temperature thermal insulation: A review. Energy Build. 2019;199:455–460. doi: 10.1016/j.enbuild.2019.07.024. DOI

Kunčická L., Kocich R., Lowe T.C. Advances in metals and alloys for joint replacement. Prog. Mater. Sci. 2017;88:232–280. doi: 10.1016/j.pmatsci.2017.04.002. DOI

Kunčická L., Kocich R., Dvořák K., Macháčková A. Rotary swaged laminated Cu-Al composites: Effect of structure on residual stress and mechanical and electric properties. Mater. Sci. Eng. A. 2019;742:743–750. doi: 10.1016/j.msea.2018.11.026. DOI

Geng L., Huang L. High Temperature Properties of Discontinuously Reinforced Titanium Matrix Composites: A Review. Acta Metall. Sin. Engl. Lett. 2014;27:787–797. doi: 10.1007/s40195-014-0155-y. DOI

Rajan T.P.D., Pai B.C. Developments in Processing of Functionally Gradient Metals and Metal–Ceramic Composites: A Review. Acta Metall. Sin. Engl. Lett. 2014;27:825–838. doi: 10.1007/s40195-014-0142-3. DOI

Wu K., Chang H., Maawad E., Gan W.M., Brokmeier H.G., Zheng M.Y. Microstructure and mechanical properties of the Mg/Al laminated composite fabricated by accumulative roll bonding (ARB) Mater. Sci. Eng. A. 2010;527:3073–3078. doi: 10.1016/j.msea.2010.02.001. DOI

Kim I.K., Hong S.I. Effect of component layer thickness on the bending behaviors of roll-bonded tri-layered Mg/Al/STS clad composites. Mater. Des. 2013;49:935–944. doi: 10.1016/j.matdes.2013.02.052. DOI

Jin K., Yuan Q., Tao J., Domblesky J., Guo X. Analysis of the forming characteristics for Cu/Al bimetal tubes produced by the spinning process. Int. J. Adv. Manuf. Tech. 2019;101:147–155. doi: 10.1007/s00170-018-2836-6. DOI

Kim W.N., Hong S.I. Interactive deformation and enhanced ductility of tri-layered Cu/Al/Cu clad composite. Mater. Sci. Eng. A. 2016;651:976–986. doi: 10.1016/j.msea.2015.11.062. DOI

Gladkovsky S.V., Kuteneva S.V., Sergeev S.N. Microstructure and mechanical properties of sandwich copper/steel composites produced by explosive welding. Mater. Charact. 2019;154:294–303. doi: 10.1016/j.matchar.2019.06.008. DOI

Zeng X., Wang Y., Li X., Li X., Zhao T. Effect of inert gas-shielding on the interface and mechanical properties of Mg/Al explosive welding composite plate. J. Manuf. Process. 2019;45:166–175. doi: 10.1016/j.jmapro.2019.07.007. DOI

Fronczek D.M., Wojewoda-Budka J., Chulist R., Sypien A., Korneva A., Szulc Z., Schell N., Zieba P. Structural properties of Ti/Al clads manufactured by explosive welding and annealing. Mater. Des. 2016;91:80–89. doi: 10.1016/j.matdes.2015.11.087. DOI

Deqing W., Ziyuan S., Ruobin Q. Cladding of stainless steel on aluminum and carbon steel by interlayer diffusion bonding. Scr. Mater. 2007;56:369–372. doi: 10.1016/j.scriptamat.2006.11.003. DOI

Yu Y., Xu P., Li K., Zhao J., Dai Y., Ma H., Yang M. Study on modalities and microdefects of Al-Cu bimetallic tube by underwater explosive cladding. Arch. Civ. Mech. Eng. 2019;19:1390–1398. doi: 10.1016/j.acme.2019.09.002. DOI

Lesuer D.R., Syn C.K., Sherby O.D., Wadsworth J., Lewandowski J.J., Hunt W.H. Mechanical behaviour of laminated metal composites. Int. Mater. Rev. 1996;41:169–197. doi: 10.1179/imr.1996.41.5.169. DOI

Kocich R., Szurman I., Kursa M., Fiala J. Investigation of influence of preparation and heat treatment on deformation behaviour of the alloy NiTi after ECAE. Mater. Sci. Eng. A. 2009;512:100–104. doi: 10.1016/j.msea.2009.01.054. DOI

Ha J.S., Hong S.I. Deformation and fracture of Ti/439 stainless steel clad composite at intermediate temperatures. Mater. Sci. Eng. A. 2016;651:805–809. doi: 10.1016/j.msea.2015.11.041. DOI

Atrian A., Fereshteh-Saniee F. Deep drawing process of steel/brass laminated sheets. Compos. Part. B Eng. 2013;47:75–81. doi: 10.1016/j.compositesb.2012.10.023. DOI

Lee J.S., Son H.T., Oh I.H., Kang C.S., Yun C.H., Lim S.C., Kwon H.C. Fabrication and characterization of Ti–Cu clad materials by indirect extrusion. J. Mater. Process. Technol. 2007;187–188:653–656. doi: 10.1016/j.jmatprotec.2006.11.144. DOI

Kocich R., Macháčková A., Fojtík F. Comparison of strain and stress conditions in conventional and ARB rolling processes. Int. J. Mech. Sci. 2012;64:54–61. doi: 10.1016/j.ijmecsci.2012.08.003. DOI

Lukáč P., Kocich R., Greger M., Padalka O., Szaraz Z. Microstructure of AZ31 and AZ61 Mg alloys prepared by rolling and ECAP. Kov. Mater. 2007;45:115–120.

Movahedi M., Kokabi A.H., Seyed Reihani S.M. Investigation on the bond strength of Al-1100/St-12 roll bonded sheets, optimization and characterization. Mater. Des. 2011;32:3143–3149. doi: 10.1016/j.matdes.2011.02.057. DOI

Masahashi N., Komatsu K., Watanabe S., Hanada S. Microstructure and properties of iron aluminum alloy/CrMo steel composite prepared by clad rolling. J. Alloys Compd. 2004;379:272–279. doi: 10.1016/j.jallcom.2004.02.043. DOI

Hosseini M., Danesh Manesh H. Bond strength optimization of Ti/Cu/Ti clad composites produced by roll-bonding. Mater. Des. 2015;81:122–132. doi: 10.1016/j.matdes.2015.05.010. DOI

Gao J.H., Guan S.K., Ren Z.W., Sun Y.F., Zhu S.J., Wang B. Homogeneous corrosion of high pressure torsion treated Mg–Zn–Ca alloy in simulated body fluid. Mater. Lett. 2011;65:691–693. doi: 10.1016/j.matlet.2010.11.015. DOI

Kunčická L., Lowe T.C., Davis C.F., Kocich R., Pohludka M. Synthesis of an Al/Al2O3 composite by severe plastic deformation. Mater. Sci. Eng. A. 2015;646:234–241. doi: 10.1016/j.msea.2015.08.075. DOI

Kocich R., Greger M., Macháčková A. Finite element investigation of influence of selected factors on ECAP process; Proceedings of the Metal 2010, 19th International Conference on Metallurgy and Materials; Brno, Czech Republic. 18–20 May 2010; Ostrava, Czech Republic: Tanger Ltd.; 2010. pp. 166–171.

Naizabekov A.B., Andreyachshenko V.A., Kocich R. Study of deformation behavior, structure and mechanical properties of the AlSiMnFe alloy during ECAP-PBP. Micron. 2013;44:210–217. doi: 10.1016/j.micron.2012.06.011. PubMed DOI

Kocich R., Kunčická L., Král P., Macháčková A. Sub-structure and mechanical properties of twist channel angular pressed aluminium. Mater. Charact. 2016;119:75–83. doi: 10.1016/j.matchar.2016.07.020. DOI

Kunčická L., Kocich R., Drápala J., Andreyachshenko V.A. FEM simulations and comparison of the ECAP and ECAP-PBP influence on Ti6Al4V alloy’s deformation behavior; Proceedings of the Metal 2013, 22nd International Conference on Metallurgy and Materials; Brno, Czech Republic. 15–17 May 2013; Ostrava, Czech Republic: Tanger Ltd.; 2013. pp. 391–396.

Kocich R., Kunčická L., Macháčková A. Twist Channel Multi-Angular Pressing (TCMAP) as a method for increasing the efficiency of SPD; Proceedings of the IOP Conference Series: Materials Science and Engineering; Metz, France. 30 June–4 July 2014; DOI

Jamali G., Nourouzi S., Jamaati R. Microstructure and mechanical properties of AA6063 aluminum alloy wire fabricated by friction stir back extrusion (FSBE) process. Int. J. Miner. Metall. Mater. 2019;26:1005–1012. doi: 10.1007/s12613-019-1806-9. DOI

Zhang D.T., Cao G.H., Qiu C., Chen D.L. Multi-pass submerged friction stir processing of AZ61 magnesium alloy: Strengthening mechanisms and fracture behavior. J. Mater. Sci. 2019;54:8640–8654. doi: 10.1007/s10853-018-03259-w. DOI

Eschke A., Scharnweber J., Oertel C.-G., Skrotzki W., Marr T., Romberg J., Freudenberger J.J., Schultz L., Okulov I., Kühn U., et al. Texture development in Ti/Al filament wires produced by accumulative swaging and bundling. Mater. Sci. Eng. A. 2014;607:360–367. doi: 10.1016/j.msea.2014.04.003. DOI

Kocich R., Macháčková A., Kunčická L., Fojtík F. Fabrication and characterization of cold-swaged multilayered Al–Cu clad composites. Mater. Des. 2015;71:36–47. doi: 10.1016/j.matdes.2015.01.008. DOI

Kunčická L., Kocich R., Strunz P., Macháčková A. Texture and residual stress within rotary swaged Cu/Al clad composites. Mater. Lett. 2018;230:88–91. doi: 10.1016/j.matlet.2018.07.085. PubMed DOI

Kunčická L., Kocich R., Hervoches C., Macháčková A. Study of structure and residual stresses in cold rotary swaged tungsten heavy alloy. Mater. Sci. Eng. A. 2017;704:25–31. doi: 10.1016/j.msea.2017.07.096. DOI

Beausir B., Fundenberger J.J. Analysis Tools for Electron and X-ray diffraction, ATEX Software. [(accessed on 21 November 2018)]; Available online: www.atex-software.eu.

Kocich R., Kunčická L., Macháčková A., Šofer M. Improvement of mechanical and electrical properties of rotary swaged Al-Cu clad composites. Mater. Des. 2017;123:137–146. doi: 10.1016/j.matdes.2017.03.048. DOI

Kocich R., Kunčická L., Davis C.F., Lowe T.C., Szurman I., Macháčková A. Deformation behavior of multilayered Al-Cu clad composite during cold-swaging. Mater. Des. 2016;90:379–388. doi: 10.1016/j.matdes.2015.10.145. DOI

Humphreys F.J., Hetherly M. Recrystallization and Related Annealing Phenomena. 2nd ed. Elsevier Ltd.; Oxford, UK: 2004.

Li H., Zhang C., Liu H., Li M. Bonding interface characteristic and shear strength of diffusion bonded Ti-17 titanium alloy. Trans. Nonferrous Met. Soc. China. 2015;25:80–87. doi: 10.1016/S1003-6326(15)63581-6. DOI

Beyerlein I.J., Tóth L.S. Texture evolution in equal-channel angular extrusion. Prog. Mater. Sci. 2009;54:427–510. doi: 10.1016/j.pmatsci.2009.01.001. DOI

Engler O., Randle V. Introduction to Texture Analysis, Macrotexture, Microtexture, and Orientation Mapping. 2nd ed. Taylor and Francis Group, CRC Press; Boca Raton, FL, USA: 2010.

Verlinden B., Driver J., Samajdar I., Doherty R.H. Thermo-Mechanical Processing of Metallic Materials. Elsevier; Amsterdam, The Netherlands: 2007.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...