Fundamental Improvement of Creep Resistance of New-Generation Nano-Oxide Strengthened Alloys via Hot Rotary Swaging Consolidation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-01641S
Czech Science Foundation
PubMed
33218194
PubMed Central
PMC7699154
DOI
10.3390/ma13225217
PII: ma13225217
Knihovny.cz E-zdroje
- Klíčová slova
- mechanical alloying, oxide dispersion strengthened (ODS) alloy, powder hot consolidation, rolling, rotary swaging,
- Publikační typ
- časopisecké články MeSH
New-generation oxide dispersion-strengthened (ODS) alloys with a high volume fraction of nano-oxides of 5% are intended to become the leading creep- and oxidation-resistant alloys for applications at 1100-1300 °C. Hot consolidation of mechanically alloyed powders by intensive plastic deformation followed by heat treatment of the alloys are the key aspects for achieving top creep properties, typically ensured by a coarse-grained microstructure strengthened with homogeneously dispersed, very stable yttrium nano-oxides. The rotary swaging method proves to be favourable for hot consolidation of the new-generation ODS alloy presented. Compared to specimens consolidated by hot rolling, consolidation by hot rotary swaging predetermines the formation of coarse grains with a very high aspect ratio during subsequent secondary recrystallization. Such a grain morphology increases the creep strength of the new-generation ODS alloy considerably.
Zobrazit více v PubMed
Svoboda J., Lukáš P. Model of creep in<001>-oriented superalloy single crystals. Acta Mater. 1998;46:3421–3431. doi: 10.1016/S1359-6454(98)00043-3. DOI
Oksiuta Z. High-temperature oxidation resistance of ultrafine-grained 14% Cr ODS ferritic steel. J. Mater. Sci. 2013;48:4801–4805. doi: 10.1007/s10853-013-7195-y. DOI
Kunčická L., Kocich R., Hervoches C., Macháčková A. Study of structure and residual stresses in cold rotary swaged tungsten heavy alloy. Mater. Sci. Eng. A. 2017;704:25–31.
Svoboda J., Lukáš P. Creep deformation modelling of superalloy single crystals. Acta Mater. 2000;48:2519–2528. doi: 10.1016/S1359-6454(00)00078-1. DOI
Pollock T.M., Argon A.S. Directional coarsening in nickel-base single crystals with high volume fractions of coherent precipitates. Acta Metall. Mater. 1994;42:1859–1874. doi: 10.1016/0956-7151(94)90011-6. DOI
Svoboda J., Horník V., Stratil L., Hadraba H., Mašek B., Khalaj O., Jirková H. Microstructure Evolution in ODS Alloys with a High-Volume Fraction of Nano Oxides. Metals. 2018;8:1079. doi: 10.3390/met8121079. DOI
Karak S.K., Majumdar J.D., Witczak Z., Lojkowski W., Ciupiński Ł., Kurzydłowski K.J., Manna I. Evaluation of Microstructure and Mechanical Properties of Nano-Y2O3-Dispersed Ferritic Alloy Synthesized by Mechanical Alloying and Consolidated by High-Pressure Sintering. Metall Mater. Trans. A. 2013;44:2884–2894. doi: 10.1007/s11661-013-1627-9. DOI
Stratil L., Horník V., Dymáček P., Roupcová P., Svoboda J. The influence of aluminium content on oxidation resistance of new-generation ODS alloy at 1200 °C. Metals. 2020;10 doi: 10.3390/met10111478. under review procedure. DOI
Kunčická L., Macháčková A., Lavery N.P., Kocich R., Cullen J.C.T., Hlaváč L.M. Effect of thermomechanical processing via rotary swaging on properties and residual stress within tungsten heavy alloy. Int. J. Refract. Met. Hard Mater. 2020;87:105120. doi: 10.1016/j.ijrmhm.2019.105120. DOI
Kocich R., Kunčická L., Dohnalík D., Macháčková A., Šofer M. Cold rotary swaging of a tungsten heavy alloy: Numerical and experimental investigations. Int. J. Refract. Met. Hard Mater. 2016;61:264–272. doi: 10.1016/j.ijrmhm.2016.10.005. DOI
Byun T.S., Yoon J.H., Wee S.H., Hoelzer D.T., Maloy S.A. Fracture behavior of 9Cr nanostructured ferritic alloy with improved fracture toughness. Nucl. Mater. 2014;449:39–48. doi: 10.1016/j.jnucmat.2014.03.007. DOI
Kim J.H., Byun T.S., Hoelzer D.T., Kim S.W., Lee B.H. Temperature dependence of strengthening mechanisms in the nanostructured ferritic alloy 14YWT: Part I-Mechanical and microstructural observations. Mater. Sci. Eng. A. 2013;559:101–110. doi: 10.1016/j.msea.2012.08.042. DOI
Fu J., Brouwer J.C., Richardson I.M., Hermans M.J.M. Effect of mechanical alloying and spark plasma sintering on the microstructure and mechanical properties of ODS Eurofer. Mater. Des. 2019;177:107849. doi: 10.1016/j.matdes.2019.107849. DOI
Massey C.P., Dryepondt S.N., Edmondson P.D., Terrani K.A., Zinkle S.J. Influence of mechanical alloying and extrusion conditions on the microstructure and tensile properties of Low-Cr ODS FeCrAl alloys. J. Nucl. Mater. 2018;512:227–238. doi: 10.1016/j.jnucmat.2018.10.017. DOI
Li J., Wu S., Ma P., Yang Y., Wu E., Xiong L., Liu S. Microstructure evolution and mechanical properties of ODS FeCrAl alloys fabricated by an internal oxidation process. Mater. Sci. Eng. A. 2019;757:42–51. doi: 10.1016/j.msea.2019.04.088. DOI
Li Z., Lu Z., Xie R., Lu C., Shi Y., Liu C. Effects of Y2O3, La2O3 and CeO2 additions on microstructure and mechanical properties of 14Cr-ODS ferrite alloys produced by spark plasma sintering. Fusion Eng. Des. 2017;121:159–166. doi: 10.1016/j.fusengdes.2017.06.039. DOI
Montes J.M., Cuevas F.G., Cintas J., Urban P. A One-Dimensional Model of the Electrical Resistance Sintering Process. Metall. Mater. Trans. A. 2015;46:963–980. doi: 10.1007/s11661-014-2643-0. DOI
Bártková D., Šmíd M., Mašek B., Svoboda J., Šiška F. Kinetic study of static recrystallization in an Fe–Al–O ultra-fine-grained nanocomposite. Phil. Mag. Lett. 2017;97:379–385. doi: 10.1080/09500839.2017.1378445. DOI
Auger M.A., Hoelzer D.T., Field K.G., Moody M.P. Nanoscale analysis of ion irradiated ODS 14YWT ferritic alloy. J. Nucl. Mater. 2020;528:151852. doi: 10.1016/j.jnucmat.2019.151852. DOI
Zhang G., Zhou Z., Mo K., Miao Y., Xu S., Jia H., Liu X., Stubbins J.F. The effect of thermal-aging on the microstructure and mechanical properties of 9Cr ferritic/martensitic ODS alloy. J. Nucl. Mater. 2019;522:212–219. doi: 10.1016/j.jnucmat.2019.05.023. DOI
Kumar D., Prakash U., Dabhade V.V., Laha K., Sakthivel Z. Development of Oxide Dispersion Strengthened (ODS) Ferritic Steel Through Powder Forging. J. Mater. Eng. Perform. 2017;26:1817–1824. doi: 10.1007/s11665-017-2573-2. DOI
Zhou Z., Sun S., Zou L., Schneider Y., Schmauder S., Wang M. Enhanced strength and high temperature resistance of 25Cr20Ni ODS austenitic alloy through thermo-mechanical treatment and addition of Mo. Fusion Eng. Des. 2019;138:175–182. doi: 10.1016/j.fusengdes.2018.11.020. DOI
Pal S., Alam M.E., Maloy S.A., Hoelzer D.T., Odette R.G. Texture evolution and microcracking mechanisms in as-extruded and cross-rolled conditions of a 14YWT nanostructured ferritic alloy. Acta Mater. 2018;152:338–357. doi: 10.1016/j.actamat.2018.03.045. DOI
Svoboda J., Luptáková N., Jarý M., Dymáček P. Influence of hot consolidation conditions and Cr-alloying on microstructure and creep in new-generation ODS alloy at 1100 °C. Materials. 2020 in press. PubMed PMC
Rösler J., Arzt E. A new model-based creep equation for dispersion strengthened materials. Acta Metall. 1990;38:671–683. doi: 10.1016/0956-7151(90)90223-4. DOI
Kocich R., Kursa M., Szurman I., Dlouhý A. The influence of imposed strain on the development of microstructure and transformation characteristics of Ni–Ti shape memory alloys. J. Alloys Compd. 2011;509:2716–2722. doi: 10.1016/j.jallcom.2010.12.003. DOI
Kocich R., Kursa M., Macháčková A. FEA of Plastic Flow in AZ63 Alloy during ECAP Process. Acta Phys. Pol. A. 2012;122:581–587. doi: 10.12693/APhysPolA.122.581. DOI
Asgari M., Fereshteh-Saniee F., Pezeshki S.M., Barati M. Non-equal channel angular pressing (NECAP) of AZ80 Magnesium alloy: Effects of process parameters on strain homogeneity, grain refinement and mechanical properties. Mater. Sci. Eng. A. 2016;678:320–328. doi: 10.1016/j.msea.2016.09.102. DOI
Kunčická L., Kocich R., Král P., Pohludka M., Marek M. Effect of strain path on severely deformed aluminium. Mater. Lett. 2016;180:280–283. doi: 10.1016/j.matlet.2016.05.163. DOI
Kocich R., Macháčková A., Kunčická L. Twist channel multi-angular pressing (TCMAP) as a new SPD process: Numerical and experimental study. Mater. Sci. Eng. A. 2014;612:445–455. doi: 10.1016/j.msea.2014.06.079. DOI
Kunčická L., Lowe T.C., Davis C.F., Kocich R., Pohludka M. Synthesis of an Al/Al2O3 composite by severe plastic deformation. Mater. Sci. Eng. A. 2015;646:234–241. doi: 10.1016/j.msea.2015.08.075. DOI
Kocich R., Macháčková A., Fojtík F. Comparison of strain and stress conditions in conventional and ARB rolling processes. Int. J. Mech. Sci. 2012;64:54–61. doi: 10.1016/j.ijmecsci.2012.08.003. DOI
Ebrahimi S.H.S., Dehghani K., Aghazadeh J., Ghasemian M.B., Zangeneh S. Investigation on microstructure and mechanical properties of Al/Al-Zn-Mg–Cu laminated composite fabricated by accumulative roll bonding (ARB) process. Mater. Sci. Eng. A. 2018;718:311–320. doi: 10.1016/j.msea.2018.01.130. DOI
Kunčická L., Kocich R., Dvořák K., Macháčková A. Rotary swaged laminated Cu-Al composites: Effect of structure on residual stress and mechanical and electric properties. Mater. Sci. Eng. A. 2019;742:743–750. doi: 10.1016/j.msea.2018.11.026. DOI
Wang C., Yu Z., Cui Y., Yu S., Ma X., Liu H. Effect of Hot Rotary Swaging and Subsequent Annealing on Microstructure and Mechanical Properties of Magnesium Alloy WE43. Met. Sci. Heat Treat. 2019;60:777–782. doi: 10.1007/s11041-019-00355-9. DOI
Wan Y., Tang B., Gao Y., Tang L., Sha G., Zhang B., Liang N., Liu C., Jiang S., Chen Z., et al. Bulk nanocrystalline high-strength magnesium alloys prepared via rotary swaging. Acta Mater. 2020;200:274–286. doi: 10.1016/j.actamat.2020.09.024. DOI
Thomasová M., Seiner H., Sedlák P., Frost M., Ševčík M., Szurman I., Kocich R., Drahokoupil J., Šittner P., Landa M. Evolution of macroscopic elastic moduli of martensitic polycrystalline NiTi and NiTiCu shape memory alloys with pseudoplastic straining. Acta Mater. 2017;123:146–156.
Kocich R., Szurman I., Kursa M., Fiala J. Investigation of influence of preparation and heat treatment on deformation behaviour of the alloy NiTi after ECAE. Mater. Sci. Eng. A. 2019;512:100–104. doi: 10.1016/j.msea.2009.01.054. DOI
Al-Khazraji H., El-Danaf E., Wollmann M., Wagner L. Microstructure, Mechanical, and Fatigue Strength of Ti-54M Processed by Rotary Swaging. J. Mater. Eng. Perform. 2015;24:2074–2084. doi: 10.1007/s11665-014-1283-2. DOI
Zhang Q., Zhang Y., Cao M., Ben N., Ma X., Ma H. Joining process for copper and aluminum tubes by rotary swaging method. Int. J. Adv. Manuf. Technol. 2017;89:163–173. doi: 10.1007/s00170-016-8994-5. DOI
Kunčická L., Kocich R., Strunz P., Macháčková A. Texture and residual stress within rotary swaged Cu/Al clad composites. Mater. Lett. 2018;230:88–91. doi: 10.1016/j.matlet.2018.07.085. DOI
Gröb T., Wießner L., Bruder E., Faske T., Donner W., Groche P., Müller C. Magnetic hardening of Fe50Co50 by rotary swaging. J. Magn. Magn. Mater. 2017;428:255–259.
Herrmann M., Schenck C., Leopold H., Kuhfuss B. Material Improvement of Mild Steel S355J2C by Hot Rotary Swaging. Procedia Manuf. 2002;47:282–287. doi: 10.1016/j.promfg.2020.04.224. DOI
Mateus R., Carvalho P.A., Nunes D., Alves L.C., Franco N., Correia J.B., Alves E. Microstructural characterization of the ODS Eurofer 97 EU-batch. Fusion Eng. Des. 2011;86:2386–2389. doi: 10.1016/j.fusengdes.2011.01.011. DOI
Kunčická L., Kocich R. Deformation behaviour of Cu-Al clad composites produced by rotary swaging. IOP Conf. Ser. Mater. Sci. Eng. 2018;369:012029.
Kocich R., Kunčická L., Král P., Strunz P. Characterization of innovative rotary swaged Cu-Al clad composite wire conductors. Mater. Des. 2018;160:828–835. doi: 10.1016/j.matdes.2018.10.027. DOI
Kocich R., Kunčická L., Macháčková A., Šofer M. Improvement of mechanical and electrical properties of rotary swaged Al-Cu clad composites. Mater. Des. 2017;123:137–146. doi: 10.1016/j.matdes.2017.03.048. DOI
Cintas J., Montes J.M., Cuevas F.G., Herrera E.J. Influence of milling media on the microstructure and mechanical properties of mechanically milled and sintered aluminium. J. Mater. Sci. 2005;40:3911–3915. doi: 10.1007/s10853-005-0756-y. DOI
INCOLOY® Alloy MA956 Datasheet . Special Metals Company. INCOLOY® Alloy MA956 Datasheet; Huntington, NY, USA: 2004.
Svoboda J., Horník V., Riedel H. Modelling of Processing Steps of New Generation ODS Alloys. Met. Trans. A. 2020;51A:5296–5305. doi: 10.1007/s11661-020-05949-0. DOI
Serrano M., García-Junceda A., Hernández R., Mayoral M.H. On anisotropy of ferritic ODS alloys. Mater. Sci. Technol. 2014;30:1664–1668. doi: 10.1179/1743284714Y.0000000552. DOI
Das A., Viehrig H.W., Altstadt E., Bergner F., Hoffmann J. Why Do Secondary Cracks Preferentially Form in Hot-Rolled ODS Steels in Comparison with Hot-Extruded ODS Steels? Crystals. 2018;8:306. doi: 10.3390/cryst8080306. DOI
High-Temperature Creep Resistance of FeAlOY ODS Ferritic Alloy
Optimizing Thermomechanical Processing of Bimetallic Laminates
Structural Factors Inducing Cracking of Brass Fittings