Fundamental Improvement of Creep Resistance of New-Generation Nano-Oxide Strengthened Alloys via Hot Rotary Swaging Consolidation

. 2020 Nov 18 ; 13 (22) : . [epub] 20201118

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33218194

Grantová podpora
17-01641S Czech Science Foundation

New-generation oxide dispersion-strengthened (ODS) alloys with a high volume fraction of nano-oxides of 5% are intended to become the leading creep- and oxidation-resistant alloys for applications at 1100-1300 °C. Hot consolidation of mechanically alloyed powders by intensive plastic deformation followed by heat treatment of the alloys are the key aspects for achieving top creep properties, typically ensured by a coarse-grained microstructure strengthened with homogeneously dispersed, very stable yttrium nano-oxides. The rotary swaging method proves to be favourable for hot consolidation of the new-generation ODS alloy presented. Compared to specimens consolidated by hot rolling, consolidation by hot rotary swaging predetermines the formation of coarse grains with a very high aspect ratio during subsequent secondary recrystallization. Such a grain morphology increases the creep strength of the new-generation ODS alloy considerably.

Zobrazit více v PubMed

Svoboda J., Lukáš P. Model of creep in<001>-oriented superalloy single crystals. Acta Mater. 1998;46:3421–3431. doi: 10.1016/S1359-6454(98)00043-3. DOI

Oksiuta Z. High-temperature oxidation resistance of ultrafine-grained 14% Cr ODS ferritic steel. J. Mater. Sci. 2013;48:4801–4805. doi: 10.1007/s10853-013-7195-y. DOI

Kunčická L., Kocich R., Hervoches C., Macháčková A. Study of structure and residual stresses in cold rotary swaged tungsten heavy alloy. Mater. Sci. Eng. A. 2017;704:25–31.

Svoboda J., Lukáš P. Creep deformation modelling of superalloy single crystals. Acta Mater. 2000;48:2519–2528. doi: 10.1016/S1359-6454(00)00078-1. DOI

Pollock T.M., Argon A.S. Directional coarsening in nickel-base single crystals with high volume fractions of coherent precipitates. Acta Metall. Mater. 1994;42:1859–1874. doi: 10.1016/0956-7151(94)90011-6. DOI

Svoboda J., Horník V., Stratil L., Hadraba H., Mašek B., Khalaj O., Jirková H. Microstructure Evolution in ODS Alloys with a High-Volume Fraction of Nano Oxides. Metals. 2018;8:1079. doi: 10.3390/met8121079. DOI

Karak S.K., Majumdar J.D., Witczak Z., Lojkowski W., Ciupiński Ł., Kurzydłowski K.J., Manna I. Evaluation of Microstructure and Mechanical Properties of Nano-Y2O3-Dispersed Ferritic Alloy Synthesized by Mechanical Alloying and Consolidated by High-Pressure Sintering. Metall Mater. Trans. A. 2013;44:2884–2894. doi: 10.1007/s11661-013-1627-9. DOI

Stratil L., Horník V., Dymáček P., Roupcová P., Svoboda J. The influence of aluminium content on oxidation resistance of new-generation ODS alloy at 1200 °C. Metals. 2020;10 doi: 10.3390/met10111478. under review procedure. DOI

Kunčická L., Macháčková A., Lavery N.P., Kocich R., Cullen J.C.T., Hlaváč L.M. Effect of thermomechanical processing via rotary swaging on properties and residual stress within tungsten heavy alloy. Int. J. Refract. Met. Hard Mater. 2020;87:105120. doi: 10.1016/j.ijrmhm.2019.105120. DOI

Kocich R., Kunčická L., Dohnalík D., Macháčková A., Šofer M. Cold rotary swaging of a tungsten heavy alloy: Numerical and experimental investigations. Int. J. Refract. Met. Hard Mater. 2016;61:264–272. doi: 10.1016/j.ijrmhm.2016.10.005. DOI

Byun T.S., Yoon J.H., Wee S.H., Hoelzer D.T., Maloy S.A. Fracture behavior of 9Cr nanostructured ferritic alloy with improved fracture toughness. Nucl. Mater. 2014;449:39–48. doi: 10.1016/j.jnucmat.2014.03.007. DOI

Kim J.H., Byun T.S., Hoelzer D.T., Kim S.W., Lee B.H. Temperature dependence of strengthening mechanisms in the nanostructured ferritic alloy 14YWT: Part I-Mechanical and microstructural observations. Mater. Sci. Eng. A. 2013;559:101–110. doi: 10.1016/j.msea.2012.08.042. DOI

Fu J., Brouwer J.C., Richardson I.M., Hermans M.J.M. Effect of mechanical alloying and spark plasma sintering on the microstructure and mechanical properties of ODS Eurofer. Mater. Des. 2019;177:107849. doi: 10.1016/j.matdes.2019.107849. DOI

Massey C.P., Dryepondt S.N., Edmondson P.D., Terrani K.A., Zinkle S.J. Influence of mechanical alloying and extrusion conditions on the microstructure and tensile properties of Low-Cr ODS FeCrAl alloys. J. Nucl. Mater. 2018;512:227–238. doi: 10.1016/j.jnucmat.2018.10.017. DOI

Li J., Wu S., Ma P., Yang Y., Wu E., Xiong L., Liu S. Microstructure evolution and mechanical properties of ODS FeCrAl alloys fabricated by an internal oxidation process. Mater. Sci. Eng. A. 2019;757:42–51. doi: 10.1016/j.msea.2019.04.088. DOI

Li Z., Lu Z., Xie R., Lu C., Shi Y., Liu C. Effects of Y2O3, La2O3 and CeO2 additions on microstructure and mechanical properties of 14Cr-ODS ferrite alloys produced by spark plasma sintering. Fusion Eng. Des. 2017;121:159–166. doi: 10.1016/j.fusengdes.2017.06.039. DOI

Montes J.M., Cuevas F.G., Cintas J., Urban P. A One-Dimensional Model of the Electrical Resistance Sintering Process. Metall. Mater. Trans. A. 2015;46:963–980. doi: 10.1007/s11661-014-2643-0. DOI

Bártková D., Šmíd M., Mašek B., Svoboda J., Šiška F. Kinetic study of static recrystallization in an Fe–Al–O ultra-fine-grained nanocomposite. Phil. Mag. Lett. 2017;97:379–385. doi: 10.1080/09500839.2017.1378445. DOI

Auger M.A., Hoelzer D.T., Field K.G., Moody M.P. Nanoscale analysis of ion irradiated ODS 14YWT ferritic alloy. J. Nucl. Mater. 2020;528:151852. doi: 10.1016/j.jnucmat.2019.151852. DOI

Zhang G., Zhou Z., Mo K., Miao Y., Xu S., Jia H., Liu X., Stubbins J.F. The effect of thermal-aging on the microstructure and mechanical properties of 9Cr ferritic/martensitic ODS alloy. J. Nucl. Mater. 2019;522:212–219. doi: 10.1016/j.jnucmat.2019.05.023. DOI

Kumar D., Prakash U., Dabhade V.V., Laha K., Sakthivel Z. Development of Oxide Dispersion Strengthened (ODS) Ferritic Steel Through Powder Forging. J. Mater. Eng. Perform. 2017;26:1817–1824. doi: 10.1007/s11665-017-2573-2. DOI

Zhou Z., Sun S., Zou L., Schneider Y., Schmauder S., Wang M. Enhanced strength and high temperature resistance of 25Cr20Ni ODS austenitic alloy through thermo-mechanical treatment and addition of Mo. Fusion Eng. Des. 2019;138:175–182. doi: 10.1016/j.fusengdes.2018.11.020. DOI

Pal S., Alam M.E., Maloy S.A., Hoelzer D.T., Odette R.G. Texture evolution and microcracking mechanisms in as-extruded and cross-rolled conditions of a 14YWT nanostructured ferritic alloy. Acta Mater. 2018;152:338–357. doi: 10.1016/j.actamat.2018.03.045. DOI

Svoboda J., Luptáková N., Jarý M., Dymáček P. Influence of hot consolidation conditions and Cr-alloying on microstructure and creep in new-generation ODS alloy at 1100 °C. Materials. 2020 in press. PubMed PMC

Rösler J., Arzt E. A new model-based creep equation for dispersion strengthened materials. Acta Metall. 1990;38:671–683. doi: 10.1016/0956-7151(90)90223-4. DOI

Kocich R., Kursa M., Szurman I., Dlouhý A. The influence of imposed strain on the development of microstructure and transformation characteristics of Ni–Ti shape memory alloys. J. Alloys Compd. 2011;509:2716–2722. doi: 10.1016/j.jallcom.2010.12.003. DOI

Kocich R., Kursa M., Macháčková A. FEA of Plastic Flow in AZ63 Alloy during ECAP Process. Acta Phys. Pol. A. 2012;122:581–587. doi: 10.12693/APhysPolA.122.581. DOI

Asgari M., Fereshteh-Saniee F., Pezeshki S.M., Barati M. Non-equal channel angular pressing (NECAP) of AZ80 Magnesium alloy: Effects of process parameters on strain homogeneity, grain refinement and mechanical properties. Mater. Sci. Eng. A. 2016;678:320–328. doi: 10.1016/j.msea.2016.09.102. DOI

Kunčická L., Kocich R., Král P., Pohludka M., Marek M. Effect of strain path on severely deformed aluminium. Mater. Lett. 2016;180:280–283. doi: 10.1016/j.matlet.2016.05.163. DOI

Kocich R., Macháčková A., Kunčická L. Twist channel multi-angular pressing (TCMAP) as a new SPD process: Numerical and experimental study. Mater. Sci. Eng. A. 2014;612:445–455. doi: 10.1016/j.msea.2014.06.079. DOI

Kunčická L., Lowe T.C., Davis C.F., Kocich R., Pohludka M. Synthesis of an Al/Al2O3 composite by severe plastic deformation. Mater. Sci. Eng. A. 2015;646:234–241. doi: 10.1016/j.msea.2015.08.075. DOI

Kocich R., Macháčková A., Fojtík F. Comparison of strain and stress conditions in conventional and ARB rolling processes. Int. J. Mech. Sci. 2012;64:54–61. doi: 10.1016/j.ijmecsci.2012.08.003. DOI

Ebrahimi S.H.S., Dehghani K., Aghazadeh J., Ghasemian M.B., Zangeneh S. Investigation on microstructure and mechanical properties of Al/Al-Zn-Mg–Cu laminated composite fabricated by accumulative roll bonding (ARB) process. Mater. Sci. Eng. A. 2018;718:311–320. doi: 10.1016/j.msea.2018.01.130. DOI

Kunčická L., Kocich R., Dvořák K., Macháčková A. Rotary swaged laminated Cu-Al composites: Effect of structure on residual stress and mechanical and electric properties. Mater. Sci. Eng. A. 2019;742:743–750. doi: 10.1016/j.msea.2018.11.026. DOI

Wang C., Yu Z., Cui Y., Yu S., Ma X., Liu H. Effect of Hot Rotary Swaging and Subsequent Annealing on Microstructure and Mechanical Properties of Magnesium Alloy WE43. Met. Sci. Heat Treat. 2019;60:777–782. doi: 10.1007/s11041-019-00355-9. DOI

Wan Y., Tang B., Gao Y., Tang L., Sha G., Zhang B., Liang N., Liu C., Jiang S., Chen Z., et al. Bulk nanocrystalline high-strength magnesium alloys prepared via rotary swaging. Acta Mater. 2020;200:274–286. doi: 10.1016/j.actamat.2020.09.024. DOI

Thomasová M., Seiner H., Sedlák P., Frost M., Ševčík M., Szurman I., Kocich R., Drahokoupil J., Šittner P., Landa M. Evolution of macroscopic elastic moduli of martensitic polycrystalline NiTi and NiTiCu shape memory alloys with pseudoplastic straining. Acta Mater. 2017;123:146–156.

Kocich R., Szurman I., Kursa M., Fiala J. Investigation of influence of preparation and heat treatment on deformation behaviour of the alloy NiTi after ECAE. Mater. Sci. Eng. A. 2019;512:100–104. doi: 10.1016/j.msea.2009.01.054. DOI

Al-Khazraji H., El-Danaf E., Wollmann M., Wagner L. Microstructure, Mechanical, and Fatigue Strength of Ti-54M Processed by Rotary Swaging. J. Mater. Eng. Perform. 2015;24:2074–2084. doi: 10.1007/s11665-014-1283-2. DOI

Zhang Q., Zhang Y., Cao M., Ben N., Ma X., Ma H. Joining process for copper and aluminum tubes by rotary swaging method. Int. J. Adv. Manuf. Technol. 2017;89:163–173. doi: 10.1007/s00170-016-8994-5. DOI

Kunčická L., Kocich R., Strunz P., Macháčková A. Texture and residual stress within rotary swaged Cu/Al clad composites. Mater. Lett. 2018;230:88–91. doi: 10.1016/j.matlet.2018.07.085. DOI

Gröb T., Wießner L., Bruder E., Faske T., Donner W., Groche P., Müller C. Magnetic hardening of Fe50Co50 by rotary swaging. J. Magn. Magn. Mater. 2017;428:255–259.

Herrmann M., Schenck C., Leopold H., Kuhfuss B. Material Improvement of Mild Steel S355J2C by Hot Rotary Swaging. Procedia Manuf. 2002;47:282–287. doi: 10.1016/j.promfg.2020.04.224. DOI

Mateus R., Carvalho P.A., Nunes D., Alves L.C., Franco N., Correia J.B., Alves E. Microstructural characterization of the ODS Eurofer 97 EU-batch. Fusion Eng. Des. 2011;86:2386–2389. doi: 10.1016/j.fusengdes.2011.01.011. DOI

Kunčická L., Kocich R. Deformation behaviour of Cu-Al clad composites produced by rotary swaging. IOP Conf. Ser. Mater. Sci. Eng. 2018;369:012029.

Kocich R., Kunčická L., Král P., Strunz P. Characterization of innovative rotary swaged Cu-Al clad composite wire conductors. Mater. Des. 2018;160:828–835. doi: 10.1016/j.matdes.2018.10.027. DOI

Kocich R., Kunčická L., Macháčková A., Šofer M. Improvement of mechanical and electrical properties of rotary swaged Al-Cu clad composites. Mater. Des. 2017;123:137–146. doi: 10.1016/j.matdes.2017.03.048. DOI

Cintas J., Montes J.M., Cuevas F.G., Herrera E.J. Influence of milling media on the microstructure and mechanical properties of mechanically milled and sintered aluminium. J. Mater. Sci. 2005;40:3911–3915. doi: 10.1007/s10853-005-0756-y. DOI

INCOLOY® Alloy MA956 Datasheet . Special Metals Company. INCOLOY® Alloy MA956 Datasheet; Huntington, NY, USA: 2004.

Svoboda J., Horník V., Riedel H. Modelling of Processing Steps of New Generation ODS Alloys. Met. Trans. A. 2020;51A:5296–5305. doi: 10.1007/s11661-020-05949-0. DOI

Serrano M., García-Junceda A., Hernández R., Mayoral M.H. On anisotropy of ferritic ODS alloys. Mater. Sci. Technol. 2014;30:1664–1668. doi: 10.1179/1743284714Y.0000000552. DOI

Das A., Viehrig H.W., Altstadt E., Bergner F., Hoffmann J. Why Do Secondary Cracks Preferentially Form in Hot-Rolled ODS Steels in Comparison with Hot-Extruded ODS Steels? Crystals. 2018;8:306. doi: 10.3390/cryst8080306. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

High-Temperature Creep Resistance of FeAlOY ODS Ferritic Alloy

. 2024 Oct 11 ; 17 (20) : . [epub] 20241011

The Irradiation Effects in Ferritic, Ferritic-Martensitic and Austenitic Oxide Dispersion Strengthened Alloys: A Review

. 2024 Jul 10 ; 17 (14) : . [epub] 20240710

Influence of Structure Development on Performance of Copper Composites Processed via Intensive Plastic Deformation

. 2023 Jul 02 ; 16 (13) : . [epub] 20230702

Optimizing Thermomechanical Processing of Bimetallic Laminates

. 2023 Apr 30 ; 16 (9) : . [epub] 20230430

High Cycle Fatigue Behaviour of 316L Stainless Steel Produced via Selective Laser Melting Method and Post Processed by Hot Rotary Swaging

. 2023 Apr 26 ; 16 (9) : . [epub] 20230426

The Optimization of Mechanical Alloying Conditions of Powder for the Preparation of a Fe-10Al-4Cr-4Y2O3 ODS Nanocomposite

. 2022 Dec 17 ; 15 (24) : . [epub] 20221217

Substantial Improvement of High Temperature Strength of New-Generation Nano-Oxide-Strengthened Alloys by Addition of Metallic Yttrium

. 2022 Jan 10 ; 15 (2) : . [epub] 20220110

Structural Factors Inducing Cracking of Brass Fittings

. 2021 Jun 12 ; 14 (12) : . [epub] 20210612

Influence of Hot Consolidation Conditions and Cr-Alloying on Microstructure and Creep in New-Generation ODS Alloy at 1100 °C

. 2020 Nov 10 ; 13 (22) : . [epub] 20201110

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace