High-Temperature Creep Resistance of FeAlOY ODS Ferritic Alloy

. 2024 Oct 11 ; 17 (20) : . [epub] 20241011

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39459689

Grantová podpora
21-02203X Czech Science Foundation

A significant effort in optimizing the chemical composition and powder metallurgical processing led to preparing new-generation ferritic coarse-grained ODS alloys with a high nano-oxide content. The optimization was aimed at high-temperature creep and oxidation resistance at temperatures in the range of 1100-1300 °C. An FeAlOY alloy, with the chemical composition Fe-10Al-4Cr-4Y2O3 (wt. %), seems as the most promising one. The consolidation of the alloy is preferably conducted by hot rolling in several steps, followed by static recrystallization for 1 h at 1200 °C, which provides a stable coarse-grain microstructure with homogeneous dispersion of nano-oxides. This represents the most cost-effective way of production. Another method of consolidation tested was hot rotary swaging, which also gave promising results. The compression creep testing of the alloy at 1100, 1200, and 1300 °C shows excellent creep performance, which is confirmed by the tensile creep tests at 1100 °C as well. The potential in such a temperature range is the target for possible applications of the FeAlOY for the pull rods of high-temperature testing machines, gas turbine blades, or furnace fan vanes. The key effort now focuses on expanding the production from laboratory samples to larger industrial pieces.

Zobrazit více v PubMed

Yano Y., Sekio Y., Tanno T., Kato S., Inoue T., Oka H., Ohtsuka S., Furukawa T., Uwaba T., Kaito T., et al. Ultra-High Temperature Creep Rupture and Transient Burst Strength of ODS Steel Claddings. J. Nucl. Mater. 2019;516:347–353. doi: 10.1016/j.jnucmat.2019.01.052. DOI

Wang X., Shen X. Research Progress of ODS FeCrAl Alloys—A Review of Composition Design. Materials. 2023;16:6280. doi: 10.3390/ma16186280. PubMed DOI PMC

Gamanov Š., Luptáková N., Bořil P., Jarý M., Mašek B., Dymáček P., Svoboda J. Mechanisms of Plastic Deformation and Fracture in Coarse Grained Fe–10Al–4Cr–4Y2O3 ODS Nanocomposite at 20–1300 °C. J. Mater. Res. Technol. 2023;24:4863–4874. doi: 10.1016/j.jmrt.2023.04.131. DOI

Luptáková N., Svoboda J., Bártková D., Weiser A., Dlouhý A. The Irradiation Effects in Ferritic, Ferritic–Martensitic and Austenitic Oxide Dispersion Strengthened Alloys: A Review. Materials. 2024;17:3409. doi: 10.3390/ma17143409. PubMed DOI PMC

Jia H., Wang Y., Wang Y., Han L., Zhang Y., Zhou Z. Recent Progress on Creep Properties of ODS FeCrAl Alloys for Advanced Reactors. Materials. 2023;16:3497. doi: 10.3390/ma16093497. PubMed DOI PMC

Long D., Qiu S., Liu W., Sun Y., Luo W., Liu H., Zhang R. Hot Deformation Behavior and Microstructure Features of FeCrAl–ODS Alloy. J. Iron Steel Res. Int. 2022;29:1455–1463. doi: 10.1007/s42243-021-00733-9. DOI

Hadraba H., Husak R., Stratil L., Siska F., Chlup Z., Puchy V., Michalicka J. Survey of Oxide Candidate for Advanced 9%, 14% and 17%Cr ODS Steels for Fusion Applications. Fusion Eng. Des. 2017;124:1028–1032. doi: 10.1016/j.fusengdes.2017.04.048. DOI

Hojná A., Pazderová M., Rozumová L., Vít J., Hadraba H., Stratil L., Čížek J. Performance of Sc-Y-ODS Variant of Eurofer Steel in Stagnant PbLi at 600 °C. J. Nucl. Mater. 2023;575:154227. doi: 10.1016/j.jnucmat.2022.154227. DOI

Miura N., Harada N., Kondo Y., Okabe M., Matsuo T. Stress Exponent of Minimum Creep Rate and Activation Energy of Creep for Oxide Dispersion-Strengthened Nickel-Based Superalloy MA754. ISIJ Int. 2012;52:140–146. doi: 10.2355/isijinternational.52.140. DOI

Dobeš F., Hadraba H., Chlup Z., Matějíček J. Different Types of Particle Effects in Creep Tests of CoCrFeNiMn High-Entropy Alloy. Materials. 2022;15:7363. doi: 10.3390/ma15207363. PubMed DOI PMC

Hadraba H., Chlup Z., Dlouhy A., Dobes F., Roupcova P., Vilemova M., Matejicek J. Oxide Dispersion Strengthened CoCrFeNiMn High-Entropy Alloy. Mater. Sci. Eng. A. 2017;689:252–256. doi: 10.1016/j.msea.2017.02.068. DOI

Sahragard-Monfared G., Zhang M., Smith T.M., Minor A.M., Gibeling J.C. Superior Tensile Creep Behavior of a Novel Oxide Dispersion Strengthened CrCoNi Multi-Principal Element Alloy. Acta Mater. 2023;255:119032. doi: 10.1016/j.actamat.2023.119032. DOI

Material Datasheet INCOLOY® Alloy MA956. Special Metals Corporation; Huntington, WV, USA: 2008.

Material Datasheet INCOLOY® Alloy MA957. Special Metals Corporation; Huntington, WV, USA: 2008.

Korb G., Rühle M., Martinz H.-P. New Iron-Based ODS-Superalloys for High Demanding Applications; Proceedings of the Volume 5: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; IGTI Scholar Award; General; American Society of Mechanical Engineers; Orlando, FL, USA. 3–6 June 1991.

Wasilkowska A., Bartsch M., Messerschmidt U., Herzog R., Czyrska-Filemonowicz A. Creep Mechanisms of Ferritic Oxide Dispersion Strengthened Alloys. J. Mater. Process. Technol. 2003;133:218–224. doi: 10.1016/S0924-0136(02)00237-6. DOI

Kazimierzak B., Prignon J.M., Fromont R.I. An ODS Material with Outstanding Creep and Oxidation Resistance above 1100 °C. Mater. Des. 1992;13:67–70. doi: 10.1016/0261-3069(92)90109-U. DOI

Ukai S., Harada M., Okada H., Inoue M., Nomura S., Shikakura S., Nishida T., Fujiwara M., Asabe K. Tube Manufacturing and Mechanical Properties of Oxide Dispersion Strengthened Ferritic Steel. J. Nucl. Mater. 1993;204:74–80. doi: 10.1016/0022-3115(93)90201-9. DOI

Schaeublin R., Leguey T., Spätig P., Baluc N., Victoria M. Microstructure and Mechanical Properties of Two ODS Ferritic/Martensitic Steels. J. Nucl. Mater. 2002;307–311:778–782. doi: 10.1016/S0022-3115(02)01193-5. DOI

Byun T.S., Yoon J.H., Wee S.H., Hoelzer D.T., Maloy S.A. Fracture Behavior of 9Cr Nanostructured Ferritic Alloy with Improved Fracture Toughness. J. Nucl. Mater. 2014;449:39–48. doi: 10.1016/j.jnucmat.2014.03.007. DOI

Klueh R.L., Shingledecker J.P., Swindeman R.W., Hoelzer D.T. Oxide Dispersion-Strengthened Steels: A Comparison of Some Commercial and Experimental Alloys. J. Nucl. Mater. 2005;341:103–114. doi: 10.1016/j.jnucmat.2005.01.017. DOI

Kim J.H., Byun T.S., Hoelzer D.T., Kim S.-W., Lee B.H. Temperature Dependence of Strengthening Mechanisms in the Nanostructured Ferritic Alloy 14YWT: Part I—Mechanical and Microstructural Observations. Mater. Sci. Eng. A. 2013;559:101–110. doi: 10.1016/j.msea.2012.08.042. DOI

Holzer J., Gamanov Š., Luptáková N., Dlouhý A., Svoboda J. Coarsening Kinetics of Y2O3 Dispersoid in New Grade of Fe-Al-Cr-Based ODS Alloy. Metals. 2022;12:210. doi: 10.3390/met12020210. DOI

Svoboda J., Bořil P., Holzer J., Luptáková N., Jarý M., Mašek B., Dymáček P. Substantial Improvement of High Temperature Strength of New-Generation Nano-Oxide-Strengthened Alloys by Addition of Metallic Yttrium. Materials. 2022;15:504. doi: 10.3390/ma15020504. PubMed DOI PMC

Svoboda J., Luptáková N., Jarý M., Dymáček P. Influence of Hot Consolidation Conditions and Cr-Alloying on Microstructure and Creep in New-Generation ODS Alloy at 1100 °C. Materials. 2020;13:5070. doi: 10.3390/ma13225070. PubMed DOI PMC

Gamanov Š., Holzer J., Roupcová P., Svoboda J. High Temperature Oxidation Kinetics of Fe-10Al-4Cr-4Y2O3 ODS Alloy at 1200–1400 °C. Corros. Sci. 2022;206:110498. doi: 10.1016/j.corsci.2022.110498. DOI

Svoboda J., Kunčická L., Luptáková N., Weiser A., Dymáček P. Fundamental Improvement of Creep Resistance of New-Generation Nano-Oxide Strengthened Alloys via Hot Rotary Swaging Consolidation. Materials. 2020;13:5217. doi: 10.3390/ma13225217. PubMed DOI PMC

Dymáček P., Kocich R., Kunčická L., Jarý M., Luptáková N., Holzer J., Mašek B., Svoboda J. Processing of Top Creep and Oxidation Resistant Fe-Al Based ODS Alloys. Procedia Struct. Integr. 2022;42:1576–1583. doi: 10.1016/j.prostr.2022.12.199. DOI

Bártková D., Šmíd M., Mašek B., Svoboda J., Šiška F. Kinetic Study of Static Recrystallization in an Fe–Al–O Ultra-Fine-Grained Nanocomposite. Philos. Mag. Lett. 2017;97:379–385. doi: 10.1080/09500839.2017.1378445. DOI

Bhadauria A., Singh L.K., Ballal A.R., Vijay R. Effect of Yttria Dispersion on Creep Properties of Pure Iron. Trans. Indian Inst. Met. 2016;69:253–259. doi: 10.1007/s12666-015-0736-0. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...