Substantial Improvement of High Temperature Strength of New-Generation Nano-Oxide-Strengthened Alloys by Addition of Metallic Yttrium
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
21-02203X
Czech Science Foundation
PubMed
35057221
PubMed Central
PMC8780474
DOI
10.3390/ma15020504
PII: ma15020504
Knihovny.cz E-resources
- Keywords
- alloying with metallic yttrium, mechanical alloying (MA), oxide dispersion strengthened (ODS) alloy, powder hot consolidation by rolling, tensile strength at 1100 °C,
- Publication type
- Journal Article MeSH
Oxide-dispersion-strengthened (ODS) Fe-Al-Y2O3-based alloys (denoted as FeAlOY) containing 5 vol. % of nano-oxides have a potential to become top oxidation and creep-resistant alloys for applications at temperatures of 1100-1300 °C. Oxide dispersoids cause nearly perfect strengthening of grains; thus, grain boundaries with limited cohesive strength become the weak link in FeAlOY in this temperature range. One of the possibilities for significantly improving the strength of FeAlOY is alloying with appropriate elements and increasing the cohesive strength of grain boundaries. Nearly 20 metallic elements have been tested with the aim to increase cohesive strength in the frame of preliminary tests. A positive influence is revealed for Al, Cr, and Y, whereby the influence of Y is enormous (addition of 1% of metallic Y increases strength by a factor of 2), as it is presented in this paper.
See more in PubMed
Pollock T.M., Argon A.S. Directional coarsening in nickel-base superalloy single crystals with high volume fraction of coherent precipitates. Acta Metall. Mater. 1994;42:1859–1874. doi: 10.1016/0956-7151(94)90011-6. DOI
Oksiuta Z. High-temperature oxidation resistance of ultrafine-grained 14% Cr ODS ferritic steel. J. Mater. Sci. 2013;48:4801–4805. doi: 10.1007/s10853-013-7195-y. DOI
Material Data Sheet, INCOLOY, Alloy MA 956, INCOLOY, Alloy MA 957. Inco Alloys Limitted; Hereford, UK: 2004.
Karak S.K., Majumdar J.D., Witczak Z., Lojkowski W., Ciupiński Ł., Kurzydłowski K.J., Manna I. Evaluation of Microstructure and Mechanical Properties of Nano-Y2O3-Dispersed Ferritic Alloy Synthesized by Mechanical Alloying and Consolidated by High-Pressure Sintering. Met. Mater. Trans. A. 2013;44:2884–2894. doi: 10.1007/s11661-013-1627-9. DOI
Byun T.S., Yoon J.H., Wee S.H., Hoelzer D.T., Maloy S.A. Fracture behavior of 9Cr nanostructured ferritic alloy with improved fracture toughness. J. Nucl. Mater. 2014;449:39–48. doi: 10.1016/j.jnucmat.2014.03.007. DOI
Kim J.H., Byun T.S., Hoelzer D.T., Kim S.W., Lee B.H. Temperature dependence of strengthening mechanisms in the nanostructured ferritic alloy 14YWT: Part I—Mechanical and microstructural observations. Mater. Sci. Eng. A. 2013;559:101–110. doi: 10.1016/j.msea.2012.08.042. DOI
Fu J., Brouwer J.C., Richardson I.M., Hermans M.J.M. Effect of mechanical alloying and spark plasma sintering on the microstructure and mechanical properties of ODS Eurofer. Mater. Des. 2019;177:107849. doi: 10.1016/j.matdes.2019.107849. DOI
Massey C.P., Dryepondt S.N., Edmondson P.D., Terrani K.A., Zinkle S.J. Influence of mechanical alloying and extrusion conditions on the microstructure and tensile properties of Low-Cr ODS FeCrAl alloys. J. Nucl. Mater. 2018;512:227–238. doi: 10.1016/j.jnucmat.2018.10.017. DOI
Li J., Wu S., Ma P., Yang Y., Wu E., Xiong L., Liu S. Microstructure evolution and mechanical properties of ODS FeCrAl alloys fabricated by an internal oxidation process. Mater. Sci. Eng. A. 2019;757:42–51. doi: 10.1016/j.msea.2019.04.088. DOI
Li Z., Lu Z., Xie R., Lu C., Shi Y., Liu C. Effects of Y2O3, La2O3 and CeO2 additions on microstructure and mechanical properties of 14Cr-ODS ferrite alloys produced by spark plasma sintering. Fusion Eng. Des. 2017;121:159–166. doi: 10.1016/j.fusengdes.2017.06.039. DOI
Montes J.M., Cuevas F.G., Cintas J., Urban P. A One-Dimensional Model of the Electrical Resistance Sintering Process. Met. Mater. Trans. A. 2015;46:963–980. doi: 10.1007/s11661-014-2643-0. DOI
Auger M.A., Hoelzer D.T., Field K.G., Moody M.P. Nanoscale analysis of ion irradiated ODS 14YWT ferritic alloy. J. Nucl. Mater. 2020;528:151852. doi: 10.1016/j.jnucmat.2019.151852. DOI
Zhang G., Zhou Z., Mo K., Miao Y., Xu S., Jia H., Liu X., Stubbins J.F. The effect of thermal-aging on the microstructure and mechanical properties of 9Cr ferritic/martensitic ODS alloy. J. Nucl. Mater. 2019;522:212–219. doi: 10.1016/j.jnucmat.2019.05.023. DOI
Kumar D., Prakash U., Dabhade V.V., Laha K., Sakthivel Z. Development of Oxide Dispersion Strengthened (ODS) Ferritic Steel Through Powder Forging. J. Mater. Eng. Perform. 2017;26:1817–1824. doi: 10.1007/s11665-017-2573-2. DOI
Zhou Z., Sun S., Zou L., Schneider Y., Schmauder S., Wang M. Enhanced strength and high temperature resistance of 25Cr20Ni ODS austenitic alloy through thermo-mechanical treatment and addition of Mo. Fusion Eng. Des. 2019;138:175–182. doi: 10.1016/j.fusengdes.2018.11.020. DOI
Pal S., Alam M.E., Maloy S.A., Hoelzer D.T., Odette R.G. Texture evolution and microcracking mechanisms in as-extruded and cross-rolled conditions of a 14YWT nanostructured ferritic alloy. Acta Mater. 2018;152:338–357. doi: 10.1016/j.actamat.2018.03.045. DOI
Bártková D., Šmíd M., Mašek B., Svoboda J., Šiška F. Kinetic study of static recrystallization in an Fe–Al–O ultra-fine-grained nanocomposite. Phil. Mag. Lett. 2017;97:379–385. doi: 10.1080/09500839.2017.1378445. DOI
Stratil L., Horník V., Dymáček P., Roupcová P., Svoboda J. The influence of aluminium content on oxidation resistance of new-generation ODS alloy at 1200 °C. Metals. 2020;10:1478. doi: 10.3390/met10111478. DOI
Svoboda J., Kunčická L., Luptáková N., Weiser A., Dymáček P. Fundamental Improvement of Creep Resistance of New-Generation Nano-Oxide Strengthened Alloys via Hot Rotary Swaging Consolidation. Materials. 2020;13:5217. doi: 10.3390/ma13225217. PubMed DOI PMC
Svoboda J., Luptáková N., Jarý M., Dymáček P. Influence of hot consolidation conditions and Cr-alloying on microstructure and creep in new-generation ODS alloy at 1100 °C. Metals. 2020;10:5070. doi: 10.3390/ma13225070. PubMed DOI PMC
Chlupová A., Šulák I., Kunčická L., Kocich R., Svoboda J. Microstructural aspects of new grade ODS alloy consolidated by rotary swaging. Mater. Character. 2021;181:111477. doi: 10.1016/j.matchar.2021.111477. DOI
High-Temperature Creep Resistance of FeAlOY ODS Ferritic Alloy