The Optimization of Mechanical Alloying Conditions of Powder for the Preparation of a Fe-10Al-4Cr-4Y2O3 ODS Nanocomposite
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-02203X
Czech Science Foundation
PubMed
36556840
PubMed Central
PMC9786025
DOI
10.3390/ma15249034
PII: ma15249034
Knihovny.cz E-zdroje
- Klíčová slova
- mechanical alloying (MA), nanocomposite, oxide dispersion strengthened (ODS) alloy, powder hot consolidation by rolling, strength at 1100 °C,
- Publikační typ
- časopisecké články MeSH
Mechanical alloying (MA) of powders represents the first processing step in the production of oxide dispersion-strengthened (ODS) alloys. MA is a time and energy-consuming process also in the production of Fe-10Al-4Cr-4Y2O3 creep and oxidation-resistant ODS nanocomposite, denoted as the FeAlOY, and it deserves to be optimized. MA is performed at two different temperatures at different times. The powder after MA, as well as the microstructure and high-temperature strength of the final FeAlOY, are characterized and the optimal MA conditions are evaluated. The obtained results show that the size distribution of the powder particles, as well as the dissolution and homogenization of the Y2O3, becomes saturated quite soon, while the homogenization of the metallic components, such as Al and Cr, takes significantly more time. The high-temperature tensile tests and grain microstructures of the secondary recrystallized FeAlOY, however, indicate that the homogenization of the metallic components during MA does not influence the quality of the FeAlOY, as the matrix of the FeAlOY is sufficiently homogenized during recrystallization. Thus, the conditions of MA correspond to sufficient dissolution and homogenization of Y2O3 and can be considered the optimal ones.
CEITEC Brno University of Technology Purkyňova 656 123 612 00 Brno Czech Republic
Institute of Physics of Materials Czech Academy of Sciences Žižkova 22 616 62 Brno Czech Republic
Zobrazit více v PubMed
Hirsch P.B., Humphreys F.J. In: Physics of Strength and Plasticity. Argon A., editor. MIT Press; Cambridge, MA, USA: 1969. p. 189.
Ardell A.J. Precipitation hardening. Metall. Trans. A. 1985;16:2131–2165. doi: 10.1007/BF02670416. DOI
Bhadeshia H., Honeycombe R. Steels: Microstructure and Properties. 3rd ed. Butterworth-Heinemann; Oxford, UK: Waltham, MA, USA: 2006. pp. 74–75.
Gladman T. Precipitation hardening in metals. Mater. Sci. Technol. 1999;15:30–36. doi: 10.1179/026708399773002782. DOI
Kieffer R., Ettmayer P., Freudhomier M. Modern Developments in Powder Metallurgy. Springer; Boston, MA, USA: 1971. About Nitrides and Carbonnitrides and Nitride-Based Cemented Hard Alloys; pp. 201–214.
Taneike M., Sawada K., Abe F. Effect of carbon concentration on precipitation behavior of M23C6 carbides and MX carboni-trides in martensitic 9Cr steel during heat treatment. Metall. Mater. Trans. A Phys. 2004;35:1255–1262. doi: 10.1007/s11661-004-0299-x. DOI
Gavriljuk V., Shanina B. Interstitial elements in steel: Effect on structure and properties. HTM J. Heat Treat. Mater. 2010;65:189–194. doi: 10.3139/105.110070. DOI
Reed R.C. The Superalloys Fundamentals and Applications. Cambridge University Press; Cambridge, UK: 2008.
Schäublin R., Leguey T., Spätig P., Baluc N., Victoria M. Microstructure and mechanical properties of two ODS ferritic/martensitic steels. J. Nucl. Mater. 2002;307:778–782. doi: 10.1016/S0022-3115(02)01193-5. DOI
Karak S.K., Majumdar J.D., Witczak Z., Lojkowski W., Ciupinski Ł., Kurzydłowski K.J., Manna I. Evaluation of Microstructure and Mechanical Properties of Nano-Y2O3-Dispersed Ferritic Alloy Synthesized by Mechanical Alloying and Consolidated by High-Pressure Sintering. Met. Mater. Trans. A. 2013;44:2884–2894. doi: 10.1007/s11661-013-1627-9. DOI
Sands R.L., Phelps L.A., Morgan W.R. Dispersion-Strengthened Stainless Steel. Powder Met. 1962;5:158–170. doi: 10.1179/POM.1962.5.10.011. DOI
Huet J.J., Massaux H., De Wilde L., Noels J. Fabrication ct propriétés d’aciers ferritiques renforcés par dispersion. Rev. Met. Paris. 1968;65:863–869. doi: 10.1051/metal/196865120863. DOI
Benjamin J.S. Dispersion strengthened superalloys by mechanical alloying. Metall. Trans. 1970;1:2943–2951. doi: 10.1007/BF03037835. DOI
Huet J.-J., Leroy V. Dispersion-Strengthened Ferritic Steels as Fast-Reactor Structural Materials. Nucl. Technol. 1974;24:216–224. doi: 10.13182/NT74-A31476. DOI
Ukai S., Oono Hori N., Ohtsuka S. Oxide Dispersion Strengthened Steels. Compr. Nucl. Mater. 2020;3:255–292.
Dobeš F., Hadraba H., Chlup Z., Dlouhý A., Vilémová M., Matějíček J. Compressive creep behavior of an oxide-dispersion-strengthened CoCrFeMnNi high-entropy alloy. Mater. Sci. Eng. A. 2018;732:99–104. doi: 10.1016/j.msea.2018.06.108. DOI
Srolovitz D., Petkovic-Luton R., Luton M. Straight dislocation-sphericle inclusion interactions: High and low temperature solutions. Scr. Metall. 1984;18:1063–1068. doi: 10.1016/0036-9748(84)90179-0. DOI
Arzt E., Rösler J. The kinetics of dislocation climb over hard particles—II. Effects of an attractive particle-dislocation interaction. Acta Metall. 1988;36:1053–1060. doi: 10.1016/0001-6160(88)90159-9. DOI
Hayashi T., Sarosi P., Schneibel J., Mills M. Creep response and deformation processes in nanocluster-strengthened ferritic steels. Acta Mater. 2008;56:1407–1416. doi: 10.1016/j.actamat.2007.11.038. DOI
Schneibel J.H., Liu C.T., Miller M.K., Mills M.J., Sarosi P., Heilmaier M., Sturm D. Ultrafine-grained nanoclus-ter-strengthened alloys with unusually high creep strength. Scr. Mater. 2009;61:793–796. doi: 10.1016/j.scriptamat.2009.06.034. DOI
Schneibel J., Heilmaier M., Blum W., Hasemann G., Shanmugasundaram T. Temperature dependence of the strength of fine- and ultrafine-grained materials. Acta Mater. 2011;59:1300–1308. doi: 10.1016/j.actamat.2010.10.062. DOI
Dasgupta A., Divakar R., Parida P.K., Ghosh C., Saroja S., Mohandas E., Vijayalakshmi M., Jayakumar T., Raj B. Materials Challenges and Testing for Supply of Energy and Resources. Springer; Berlin/Heidelberg, Germany: 2011. Electron Microscopy Studies on Oxide Dispersion Strengthened Steels; pp. 117–128.
Fu C.L., Krčmar M., Painter G.S., Chen X.Q. Vacancy mechanism of high oxygen solubility and nucleation of stable oxygen-enriched clusters in Fe. Phys. Rev. Lett. 2007;99:225502. doi: 10.1103/PhysRevLett.99.225502. PubMed DOI
Brocq M., Radiguet B., Poissonnet S., Cuvilly F., Pareige P., Legendre F. Nanoscale characterization and formation mechanism of nanoclusters in an ODS steel elaborated by reactive-inspired ball-milling and annealing. J. Nucl. Mater. 2011;409:80–85. doi: 10.1016/j.jnucmat.2010.09.011. DOI
Oono N., Ukai S. Precipitation of Oxide Particles in Oxide Dispersion Strengthened (ODS) Ferritic Steels. Mater. Trans. 2018;59:1651–1658. doi: 10.2320/matertrans.M2018110. DOI
Guillon O., Gonzalez-Julian J., Dargatz B., Kessel T., Schierning G., Räthel J., Herrmann M. Field-assisted sintering technology/spark plasma sintering: Mechanisms, materials, and technology developments. Adv. Eng. Mater. 2014;16:830–849. doi: 10.1002/adem.201300409. DOI
Atkinson H.V., Davies S. Fundamental aspects of hot isostatic pressing: An overview. Metall. Mater. Trans. A. 2000;31:2981–3000. doi: 10.1007/s11661-000-0078-2. DOI
Li Y., Nagasaka T., Muroga T., Kimura A., Ukai S. High-temperature mechanical properties and microstructure of 9Cr oxide dispersion strengthened steel compared with RAFMs. Fusion Eng. Des. 2011;86:2495–2499. doi: 10.1016/j.fusengdes.2011.03.004. DOI
Zhao Q., Yu L.M., Liu Y.C., Huang Y., Ma Z.Q., Li H.J. Effects of aluminum and titanium on the microstructure of ODS steels fab-ricated by hot pressing. Int. J. Miner. Metall. Mater. 2018;25:1156–1165. doi: 10.1007/s12613-018-1667-7. DOI
Unifantowicz P., Oksiuta Z., Olier P., de Carlan Y., Baluc N. Microstructure and mechanical properties of an ODS RAF steel fabricated by hot extrusion or hot isostatic pressing. Fusion Eng. Des. 2011;86:2413–2416. doi: 10.1016/j.fusengdes.2011.01.022. DOI
Svoboda J., Kunčická L., Luptáková N., Weiser A., Dymáček P. Fundamental Improvement of Creep Resistance of New-Generation Nano-Oxide Strengthened Alloys via Hot Rotary Swaging Consolidation. Materials. 2020;13:5217. doi: 10.3390/ma13225217. PubMed DOI PMC
Kunčická L., Macháčková A., Lavery N.P., Kocich R., Cullen J.C., Hlaváč L.M. Effect of thermomechanical processing via rotary swaging on properties and residual stress within tungsten heavy alloy. Int. J. Refract. Met. Hard Mater. 2020;87:105120. doi: 10.1016/j.ijrmhm.2019.105120. DOI
Kumar D., Prakash U., Dabhade V.V., Laha K., Sakthivel T. Development of Oxide Dispersion Strengthened (ODS) Ferritic Steel Through Powder Forging. J. Mater. Eng. Perform. 2017;26:1817–1824. doi: 10.1007/s11665-017-2573-2. DOI
Bergner F., Hilger I., Virta J., Lagerbom J., Gerbeth G., Connolly S., Hong Z., Grant P.S., Weissgärber T. Alternative Fabrication Routes toward Oxide-Dispersion-Strengthened Steels and Model Alloys. Metall. Mater. Trans. A. 2016;47:5313–5324. doi: 10.1007/s11661-016-3616-2. DOI
Deng L., Wang C., Luo J., Tu J., Guo N., Xu H., He P., Xia S., Yao Z. Preparation and property optimization of FeCrAl-based ODS alloy by machine learning combined with wedge-shaped hot-rolling. Mater. Charact. 2022;188:111894. doi: 10.1016/j.matchar.2022.111894. DOI
Svoboda J., Luptáková N., Jarý M., Dymáček P. Influence of Hot Consolidation Conditions and Cr-Alloying on Microstructure and Creep in New-Generation ODS Alloy at 1100 °C. Materials. 2020;13:5070. doi: 10.3390/ma13225070. PubMed DOI PMC
Bártková D., Šmíd M., Mašek B., Svoboda J., Šiška F. Kinetic study of static recrystallization in an Fe–Al–O ultra-fine-grained nanocomposite. Philos. Mag. Lett. 2017;97:379–385. doi: 10.1080/09500839.2017.1378445. DOI
Svoboda J., Horník V., Riedel H. Modelling of Processing Steps of New Generation ODS Alloys. Metall. Mater. Trans. A. 2020;51:5296–5305. doi: 10.1007/s11661-020-05949-0. DOI
Bartsch M., Wasilkowska A., Czyrska-Filemonowicz A., Messerschmidt U. Dislocation dynamics in the oxide dispersion strengthened alloy INCOLOY MA956. Mater. Sci. Eng. A. 1999;272:152–162. doi: 10.1016/S0921-5093(99)00471-2. DOI
Miller M., Hoelzer D., Kenik E., Russell K. Stability of ferritic MA/ODS alloys at high temperatures. Intermetallics. 2005;13:387–392. doi: 10.1016/j.intermet.2004.07.036. DOI
Holzer J., Gamanov Š., Luptáková N., Dlouhý A., Svoboda J. Coarsening Kinetics of Y2O3 Dispersoid in New Grade of Fe-Al-Cr-Based ODS Alloy. Metals. 2022;12:210. doi: 10.3390/met12020210. DOI
Svoboda J., Bořil P., Holzer J., Luptáková N., Jarý M., Mašek B., Dymáček P. Substantial Improvement of High Temperature Strength of New-Generation Nano-Oxide-Strengthened Alloys by Addition of Metallic Yttrium. Materials. 2022;15:504. doi: 10.3390/ma15020504. PubMed DOI PMC
Svoboda J., Horník V., Stratil L., Hadraba H., Mašek B., Khalaj O., Jirková H. Microstructure Evolution in ODS Alloys with a High-Volume Fraction of Nano Oxides. Metals. 2018;8:1079. doi: 10.3390/met8121079. DOI
Gamanov Š., Holzer J., Roupcová P., Svoboda J. High temperature oxidation kinetics of Fe-10Al-4Cr-4Y2O3 ODS alloy at 1200–1400 °C. Corros. Sci. 2022;206:110498. doi: 10.1016/j.corsci.2022.110498. DOI
Khalaj O., Mašek B., Jirková H., Svoboda J. Experimental Study on Termomechanical Properties of New Generation ODS steel. Int. J. Mater. Metall. Eng. 2017;11:501–504.
Stratil L., Horník V., Dymáček P., Roupcová P., Svoboda J. The Influence of Aluminum Content on Oxidation Resistance of New-Generation ODS Alloy at 1200 °C. Metals. 2020;10:1478. doi: 10.3390/met10111478. DOI
Unocic K.A., Hoelzer D., Pint B. Microstructure and environmental resistance of low Cr ODS FeCrAl. Mater. High Temp. 2015;32:123–132. doi: 10.1179/0960340914Z.00000000088. DOI