Influence of Hot Consolidation Conditions and Cr-Alloying on Microstructure and Creep in New-Generation ODS Alloy at 1100 °C
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-01641S
Grantová Agentura České Republiky
PubMed
33182818
PubMed Central
PMC7696533
DOI
10.3390/ma13225070
PII: ma13225070
Knihovny.cz E-zdroje
- Klíčová slova
- ODS alloy, consolidation via hot rolling, creep, mechanical alloying, microstructure,
- Publikační typ
- časopisecké články MeSH
The coarse-grained new-generation Fe-Al-Y2O3-based oxide dispersion strengthened (ODS) alloys contain 5 vol.% homogeneously dispersed yttria nano-precipitates and exhibit very promising creep and oxidation resistance above 1000 °C. The alloy is prepared by the consolidation of mechanically alloyed powders via hot rolling followed by secondary recrystallization. The paper presents a systematic study of influence of rolling temperature on final microstructure and creep at 1100 °C for two grades (Fe-10Al-4Y2O3 and Fe-9Al-14Cr-4Y2O3 in wt%) of new-generation ODS alloys. The hot rolling temperatures exhibit a rather wide processing window and the influence of Cr-alloying on creep properties is evaluated as only slightly positive.
Zobrazit více v PubMed
Pollock T.M., Argon A.S. Directional coarsening in nickel-base single crystals with high volume fractions of coherent precipitates. Acta Metall. Mater. 1994;42:1859–1874. doi: 10.1016/0956-7151(94)90011-6. DOI
Svoboda J., Lukáš P. Model of creep in 〈001〉-oriented superalloy single crystals. Acta Mater. 1998;46:3421–3431. doi: 10.1016/S1359-6454(98)00043-3. DOI
Kunčická L., Kocich R., Hervoches C., Macháčková A. Study of structure and residual stresses in cold rotary swaged tungsten heavy alloy. Mater. Sci. Eng. A. 2017;704:25–31. doi: 10.1016/j.msea.2017.07.096. DOI
Stratil L., Horník V., Dymáček P., Roupcová P., Svoboda J. The influence of aluminium content on oxidation resistance of new-generation ODS alloy at 1200 °C. Metals. 2020;10:1478. doi: 10.3390/met10111478. DOI
Material Data Sheet. Inco Alloys Limitted; Hereford, UK: Incoloy, alloy MA 956; Incoloy, alloy MA 957.
Korb G., Rühle M., Martinz H.-P. New iron based ODS-superalloys for high demanding applications; Proceedings of the International Gas Turbine and Aeroengine Congress and Exposition; Orlando, FL, USA. 3–6 June 1991.
Kazimierzak B., Prignon J.M., Fromont R.I. An ODS Material with outstanding creep and oxidation resistance above 1100 °C. Mater. Des. 1992;13:67–70. doi: 10.1016/0261-3069(92)90109-U. DOI
Ukai S., Harada M., Okada H., Inoue M., Nomura S., Shikakura S., Nishida T., Fujiwara M., Asabe K. Tube manufacturing and mechanical properties of oxide dispersion strengthened ferritic steel. J. Nucl. Mater. 1993;204:74–80. doi: 10.1016/0022-3115(93)90201-9. DOI
Schaeublin R., Leguey T., Spätig P., Baluc N., Victoria M. Microstructure and mechanical properties of two ODS ferritic/martensitic steels. J. Nucl. Mater. 2002;307–311:778–782. doi: 10.1016/S0022-3115(02)01193-5. DOI
Klueh R.L., Shingledecker J.P., Swindeman R.W., Hoelzer D.T. Oxide dispersion-strengthened steels: A comparison of some commercial and experimental alloys. J. Nucl. Mater. 2005;341:103–114. doi: 10.1016/j.jnucmat.2005.01.017. DOI
Kim J.H., Byun T.S., Hoelzer D.T., Kim S.-W., Lee B.H. Temperature dependence of strengthening mechanisms in the nanostructured ferritic alloy 14YWT: Part I-Mechanical and microstructural observations. Mater. Sci. Eng. A. 2013;559:101–110. doi: 10.1016/j.msea.2012.08.042. DOI
Byun T.S., Yoon J.H., Wee S.H., Hoelzer D.T., Maloy S.A. Fracture behaviour of 9Cr nanostructured ferritic alloy with improved fracture toughness. J. Nucl. Mater. 2014;449:39–48. doi: 10.1016/j.jnucmat.2014.03.007. DOI
Hoelzer D.T., Unocic K.A., Sokolov M.A., Byun T.S. Influence of processing on the microstructure and mechanical properties of 14YWT. J. Nucl. Mater. 2016;471:251–265. doi: 10.1016/j.jnucmat.2015.12.011. DOI
Rösler J., Arzt E. A new model based creep equation for dispersion strengthened materials. Acta Metall. 1990;38:671–683. doi: 10.1016/0956-7151(90)90223-4. DOI
Fischer F.D., Svoboda J., Fratzl P. A Thermodynamical approach to grain growth and coarsening. Philos. Mag. 2003;83:1075–1093. doi: 10.1080/0141861031000068966. DOI
Bártková D., Šmíd M., Mašek B., Svoboda J., Šiška F. Kinetic study of static recrystallization in an Fe–Al–O ultra-fine-grained nanocomposite. Philos. Mag. Lett. 2017;97:379–385. doi: 10.1080/09500839.2017.1378445. DOI
Svoboda J., Hornik V., Stratil L., Hadraba H., Masek B., Khalaj O., Jirkova H. Microstructure Evolution in ODS Alloys with a High-Volume Fraction of Nano Oxides. Metals. 2018;8:1079. doi: 10.3390/met8121079. DOI
Fu J., Brouwer J.C., Richardson I.M., Hermans M.J.M. Effect of mechanical alloying and spark plasma sintering on the microstructure and mechanical properties of ODS Eurofer. Mater. Des. 2019;177:107849. doi: 10.1016/j.matdes.2019.107849. DOI
Massey C.P., Dryepondt S.N., Edmondson P.D., Terrani K.A., Zinkle S.J. Influence of mechanical alloying and extrusion conditions on the microstructure and tensile properties of Low-Cr ODS FeCrAl alloys. J. Nucl. Mater. 2018;512:227–238. doi: 10.1016/j.jnucmat.2018.10.017. DOI
Li J., Wu S., Ma P., Yang Y., Wu E., Xiong L., Liu S. Microstructure evolution and mechanical properties of ODS FeCrAl alloys fabricated by an internal oxidation process. Mater. Sci. Eng. A. 2019;757:42–51. doi: 10.1016/j.msea.2019.04.088. DOI
Li Z., Lu Z., Xie R., Lu C., Shi Y., Liu C. Effects of Y2O3, La2O3 and CeO2 additions on microstructure and mechanical properties of 14Cr-ODS ferrite alloys produced by spark plasma sintering. Fusion Eng. Des. 2017;121:159–166. doi: 10.1016/j.fusengdes.2017.06.039. DOI
Auger M.A., Hoelzer D.T., Field K.G., Moody M.P. Nanoscale analysis of ion irradiated ODS 14YWT ferritic alloy. J. Nucl. Mater. 2020;528:151852. doi: 10.1016/j.jnucmat.2019.151852. DOI
Zhang G., Zhou Z., Mo K., Miao Y., Xu S., Jia H., Liu X., Stubbins J.F. The effect of thermal-aging on the microstructure and mechanical properties of 9Cr ferritic/martensitic ODS alloy. J. Nucl. Mater. 2019;522:212–219. doi: 10.1016/j.jnucmat.2019.05.023. DOI
Kumar D., Prakash U., Dabhade V.V., Laha K., Sakthivel T. Development of Oxide Dispersion Strengthened (ODS) Ferritic Steel through Powder Forging. J. Mater. Eng. Perform. 2017;26:1817–1824. doi: 10.1007/s11665-017-2573-2. DOI
Zhou Z., Sun S., Zou L., Schneider Y., Schmauder S., Wang M. Enhanced strength and high temperature resistance of 25Cr20Ni ODS austenitic alloy through thermo-mechanical treatment and addition of Mo. Fusion Eng. Des. 2019;138:175–182. doi: 10.1016/j.fusengdes.2018.11.020. DOI
Pal S., Alam M.E., Maloy S.A., Hoelzer D.T., Odette G.R. Texture evolution and microcracking mechanisms in as-extruded and cross-rolled conditions of a 14YWT nanostructured ferritic alloy. Acta Mater. 2018;152:338–357. doi: 10.1016/j.actamat.2018.03.045. DOI
Svoboda J., Ecker W., Razumovskiy V.I., Zickler G.A., Fischer F.D. Kinetics of interaction of impurity interstitials with dislocations revisited. Prog. Mater. Sci. 2018;101:172–206. doi: 10.1016/j.pmatsci.2018.10.001. DOI
Svoboda J., Horník V., Riedel H. Modelling of Processing Steps of New Generation ODS Alloys. Met. Trans. A. 2020;51A:5296–5305. doi: 10.1007/s11661-020-05949-0. DOI
Svoboda J., Kunčická L., Luptáková N., Weiser A., Dymáček P. Fundamental improvement of creep resistance of new-generation nano-oxide strengthened alloys via hot rotary swaging consolidation. Materials. 2020;13 (under review) PubMed PMC
Riedel H. Materials Research and Engineering. Springer; Berlin, Germany: 1987. Fracture at high temperatures.
High-Temperature Creep Resistance of FeAlOY ODS Ferritic Alloy