Repetitive Detection of Aromatic Hydrocarbon Contaminants with Bioluminescent Bioreporters Attached on Tapered Optical Fiber Elements

. 2020 Jun 06 ; 20 (11) : . [epub] 20200606

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32517218

Grantová podpora
SGS17/110/OHK4/1T/17 České Vysoké Učení Technické v Praze
SGS18/097/OHK4/1T/17 České Vysoké Učení Technické v Praze
CZ.02.1.01/0.0/0.0/17_048/0007435 Ministerstvo Školství, Mládeže a Tělovýchovy

In this study, we show the repetitive detection of toluene on a tapered optical fiber element (OFE) with an attached layer of Pseudomonas putida TVA8 bioluminescent bioreporters. The bioluminescent cell layer was attached on polished quartz modified with (3-aminopropyl)triethoxysilane (APTES). The repeatability of the preparation of the optical probe and its use was demonstrated with five differently shaped OFEs. The intensity of measured bioluminescence was minimally influenced by the OFE shape, possessing transmittances between 1.41% and 5.00%. OFE probes layered with P. putida TVA8 were used to monitor liquid toluene over a two-week period. It was demonstrated that OFE probes layered with positively induced P. putida TVA8 bioreporters were reliable detectors of toluene. A toluene concentration of 26.5 mg/L was detected after <30 min after immersion of the probe in the toluene solution. Additional experiments also immobilized constitutively bioluminescent cells of E. coli 652T7, on OFEs with polyethyleneimine (PEI). These OFEs were repetitively induced with Lauria-Bertani (LB) nutrient medium. Bioluminescence appeared 15 minutes after immersion of the OFE in LB. A change in pH from 7 to 6 resulted in a decrease in bioluminescence that was not restored following additional nutrient inductions at pH 7. The E. coli 652T7 OFE probe was therefore sensitive to negative influences but could not be repetitively used.

Zobrazit více v PubMed

Jones O., Preston M.R., Fawell J., Mayes W., Cartmell E., Pollard S., Harrison R.M., Mackenzie A.R., Williams M., Maynard R., et al. Pollution: Causes, Effects and Control. Royal Society of Chemistry; London, UK: 2015.

Hill M.K. Understanding Environmental Pollution. Cambridge University Press; Cambridge, UK: 2010.

Mitra S., Roy P. BTEX: A Serious Ground-water Contaminant. Res. J. Environ. Sci. 2011;5:394–398. doi: 10.3923/rjes.2011.394.398. DOI

Aksoy M. Benzene and Leukemia. Environ. Health Perspect. 1991;91:165. doi: 10.1289/ehp.9191165. PubMed DOI PMC

Lynge E., Andersen A., Nilsson R., Barlow L., Pukkala E., Nordlinder R., Boffetta P., Grandjean P., Heikkiia P., Horte L.-G., et al. Risk of cancer and exposure to gasoline vapors. Am. J. Epidemiol. 1997;145:449–458. doi: 10.1093/oxfordjournals.aje.a009127. PubMed DOI

Lim S.K., Shin H.S., Yoon K.S., Kwack S.J., Um Y.M., Hyeon J.H., Kwak H.M., Kim J.Y., Kim T.H., Kim Y.J., et al. Risk assessment of volatile organic compounds benzene, toluene, ethylbenzene, and xylene (BTEX) in consumer products. J. Toxicol. Environ. Heal. Part A. 2014;77:1502–1521. doi: 10.1080/15287394.2014.955905. PubMed DOI

Lu Y., Macias D., Dean Z.S., Kreger N.R., Wong P.K. A UAV-Mounted Whole Cell Biosensor System for Environmental Monitoring Applications; Proceedings of the IEEE Transactions on Nanobioscience; Quebec, QC, Canada. 12 November 2015; pp. 811–817. PubMed PMC

Nivens D.E., McKnight T.E., Moser S.A., Osbourn S.J., Simpson M.L., Sayler G.S. Bioluminescent bioreporter integrated circuits: Potentially small, rugged and inexpensive whole-cell biosensors for remote environmental monitoring. J. Appl. Microbiol. 2004;96:33–46. doi: 10.1046/j.1365-2672.2003.02114.x. PubMed DOI

Heitzer A., Webb O.F., Thonnard J.E., Sayler G.S. Specific and quantitative assessment of naphthalene and salicylate bioavailability by using a bioluminescent catabolic reporter bacterium. Appl. Environ. Microbiol. 1992;58:1839–1846. doi: 10.1128/AEM.58.6.1839-1846.1992. PubMed DOI PMC

Diplock E.E., Alhadrami H.A., Paton G.I. Handbook of Hydrocarbon and Lipid Microbiology. Springer; Berlin, Heidelberg: 2010. Commercial Application of Bioluminescence Full Cell Bioreporters for Environmental Diagnostics; pp. 4445–4458.

Close D.M., Ripp S., Sayler G.S. Reporter Proteins in Whole-Cell Optical Bioreporter Detection Systems, Biosensor Integrations, and Biosensing Applications. Sensors. 2009;9:9147–9174. doi: 10.3390/s91109147. PubMed DOI PMC

Gutiérrez J.C., Amaro F., Martín-González A. Heavy metal whole-cell biosensors using eukaryotic microorganisms: An updated critical review. Front. Microbiol. 2015;6 doi: 10.3389/fmicb.2015.00048. PubMed DOI PMC

Kim H., Jung Y., Doh I.J., Lozano-Mahecha R.A., Applegate B., Bae E. Smartphone-based low light detection for bioluminescence application. Sci. Rep. 2017;7:40203. doi: 10.1038/srep40203. PubMed DOI PMC

Regional Environmental Center and Umweltbundesamt GmbH, Chemicals and GMO Legislation . Handbook on the Implementation of EC Environmental Legislation. European Union; Szentendre, Hungary: 2014. pp. 93–126. Section 8.

Lobsiger N., Stark W.J. Strategies of immobilizing cells in whole-cell microbial biosensor devices targeted for analytical field applications. Anal. Sci. 2019;35:839–847. doi: 10.2116/analsci.19R004. PubMed DOI

Polyak B., Bassis E., Novodvorets A., Belkin S., Marks R.S. Bioluminescent whole cell optical fiber sensor to genotoxicants: System optimization. Sens. Actuators B. Chem. 2001;74:18–26. doi: 10.1016/S0925-4005(00)00707-3. DOI

Kalabova H., Pospisilova M., Jirina M., Kuncova G. Mathematical Model for Laboratory System of Bioluminescent Whole-Cell Biosensor with Optical Element. J. Biosens. Bioelectron. 2018;9:1–5.

Kuncova G., Ishizaki T., Solovyev A., Trogl J., Ripp S. The Repetitive Detection of Toluene with Bioluminescence Bioreporter Pseudomonas putida TVA8 Encapsulated in Silica Hydrogel on an Optical Fiber. Materials. 2016;9:467. doi: 10.3390/ma9060467. PubMed DOI PMC

Zajic J., Bittner M., Branyik T., Solovyev A., Sabata S., Kuncova G., Pospisilova M. Repetitive inductions of bioluminescence of Pseudomonas putida TVA8 immobilised by adsorption on optical fiber. Chem. Pap. 2016;70:877–887. doi: 10.1515/chempap-2016-0031. DOI

Kuncova G., Pazlarova J., Hlavata A., Ripp S., Sayler G.S. Bioluminescent bioreporter Pseudomonas putida TVA8 as a detector of water pollution. Operational conditions and selectivity of free cells sensor. Ecol. Indic. 2011;11:882–887. doi: 10.1016/j.ecolind.2010.12.001. DOI

Applegate B.M., Kehrmeyer S.R., Sayler G.S. A chromosomally based tod-luxCDABE whole-cell reporter for benzene, toluene, ethybenzene, and xylene (BTEX) sensing. Appl. Environ. Microbiol. 1998;64:2730–2735. doi: 10.1128/AEM.64.7.2730-2735.1998. PubMed DOI PMC

Du L.Y., Arnholt K., Ripp S., Sayler G., Wang S.Q., Liang C.H., Wang J.K., Zhuang J. Biological toxicity of cellulose nanocrystals (CNCs) against the luxCDABE-based bioluminescent bioreporter Escherichia coli 652T7. Ecotoxicology. 2015;24:2049–2053. doi: 10.1007/s10646-015-1555-0. PubMed DOI

Sanseverino J., Applegate B.M., King J.M.H., Sayler G.S. Plasmid-mediated mineralization of naphthalene, phenanthrene, and anthracene. Appl. Environ. Microbiol. 1993;59:1931–1937. doi: 10.1128/AEM.59.6.1931-1937.1993. PubMed DOI PMC

Wang J., Du S., Onodera T., Yatabe R., Tanaka M., Okochi M., Toko K. An SPR sensor chip based on peptide-modified single-walled carbon nanotubes with enhanced sensitivity and selectivity in the detection of 2,4,6-trinitrotoluene explosives. Sensors. 2018;18:4461. doi: 10.3390/s18124461. PubMed DOI PMC

D’Souza S.F., Melo J.S., Deshpande A., Nadkarni G.B. Immobilization of yeast cells by adhesion to glass surface using polyethylenimine. Biotechnol. Lett. 1986;8:643–648. doi: 10.1007/BF01025974. DOI

Fletcher M. Attachment of Pseudomonas fluorescens to glass and influence of electrolytes on bacterium-substratum separation distance. J. Bacteriol. 1988;170:2027–2030. doi: 10.1128/JB.170.5.2027-2030.1988. PubMed DOI PMC

Kokare C.R., Chakraborty S., Khopade A.N., Mahadik K.R. Biofilm: Importance and applications. Indian. J. Biotechnol. 2009;8:159–168.

Kuncova G., Pospisilova M., Solovyev A. Optical Fiber Whole Cell Bioluminescent Sensor; Proceedings of the XX International Conference on Bioencapsulation; Orillia, ON, Canada. 21–24 September 2012; pp. 96–97. B. Abstr. 2012, proceedings reference P_01.

Roda A., Roda B., Cevenini L., Michelini E., Mezzanotte L., Reschiglian P., Hakkila K., Virta M. Analytical strategies for improving the robustness and reproducibility of bioluminescent microbial bioreporters. Anal. Bioanal. Chem. 2011;401:201–211. doi: 10.1007/s00216-011-5091-3. PubMed DOI

Angelaalincy M.J., Navanietha Krishnaraj R., Shakambari G., Ashokkumar B., Kathiresan S., Varalakshmi P. Biofilm Engineering Approaches for Improving the Performance of Microbial Fuel Cells and Bioelectrochemical Systems. Front. Energy Res. 2018;6 doi: 10.3389/fenrg.2018.00063. DOI

Wei Q., Ma L.Z. Biofilm matrix and its regulation in Pseudomonas aeruginosa. Int. J. Mol. Sci. 2013;14:20983–21005. doi: 10.3390/ijms141020983. PubMed DOI PMC

Pospisilova M., Kuncova G., Trogl J. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors. Sensors. 2015;15:25208–25259. doi: 10.3390/s151025208. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...