The Repetitive Detection of Toluene with Bioluminescence Bioreporter Pseudomonas putida TVA8 Encapsulated in Silica Hydrogel on an Optical Fiber
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28773598
PubMed Central
PMC5456779
DOI
10.3390/ma9060467
PII: ma9060467
Knihovny.cz E-zdroje
- Klíčová slova
- bioluminescent biosensor, encapsulation, optical fiber biosensor, silica gel, whole cell bioreporter,
- Publikační typ
- časopisecké články MeSH
Living cells of the lux-based bioluminescent bioreporter Pseudomonas putida TVA8 were encapsulated in a silica hydrogel attached to the distal wider end of a tapered quartz fiber. Bioluminescence of immobilized cells was induced with toluene at high (26.5 mg/L) and low (5.3 mg/L) concentrations. Initial bioluminescence maxima were achieved after >12 h. One week after immobilization, a biofilm-like layer of cells had formed on the surface of the silica gel. This resulted in shorter response times and more intensive bioluminescence maxima that appeared as rapidly as 2 h after toluene induction. Considerable second bioluminescence maxima were observed after inductions with 26.5 mg toluene/L. The second and third week after immobilization the biosensor repetitively and semiquantitatively detected toluene in buffered medium. Due to silica gel dissolution and biofilm detachment, the bioluminescent signal was decreasing 20-32 days after immobilization and completely extinguished after 32 days. The reproducible formation of a surface cell layer on the wider end of the tapered optical fiber can be translated to various whole cell bioluminescent biosensor devices and may serve as a platform for in-situ sensors.
Zobrazit více v PubMed
Close D.M., Ripp S., Sayler G.S. Reporter proteins in whole-cell optical bioreporter detection systems, biosensor integrations, and biosensing applications. Sensors. 2009;9:9147–9174. doi: 10.3390/s91109147. PubMed DOI PMC
Van der Meer J.R., Belkin S. Where microbiology meets microengineering: Design and applications of reporter bacteria. Nat. Rev. Microbiol. 2010;8:511–522. doi: 10.1038/nrmicro2392. PubMed DOI
Leveau J.H.J., Lindow S.E. Bioreporters in microbial ecology. Curr. Opin. Microbiol. 2002;5:259–265. doi: 10.1016/S1369-5274(02)00321-1. PubMed DOI
Xu T.T., Close D.M., Sayler G.S., Ripp S. Genetically modified whole-cell bioreporters for environmental assessment. Ecol. Indic. 2013;28:125–141. doi: 10.1016/j.ecolind.2012.01.020. PubMed DOI PMC
King J.M.H., Digrazia P.M., Applegate B., Burlage R., Sanseverino J., Dunbar P., Larimer F., Sayler G.S. Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation. Science. 1990;249:778–781. doi: 10.1126/science.249.4970.778. PubMed DOI
Trogl J., Chauhan A., Ripp S., Layton A.C., Kuncova G., Sayler G.S. Pseudomonas fluorescens HK44: Lessons learned from a model whole-cell bioreporter with a broad application history. Sensors. 2012;12:1544–1571. doi: 10.3390/s120201544. PubMed DOI PMC
Michelini E., Cevenini L., Calabretta M.M., Spinozzi S., Camborata C., Roda A. Field-deployable whole-cell bioluminescent biosensors: So near and yet so far. Anal. Bioanal. Chem. 2013;405:6155–6163. doi: 10.1007/s00216-013-7043-6. PubMed DOI
Wang X.-D., Wolfbeis O.S. Fiber-optic chemical sensors and biosensors (2008–2012) Anal. Chem. 2013;85:487–508. doi: 10.1021/ac303159b. PubMed DOI
Zajic J., Bittner M., Branyik T., Solovyev A., Sabata S., Kuncova G., Pospisilova M. Repetitive inductions of bioluminescence of Pseudomonas putida TVA8 immobilised by adsorption on optical fiber. Chem. Pap. 2016;70:877–887. doi: 10.1515/chempap-2016-0031. DOI
Vrbova H., Kuncova G., Pospisilova M. Book of Abstracts of 10th European Conference on Optical Chemical Sensors and Biosensors, Europt(r)ode X. Institute of Photonics of CAV, v.v.i.; Prague, Czech Republic: 2010. Optical fiber element of sensor with bioluminescent cells; p. 85.
Kalabova H., Pospisilova M., Jirina M., Kuncova G. Whole-cell biosensor for detection of environmental pollution enhancement of detected bioluminescence. Curr. Opin. Biotechnol. 2013;24:S32. doi: 10.1016/j.copbio.2013.05.056. DOI
Pospisilova M., Kuncova G., Troegl J. Fiber-optic chemical sensors and fiber-optic bio-sensors. Sensors. 2015;15:25208–25259. doi: 10.3390/s151025208. PubMed DOI PMC
Bjerketorp J., Hakansson S., Belkin S., Jansson J.K. Advances in preservation methods: Keeping biosensor microorganisms alive and active. Curr. Opin. Biotechnol. 2006;17:43–49. doi: 10.1016/j.copbio.2005.12.005. PubMed DOI
Depagne C., Roux C., Coradin T. How to design cell-based biosensors using the sol-gel process. Anal. Bioanal. Chem. 2011;400:965–976. doi: 10.1007/s00216-010-4351-y. PubMed DOI
Michelini E., Roda A. Staying alive: New perspectives on cell immobilization for biosensing purposes. Anal. Bioanal. Chem. 2012;402:1785–1797. doi: 10.1007/s00216-011-5364-x. PubMed DOI
Ben-Yoav H., Amzel T., Biran A., Sternheim M., Belkin S., Freeman A., Shacham-Diamand Y. Bacterial biofilm-based water toxicity sensor. Sens. Actuators B Chem. 2011;158:366–371. doi: 10.1016/j.snb.2011.06.037. DOI
Jaroch D., McLamore E., Zhang W., Shi J., Garland J., Banks M.K., Porterfield D.M., Rickus J.L. Cell-mediated deposition of porous silica on bacterial biofilms. Biotechnol. Bioeng. 2011;108:2249–2260. doi: 10.1002/bit.23195. PubMed DOI
Charrier T., Durand M.-J., Jouanneau S., Dion M., Pernetti M., Poncelet D., Thouand G. A multi-channel bioluminescent bacterial biosensor for the on-line detection of metals and toxicity. Part I: Design and optimization of bioluminescent bacterial strains. Anal. Bioanal. Chem. 2011;400:1051–1060. doi: 10.1007/s00216-010-4353-9. PubMed DOI
Trogl J., Ripp S., Kuncova G., Sayler G., Churava A., Parik P., Demnerova K., Halova J., Kubicova L. Selectivity of whole cell optical biosensor with immobilized bioreporter Pseudomonas fluorescens HK44. Sens. Actuators B Chem. 2005;107:98–103. doi: 10.1016/j.snb.2004.07.039. DOI
Kuncova G., Trogl J. Physiology of microorganisms immobilized into inorganic polymers. In: Morrison D.A., editor. Handbook of Inorganic Chemistry Research. Nova Science Publishers, Inc.; Hauppauge, NY, USA: 2010. pp. 53–101.
Ripp S., Nivens D.E., Ahn Y., Werner C., Jarrell J., Easter J.P., Cox C.D., Burlage R.S., Sayler G.S. Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control. Environ. Sci. Technol. 2000;34:846–853. doi: 10.1021/es9908319. DOI
Polyak B., Bassis E., Novodvorets A., Belkin S., Marks R.S. Bioluminescent whole cell optical fiber sensor to genotoxicants: System optimization. Sens. Actuators B Chem. 2001;74:18–26. doi: 10.1016/S0925-4005(00)00707-3. DOI
Ivask A., Green T., Polyak B., Mor A., Kahru A., Virta M., Marks R. Fibre-optic bacterial biosensors and their application for the analysis of bioavailable Hg and As in soils and sediments from aznalcollar mining area in spain. Biosens. Bioelectron. 2007;22:1396–1402. doi: 10.1016/j.bios.2006.06.019. PubMed DOI
Premkumar J.R., Lev O., Marks R.S., Polyak B., Rosen R., Belkin S. Antibody-based immobilization of bioluminescent bacterial sensor cells. Talanta. 2001;55:1029–1038. doi: 10.1016/S0039-9140(01)00533-1. PubMed DOI
Polyak B., Geresh S., Marks R.S. Synthesis and characterization of a biotin-alginate conjugate and its application in a biosensor construction. Biomacromolecules. 2004;5:389–396. doi: 10.1021/bm034454a. PubMed DOI
Applegate B.M., Kehrmeyer S.R., Sayler G.S. A chromosomally based tod-luxCDABE whole-cell reporter for benzene, toluene, ethybenzene, and xylene (BTEX) sensing. Appl. Environ. Microbiol. 1998;64:2730–2735. PubMed PMC
Kuncova G., Pazlarova J., Hlavata A., Ripp S., Sayler G.S. Bioluminescent bioreporter Pseudomonas putida TVA8 as a detector of water pollution. Operational conditions and selectivity of free cells sensor. Ecol. Indic. 2011;11:882–887.
Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning. Volume 2 Cold Spring Harbor Laboratory Press; New York, NY, USA: 1989.
Trogl J., Kuncova G., Kuran P. Bioluminescence of Pseudomonas fluorescens HK44 in the course of encapsulation into silica gel. Effect of methanol. Folia Microbiol. 2010;55:569–575. doi: 10.1007/s12223-010-0091-9. PubMed DOI
Kuncova G., Podrazky O., Ripp S., Trogl J., Sayler G., Demnerova K., Vankova R. Monitoring of the viability of cells immobilized by sol-gel process. J. Sol-Gel Sci. Technol. 2004;31:335–342. doi: 10.1023/B:JSST.0000048013.64235.c8. DOI
Troegl J., Jirkova I., Kuran P., Akhmetshina E., Brovdyova T.J., Sirotkin A., Kirilina T. Phospholipid fatty acids as physiological indicators of paracoccus denitrificans encapsulated in silica sol-gel hydrogels. Sensors. 2015;15:3426–3434. doi: 10.3390/s150203426. PubMed DOI PMC
Branyik T., Kuncova G. Changes in phenol oxidation rate of a mixed microbial culture caused by sol-gel immobilization. Biotechnol. Lett. 2000;22:555–560. doi: 10.1023/A:1005668326835. DOI
Branyik T., Kuncova G., Paca J. The use of silica gel prepared by sol-gel method and polyurethane foam as microbial carriers in the continuous degradation of phenol. Appl. Microbiol. Biotechnol. 2000;54:168–172. doi: 10.1007/s002530000366. PubMed DOI
Gavlasova P., Kuncova G., Kochankova L., Mackova M. Whole cell biosensor for polychlorinated biphenyl analysis based on optical detection. Int. Biodeterior. Biodegrad. 2008;62:304–312. doi: 10.1016/j.ibiod.2008.01.015. DOI
Kuncova G., Pazlarova J., Adamova N., Hlavata A., Ripp S., Sayler G.S. Bioluminiscent biosensor of toluene; Proceedings of the XVIIth International Conference on Bioencapsulation; Groningen, The Netherlands. 24–26 September 2009; pp. 226–227.
Verma N., Bansal M., Kumar S. Whole cell based miniaturized fiber optic biosensor to monitor L-asparagine. Adv. Appl. Sci. Res. 2012;3:809–814.
Lynch A.M., Sasaki J.C., Elespuru R., Jacobson-Kram D., Thybaud V., De Boeck M., Aardema M.J., Aubrecht J., Benz R.D., Dertinger S.D., et al. New and emerging technologies for genetic toxicity testing. Environ. Mol. Mutag. 2011;52:205–223. doi: 10.1002/em.20614. PubMed DOI
Scholz S., Renner P., Belanger S.E., Busquet F., Davi R., Demeneix B.A., Denny J.S., Leonard M., McMaster M.E., Villeneuve D.L., et al. Alternatives to in vivo tests to detect endocrine disrupting chemicals (edcs) in fish and amphibians—Screening for estrogen, androgen and thyroid hormone disruption. Crit. Rev. Toxicol. 2013;43:45–72. doi: 10.3109/10408444.2012.737762. PubMed DOI