Pseudomonas fluorescens HK44: lessons learned from a model whole-cell bioreporter with a broad application history
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S., přehledy
PubMed
22438725
PubMed Central
PMC3304127
DOI
10.3390/s120201544
PII: s120201544
Knihovny.cz E-zdroje
- Klíčová slova
- Pseudomonas fluorescens HK44, bioluminescence, bioreporter, biosensors, lux genes,
- MeSH
- analýza selhání vybavení MeSH
- biosenzitivní techniky přístrojové vybavení MeSH
- biotest přístrojové vybavení MeSH
- design vybavení MeSH
- fluorescenční spektrometrie přístrojové vybavení MeSH
- monitorování životního prostředí přístrojové vybavení MeSH
- Pseudomonas fluorescens účinky léků fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Initially described in 1990, Pseudomonas fluorescens HK44 served as the first whole-cell bioreporter genetically endowed with a bioluminescent (luxCDABE) phenotype directly linked to a catabolic (naphthalene degradative) pathway. HK44 was the first genetically engineered microorganism to be released in the field to monitor bioremediation potential. Subsequent to that release, strain HK44 had been introduced into other solids (soils, sands), liquid (water, wastewater), and volatile environments. In these matrices, it has functioned as one of the best characterized chemically-responsive environmental bioreporters and as a model organism for understanding bacterial colonization and transport, cell immobilization strategies, and the kinetics of cellular bioluminescent emission. This review summarizes the characteristics of P. fluorescens HK44 and the extensive range of its applications with special focus on the monitoring of bioremediation processes and biosensing of environmental pollution.
Zobrazit více v PubMed
Leveau J.H.J., Lindow S.E. Bioreporters in microbial ecology. Curr. Opin. Microbiol. 2002;5:259–265. PubMed
van der Meer J.R., Belkin S. Where microbiology meets microengineering: Design and applications of reporter bacteria. Nat. Rev. Microbiol. 2010;8:511–522. PubMed
Close D.M., Ripp S., Sayler G.S. Reporter proteins in whole-cell optical bioreporter detection systems, biosensor integrations, and biosensing applications. Sensors. 2009;9:9147–9174. PubMed PMC
King J.M.H., Digrazia P.M., Applegate B., Burlage R., Sanseverino J., Dunbar P., Larimer F., Sayler G.S. Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation. Science. 1990;249:778–781. PubMed
Burlage R.S., Sayler G.S., Larimer F. Monitoring of naphthalene catabolism by bioluminescence with nah-lux transcriptional fusions. J. Bacteriol. 1990;172:4749–4757. PubMed PMC
van der Meer J.R., Tropel D., Jaspers M. Illuminating the detection chain of bacterial bioreporters. Environ. Microbiol. 2004;6:1005–1020. PubMed
Sagi E., Hever N., Rosen R., Bartolome A.J., Premkumar J.R., Ulber R., Lev O., Scheper T., Belkin S. Fluorescence and bioluminescence reporter functions in genetically modified bacterial sensor strains. Sens. Actuat. B. 2003;90:2–8.
Diplock E.E., Alhadrami H.A., Paton G.I. Whole Cell Sensing Systems II. Vol. 118. Springer-Verlag; New York, NY, USA: 2010. Application of microbial bioreporters in environmental microbiology and bioremediation; pp. 189–209. PubMed
Sayler G.S., Fleming J.T., Nivens D.E. Gene expression monitoring in soils by mRNA analysis and gene lux fusions. Curr. Opin. Biotechnol. 2001;12:455–460. PubMed
Gu M., Mitchell R., Kim B. Biomanufacturing. Vol. 87. Springer; Berlin, Germany: 2004. Whole-cell-based biosensors for environmental biomonitoring and application; pp. 269–305. PubMed
Belkin S. Microbial whole-cell sensing systems of environmental pollutants. Curr. Opin. Microbiol. 2003;6:206–212. PubMed
Nunes-Halldorson V.D., Duran N.L. Bioluminescent bacteria: Lux genes as environmental biosensors. Braz. J. Microbiol. 2003;34:91–96.
Girotti S., Ferri E.N., Fumo M.G., Maiolini E. Monitoring of environmental pollutants by bioluminescent bacteria. Anal. Chim. Acta. 2008;608:2–29. PubMed
Sayler G.S., Ripp S. Field applications of genetically engineered microorganisms for bioremediation processes. Curr. Opin. Biotechnol. 2000;11:286–289. PubMed
Kohler S., Belkin S., Schmid R.D. Reporter gene bioassays in environmental analysis. Fresenius J. Anal. Chem. 2000;366:769–779. PubMed
Woutersen M., Belkin S., Brouwer B., van Wezel A.P., Heringa M.B. Are luminescent bacteria suitable for online detection and monitoring of toxic compounds in drinking water and its sources? Anal. Bioanal. Chem. 2011;400:915–929. PubMed PMC
Aller A.J., Castro M.A. Live bacterial cells as analytical tools for speciation analysis: Hypothetical or practical? TrAC Trends Anal. Chem. 2006;25:887–898.
Ripp S., DiClaudio M.L., Sayler G.S. Environmental Microbiology. 2nd ed. John Wiley & Sons, Inc; Hoboken, NJ, USA: 2010. Biosensors as environmental monitors; pp. 213–233.
Eltzov E., Marks R.S. Whole-cell aquatic biosensors. Anal. Bioanal. Chem. 2011;400:895–913. PubMed
Lei Y., Chen W., Mulchandani A. Microbial biosensors. Anal. Chim. Acta. 2006;568:200–210. PubMed
D’Souza S.F. Microbial biosensors. Biosens. Bioelectron. 2001;16:337–353. PubMed
Su L.A., Jia W.Z., Hou C.J., Lei Y. Microbial biosensors: A review. Biosens. Bioelectron. 2011;26:1788–1799. PubMed
Simpson M.L., Sayler G.S., Applegate B.M., Ripp S., Nivens D.E., Paulus M.J., Jellison G.E. Bioluminescent-bioreporter integrated circuits form novel whole-cell biosensors. Trends Biotechnol. 1998;16:332–338.
Meighen E.A. Genetics of bacterial bioluminescence. Annu. Rev. Genet. 1994;28:117–139. PubMed
Meighen E.A. Bacterial bioluminescence—Organization, regulation, and application of the lux genes. FASEB J. 1993;7:1016–1022. PubMed
Meighen E.A., Dunlap P.V. Advances in Microbial Physiology. Vol. 34. Academic Press; Waltham, MA, USA: 1993. Physiological, biochemical and genetic-control of bacterial bioluminescence; pp. 1–67. PubMed
Meighen E.A. Molecular-biology of bacterial bioluminescence. Microbiol. Rev. 1991;55:123–142. PubMed PMC
Meighen E.A. Enzymes and genes from the lux operons of bioluminescent bacteria. Annu. Rev. Microbiol. 1988;42:151–176.
Samanta S.K., Singh O.V., Jain R.K. Polycyclic aromatic hydrocarbons: Environmental pollution and bioremediation. Trends Biotechnol. 2002;20:243–248. PubMed
Peng R.H., Xiong A.S., Xue Y., Fu X.Y., Gao F., Zhao W., Tian Y.S., Yao Q.H. Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol. Rev. 2008;32:927–955. PubMed
Yen K.M., Serdar C.M. Genetics of naphthalene catabolism in pseudomonads. Crit. Rev. Microbiol. 1988;15:247–268. PubMed
Yen K.M., Gunsalus I.C. Plasmid gene organization—Naphthalene salicylate oxidation. Proc. Natl. Acad. Sci. USA. 1982;79:874–878. PubMed PMC
Diaz E., Prieto M.A. Bacterial promoters triggering biodegradation of aromatic pollutants. Curr. Opin. Biotechnol. 2000;11:467–475. PubMed
Juwarkar A.A., Singh S.K., Mudhoo A. A comprehensive overview of elements in bioremediation. Rev. Environ. Sci. Biotechnol. 2010;9:215–288.
Caliman F.A., Robu B.M., Smaranda C., Pavel V.L., Gavrilescu M. Soil and groundwater cleanup: Benefits and limits of emerging technologies. Clean Technol. Environ. Policy. 2011;13:241–268.
Singh J.S., Abhilash P.C., Singh H.B., Singh R.P., Singh D.P. Genetically engineered bacteria: An emerging tool for environmental remediation and future research perspectives. Gene. 2011;480:1–9. PubMed
Pandey J., Chauhan A., Jain R.K. Integrative approaches for assessing the ecological sustainability of in situ bioremediation. FEMS Microbiol. Rev. 2009;33:324–375. PubMed
Kuncová G., Trögl J. Physiology of microorganisms encapsulated into inorganic polymers. In: Morrison D.A., editor. Handbook of Inorganic Chemistry Research. Nova Science Publishers; New York, NY, USA: 2010. pp. 53–101.
Webb O.F., Bienkowski P.R., Matrubutham U., Evans F.A., Heitzer A., Sayler G.S. Kinetics and response of a Pseudomonas fluorescens HK44 biosensor. Biotechnol. Bioeng. 1997;54:491–502. PubMed
Engebrecht J., Nealson K., Silverman M. Bacterial bioluminescence—Isolation and genetic-analysis of functions from Vibrio fischeri. Cell. 1983;32:773–781. PubMed
Ørskov I., Ørskov F. Plasmid-determined H2S character in Escherichia coli and its relation to plasmid-carried raffinose fermentation and tetracycline resistance characters. J. Gen. Microbiol. 1973;77:487–499. PubMed
Chauhan A., Layton A.C., Williams D.E., Smartt A.E., Ripp S., Karpinets T.V., Brown S.D., Sayler G.S. Draft genome sequence of the polycyclic aromatic hydrocarbon-degrading, genetically engineered bioluminescent bioreporter Pseudomonas fluorescens HK44. J. Bacteriol. 2011;193:5009–5010. PubMed PMC
Kamath R., Schnoor J.L., Alvarez P.J.J. Effect of root-derived substrates on the expression of nah-lux genes in Pseudomonas fluorescens HK44: Implications for PAH biodegradation in the rhizosphere. Environ. Sci. Technol. 2004;38:1740–1745. PubMed
Dennis J.J., Zylstra G.J. Complete sequence and genetic organization of pDTG1, the 83 kilobase naphthalene degradation plasmid from Pseudomonas putida strain NCIB 9816-4. J. Mol. Biol. 2004;341:753–768. PubMed
Heinaru E., Vedler E., Jutkina J., Aava M., Heinaru A. Conjugal transfer and mobilization capacity of the completely sequenced naphthalene plasmid pNAH20 from multiplasmid strain Pseudomonas fluorescens PC20. FEMS Microbiol. Ecol. 2009;70:563–574. PubMed
Schell M.A. Transcriptional control of the nah and sal hydrocarbon-degradation operons by the NahR gene-product. Gene. 1985;36:301–309. PubMed
Schell M.A. Molecular-biology of the LysR family of transcriptional regulators. Annu. Rev. Microbiol. 1993;47:597–626. PubMed
Heitzer A., Webb O.F., Thonnard J.E., Sayler G.S. Specific and quantitative assessment of naphthalene and salicylate bioavailability by using a bioluminescent catabolic reporter bacterium. Appl. Environ. Microbiol. 1992;58:1839–1846. PubMed PMC
Schell M.A., Wender P.E. Identification of the NahR gene-product and nucleotide-sequences required for its activation of the sal operon. J. Bacteriol. 1986;166:9–14. PubMed PMC
Kelly C.J., Hsiung C.J., Lajoie C.A. Kinetic analysis of bacterial bioluminescence. Biotechnol. Bioeng. 2003;81:370–378. PubMed
Heitzer A., Malachowsky K., Thonnard J.E., Bienkowski P.R., White D.C., Sayler G.S. Optical biosensor for environmental online monitoring of naphthalene and salicylate bioavailability with an immobilized bioluminescent catabolic reporter bacterium. Appl. Environ. Microbiol. 1994;60:1487–1494. PubMed PMC
Trogl J., Ripp S., Kuncova G., Sayler G., Churava A., Parik P., Demnerova K., Halova J., Kubicova L. Selectivity of whole cell optical biosensor with immobilized bioreporter Pseudomonas fluorescens HK44. Sens. Actuat. B. 2005;107:98–103.
Matrubutham U., Thonnard J.E., Sayler G.S. Bioluminescence induction response and survival of the bioreporter bacterium Pseudomonas fluorescens HK44 in nutrient-deprived conditions. Appl. Microbiol. Biotechnol. 1997;47:604–609.
Heitzer A., Applegate B., Kehrmeyer S., Pinkart H., Webb O.F., Phelps T.J., White D.C., Sayler G.S. Physiological considerations of environmental applications of lux reporter fusions. J. Microbiol. Methods. 1998;33:45–57.
Trogl J., Kuncova G., Kubicova L., Parik P., Halova J., Demnerova K., Ripp S., Sayler G. Response of the bioluminescent bioreporter Pseudomonas fluorescens HK44 to analogs of naphthalene and salicylic acid. Folia Microbiol. 2007;52:3–14. PubMed
Trogl J., Halova J., Kuncova G., Parik P. Automatic formation of hypotheses on the relationships between structure of naphthalene analogs and bioluminescence response of bioreporter Pseudomonas fluorescens HK44. Folia Microbiol. 2010;55:411–417. PubMed
Trogl J., Kuncova G., Kuran P. Bioluminescence of Pseudomonas fluorescens HK44 in the course of encapsulation into silica gel. Effect of methanol. Folia Microbiol. 2010;55:569–575. PubMed
Bundy J.G., Campbell C.D., Paton G.I. Comparison of response of six different luminescent bacterial bioassays to bioremediation of five contrasting oils. J. Environ. Monit. 2001;3:404–410. PubMed
Bundy J.G., Maciel H., Cronin M.T.D., Paton G.I. Limitations of a cosolvent for ecotoxicity testing of hydrophobic compounds. Bull. Environ. Contam. Toxicol. 2003;70:1–8. PubMed
Burlage R.S., Palumbo A.V., Heitzer A., Sayler G. Bioluminescent reporter bacteria detect contaminants in soil samples. Appl. Biochem. Biotechnol. 1994;45–46:731–740.
Ford C.Z., Sayler G.S., Burlage R.S. Containment of a genetically engineered microorganism during a field bioremediation application. Appl. Microbiol. Biotechnol. 1999;51:397–400. PubMed
Ripp S., Nivens D.E., Ahn Y., Werner C., Jarrell J., Easter J.P., Cox C.D., Burlage R.S., Sayler G.S. Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control. Environ. Sci. Technol. 2000;34:846–853.
Ripp S., Nivens D.E., Werner C., Sayler G.S. Bioluminescent most-probable-number monitoring of a genetically engineered bacterium during a long-term contained field release. Appl. Microbiol. Biotechnol. 2000;53:736–741. PubMed
Uesugi S.L., Yarwood R.R., Selker J.S., Bottomley P.J. A model that uses the induction phase of lux gene-dependent bioluminescence in Pseudomonas fluorescens HK44 to quantify cell density in translucent porous media. J. Microbiol. Methods. 2001;47:315–322. PubMed
Bundy J.G., Morriss A.W.J., Durham D.G., Campbell C.D., Paton G.I. Development of QSARs to investigate the bacterial toxicity and biotransformation potential of aromatic heterocylic compounds. Chemosphere. 2001;42:885–892. PubMed
Ripp S., Nivens D.E., Werner C., Sayler G.S. Vertical transport of a field-released genetically engineered microorganism through soil. Soil Biol. Biochem. 2001;33:1873–1877.
Yarwood R.R., Rockhold M.L., Niemet M.R., Selker J.S., Bottomley P.J. Noninvasive quantitative measurement of bacterial growth in porous media under unsaturated-flow conditions. Appl. Environ. Microbiol. 2002;68:3597–3605. PubMed PMC
Rockhold M.L., Yarwood R.R., Niemet M.R., Bottomley P.J., Selker J.S. Considerations for modeling bacterial-induced changes in hydraulic properties of variably saturated porous media. Adv. Water Resour. 2002;25:477–495.
O’Neill S., Ripp S., Megginson C., Davies I.M. Microbial Detection of Polycyclic Aromatic Hydrocarbons in Contaminated Marine Sediment. Fisheries Research Services; Aberdeen, UK: 2003.
Kuncova G., Podrazky O., Ripp S., Trogl J., Sayler G., Demnerova K., Vankova R. Monitoring of the viability of cells immobilized by sol-gel process. J. Sol-Gel Sci. Technol. 2004;31:335–342.
Valdman E., Valdman B., Battaglini F., Leite S.G.F. On-line detection of low naphthalene concentrations with a bioluminescent sensor. Process Biochem. 2004;39:1217–1222.
Valdman E., Battaglini F., Leite S.G.F., Valdman B. Naphthalene detection by a bioluminescence sensor applied to wastewater samples. Sens. Actuat. B. 2004;103:7–12.
Patterson C.J., Semple K.T., Paton G.I. Non-exhaustive extraction techniques (NEETs) for the prediction of naphthalene mineralisation in soil. FEMS Microbiol. Lett. 2004;241:215–220. PubMed
Rockhold M.L., Yarwood R.R., Niemet M.R., Bottomley P.J., Selker J.S. Experimental observations and numerical modeling of coupled microbial and transport processes in variably saturated sand. Vadose Zone J. 2005;4:407–417.
Yarwood R.R., Rockhold M.L., Niemet M.R., Selker J.S., Bottomley P.J. Impact of microbial growth on water flow and solute transport in unsaturated porous media. Water Resour. Res. 2006 doi: 10.1029/2005WR004550. DOI
Silva T.R., Valdman E., Valdman B., Leite S.G.F. Salicylic acid degradation from aqueous solutions using Pseudomonas fluorescens HK44: Parameters studies and application tools. Braz. J. Microbiol. 2007;38:39–44.
Rockhold M.L., Yarwood R.R., Niemet M.R., Bottomley P.J., Brockman F.J., Selker J.S. Visualization and modeling of the colonization dynamics of a bioluminescent bacterium in variably saturated, translucent quartz sand. Adv. Water Resour. 2007;30:1593–1607.
Valdman E., Gutz I.G.R. Bioluminescent sensor for naphthalene in air: Cell immobilization and evaluation with a dynamic standard atmosphere generator. Sens. Actuat. B. 2008;133:656–663.
Paton G.I., Reid B.J., Sempled K.T. Application of a luminescence-based biosensor for assessing naphthalene biodegradation in soils from a manufactured gas plant. Environ. Pollut. 2009;157:1643–1648. PubMed
Diplock E.E., Mardlin D.P., Killham K.S., Paton G.I. Predicting bioremediation of hydrocarbons: Laboratory to field scale. Environ. Pollut. 2009;157:1831–1840. PubMed
Kuncova G., Pazlarova J., Hlavata A., Ripp S., Sayler G.S. Bioluminescent bioreporter Pseudomonas putida TVA8 as a detector of water pollution. Operational conditions and selectivity of free cells sensor. Ecol. Indic. 2011;11:882–887.
LeBlond J.D., Applegate B.M., Menn F.M., Schultz T.W., Sayler G.S. Structure-toxicity assessment of metabolites of the aerobic bacterial transformation of substituted naphthalenes. Environ. Toxicol. Chem. 2000;19:1235–1246.
Sayre P. Risk Assessment for a recombinant biosensor. In: Sayler G.S., Sanseverino J., Davis K.L., editors. Biotechnology in the Sustainable Environment. 1st ed. Plenum Press; New York, NY, USA: 1997. pp. 269–279.
Junter G.A., Jouenne T. Immobilized viable microbial cells: From the process to the proteome. or the cart before the horse. Biotechnol. Adv. 2004;22:633–658. PubMed
Oates P.M., Castenson C., Harvey C.F., Polz M., Culligan P. Illuminating reactive microbial transport in saturated porous media: Demonstration of a visualization method and conceptual transport model. J. Contam. Hydrol. 2005;77:233–245. PubMed
Menn F.M., Applegate B.M., Sayler G.S. Nah plasmid-mediated catabolism of anthracene and phenanthrene to naphthoic acids. Appl. Environ. Microbiol. 1993;59:1938–1942. PubMed PMC
Sanseverino J., Applegate B.M., King J.M.H., Sayler G.S. Plasmid-mediated mineralization of naphthalene, phenanthrene, and anthracene. Appl. Environ. Microbiol. 1993;59:1931–1937. PubMed PMC
Nivens D.E., McKnight T.E., Moser S.A., Osbourn S.J., Simpson M.L., Sayler G.S. Bioluminescent bioreporter integrated circuits: Potentially small, rugged and inexpensive whole-cell biosensors for remote environmental monitoring. J. Appl. Microbiol. 2004;96:33–46. PubMed
Vijayaraghavan R., Islam S.K., Zhang M., Ripp S., Caylor S., Bull N.D., Moser S., Terry S.C., Blalock B.J., Sayler G.S. A bioreporter bioluminescent integrated circuit for very low-level chemical sensing in both gas and liquid environments. Sens. Actuat. B. 2007;123:922–928.
Islam S.K., Vijayaraghavan R., Zhang M., Ripp S., Caylor S.D., Weathers B., Moser S., Terry S., Blalock B.J., Sayler G.S. Integrated circuit biosensors using living whole-cell bioreporters. IEEE Trans. Circuits Syst. I-Regul. Pap. 2007;54:89–98.
Bolton E.K., Sayler G.S., Nivens D.E., Rochelle J.M., Ripp S., Simpson M.L. Integrated CMOS photodetectors and signal processing for very low-level chemical sensing with the bioluminescent bioreporter integrated circuit. Sens. Actuat. B. 2002;85:179–185. PubMed
del Busto-Ramos M., Budzik M., Corvalan C., Morgan M., Turco R., Nivens D., Applegate B. Development of an online biosensor for in situ monitoring of chlorine dioxide gas disinfection efficacy. Appl. Microbiol. Biotechnol. 2008;78:573–580. PubMed
Cook K.L., Garland J.L., Layton A.C., Dionisi H.M., Levine L.H., Sayler G.S. Effect of microbial species richness on community stability and community function in a model plant-based wastewater processing system. Microb. Ecol. 2006;52:725–737. PubMed
Mogil’naya O.A., Krivomazova E.S., Kargatova T.V., Lobova T.I., Popova L.Y. Formation of structured communities by natural and transgenic naphthalene-degrading bacteria. Appl. Biochem. Microbiol. 2005;41:63–68. PubMed
Ho C.H., Applegate B., Banks M.K. Impact of microbial/plant interactions on the transformation of polycyclic aromatic hydrocarbons in rhizosphere of Festuca arundinacea. Int. J. Phytorem. 2007;9:107–114. PubMed
de Weger L.A., Kuiper I., van der Bij A.J., Lugtenberg B.J.J. Use of a lux-based procedure to rapidly visualize root colonisation by Pseudomonas fluorescens in the wheat rhizosphere. Antonie Van Leeuwenhoek. 1997;72:365–372. PubMed
Nguy D., Sedgley C. The influence of canal curvature on the mechanical efficacy of root canal irrigation in vitro using real-time imaging of bioluminescent bacteria. J. Endod. 2006;32:1077–1080. PubMed
Sedgley C.M., Nagel A.C., Hall D., Applegate B. Influence of irrigant needle depth in removing bioluminescent bacteria inoculated into instrumented root canals using real-time imaging in vitro. Int. Endod. J. 2005;38:97–104. PubMed
Falk K.W., Sedgley C.M. The influence of preparation size on the mechanical efficacy of root canal irrigation in vitro. J. Endod. 2005;31:742–745. PubMed
Sedgley C., Applegate B., Nagel A., Hall D. Real-time imaging and quantification of bioluminescent bacteria in root canals in vitro. J. Endod. 2004;30:893–898. PubMed
Elad T., Benovich E., Magrisso S., Belkin S. Toxicant identification by a luminescent bacterial bioreporter panel: Application of pattern classification algorithms. Environ. Sci. Technol. 2008;42:8486–8491. PubMed
Jouanneau S., Durand M.J., Courcoux P., Blusseau T., Thouand G. Improvement of the identification of four heavy metals in environmental samples by using predictive decision tree models coupled with a set of five bioluminescent bacteria. Environ. Sci. Technol. 2011;45:2925–2931. PubMed
Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors