Vision using multiple distinct rod opsins in deep-sea fishes

. 2019 May 10 ; 364 (6440) : 588-592.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31073066

Grantová podpora
P20 GM104420 NIGMS NIH HHS - United States
R01 EY012146 NEI NIH HHS - United States
R01 EY024639 NEI NIH HHS - United States
European Research Council - International

Vertebrate vision is accomplished through light-sensitive photopigments consisting of an opsin protein bound to a chromophore. In dim light, vertebrates generally rely on a single rod opsin [rhodopsin 1 (RH1)] for obtaining visual information. By inspecting 101 fish genomes, we found that three deep-sea teleost lineages have independently expanded their RH1 gene repertoires. Among these, the silver spinyfin (Diretmus argenteus) stands out as having the highest number of visual opsins in vertebrates (two cone opsins and 38 rod opsins). Spinyfins express up to 14 RH1s (including the most blueshifted rod photopigments known), which cover the range of the residual daylight as well as the bioluminescence spectrum present in the deep sea. Our findings present molecular and functional evidence for the recurrent evolution of multiple rod opsin-based vision in vertebrates.

Zobrazit více v PubMed

Yokoyama S, Annu. Rev. Genomics Hum. Genet. 9, 259–282 (2008). PubMed

Lythgoe JN, The Ecology of Vision (Clarendon Press, 1979).

Hunt DM, Collin SP, in Evolution of Visual and Non-visual Pigments (eds. Hunt DM, Hankins MW, Collin SP, Marshall NJ) 163–217 (Springer, 2014).

Douglas RH, Partridge JC, Fish Biol J. 44, 68–85 (1997).

Widder EA, Science 328, 704–709 (2010). PubMed

Warrant EJ, Locket NA, Biol. Rev. 79, 671–712 (2004). PubMed

Wagner HJ, Frohlich E, Negishi K, Collin SP, Prog. Retin. Eye Res. 17, 637–685 (1998). PubMed

Materials and methods are available as supplementary materials on Science Online.

Cortesi F, et al., Proc. Natl. Acad. Sci. USA 112, 1493–1498 (2015). PubMed PMC

Morrow JM, et al., J. Exp. Biol. 220, 294–303 (2017). PubMed

Kelber A, Vorobyev M, Osorio D, Biol. Rev. Camb. Philos. Soc. 78, 81–118 (2003). PubMed

Futahashi R, et al., Proc. Natl. Acad. Sci. USA 112, E1247–E1256 (2015) PubMed PMC

Porter ML, et al., Integr. Comp. Biol. 53, 39–49 (2013). PubMed

Douglas RH, Partridge JC, Marshall NJ, Prog. Retin. Eye Res. 17, 597–636 (1998). PubMed

Johnsen S, Ann. Rev. Mar. Sci. 6, 369–392 (2014). PubMed

Munk O, Vidensk. Meddr. Dansk. Naturh. Foren. 129, 73–80 (1966).

Denton EJ, Locket NA, J. Mar. Biol. Assoc. UK 69, 409–435 (1989).

Peichl L, Anat. Rec. A. Discov. Mol. Cell. Evol. Biol. 287, 1001–1012 (2005). PubMed

Roth LS, Kelber A, Proc. R. Soc. B 271, S485–487 (2004). PubMed PMC

C. A. Yovanovich, et al., Phil. Trans. R. Soc. B 372, 20160066 (2017). PubMed PMC

Marshall J, Carleton KL, Cronin Curr T. Opin. Neurobiol. 34, 86–94 (2015). PubMed

De Busserolles F, et al., Brain Behav. Evol. 85, 77–93 (2015). PubMed

Partridge JC, Archer SN, Vanoostrum J, Marine Biol J. Assoc. UK 72, 113–130 (1992).

Michinomae M, Masuda H, Seidou M, Kito Y, J. Exp. Biol. 193, 1–12 (1994). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...