Vision using multiple distinct rod opsins in deep-sea fishes
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
P20 GM104420
NIGMS NIH HHS - United States
R01 EY012146
NEI NIH HHS - United States
R01 EY024639
NEI NIH HHS - United States
European Research Council - International
PubMed
31073066
PubMed Central
PMC6628886
DOI
10.1126/science.aav4632
PII: 364/6440/588
Knihovny.cz E-zdroje
- MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genom MeSH
- molekulární evoluce * MeSH
- rybí proteiny klasifikace genetika fyziologie MeSH
- ryby genetika fyziologie MeSH
- tma MeSH
- tyčinkové opsiny klasifikace genetika fyziologie MeSH
- zrak genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- rybí proteiny MeSH
- tyčinkové opsiny MeSH
Vertebrate vision is accomplished through light-sensitive photopigments consisting of an opsin protein bound to a chromophore. In dim light, vertebrates generally rely on a single rod opsin [rhodopsin 1 (RH1)] for obtaining visual information. By inspecting 101 fish genomes, we found that three deep-sea teleost lineages have independently expanded their RH1 gene repertoires. Among these, the silver spinyfin (Diretmus argenteus) stands out as having the highest number of visual opsins in vertebrates (two cone opsins and 38 rod opsins). Spinyfins express up to 14 RH1s (including the most blueshifted rod photopigments known), which cover the range of the residual daylight as well as the bioluminescence spectrum present in the deep sea. Our findings present molecular and functional evidence for the recurrent evolution of multiple rod opsin-based vision in vertebrates.
Center for Modeling Complex Interactions University of Idaho Moscow ID USA
Department of Biological Sciences University of Idaho Moscow ID USA
Department of Biology University of Maryland College Park MD USA
Department of Palaeontology and Museum University of Zurich Zurich Switzerland
Department of Zoology Faculty of Science Charles University Prague Czech Republic
Lions Eye Institute The University of Western Australia Perth WA Australia
Oceans Graduate School The University of Western Australia Perth WA Australia
Queensland Brain Institute The University of Queensland Brisbane QLD Australia
Red Sea Research Center Thuwal Saudi Arabia
School of Biological Sciences The University of Western Australia Perth WA Australia
Thünen Institute of Fisheries Ecology Bremerhaven Germany
UWA Oceans Institute The University of Western Australia Perth WA Australia
Zoological Institute Department of Environmental Sciences University of Basel Basel Switzerland
Zobrazit více v PubMed
Yokoyama S, Annu. Rev. Genomics Hum. Genet. 9, 259–282 (2008). PubMed
Lythgoe JN, The Ecology of Vision (Clarendon Press, 1979).
Hunt DM, Collin SP, in Evolution of Visual and Non-visual Pigments (eds. Hunt DM, Hankins MW, Collin SP, Marshall NJ) 163–217 (Springer, 2014).
Douglas RH, Partridge JC, Fish Biol J. 44, 68–85 (1997).
Widder EA, Science 328, 704–709 (2010). PubMed
Warrant EJ, Locket NA, Biol. Rev. 79, 671–712 (2004). PubMed
Wagner HJ, Frohlich E, Negishi K, Collin SP, Prog. Retin. Eye Res. 17, 637–685 (1998). PubMed
Materials and methods are available as supplementary materials on Science Online.
Cortesi F, et al., Proc. Natl. Acad. Sci. USA 112, 1493–1498 (2015). PubMed PMC
Morrow JM, et al., J. Exp. Biol. 220, 294–303 (2017). PubMed
Kelber A, Vorobyev M, Osorio D, Biol. Rev. Camb. Philos. Soc. 78, 81–118 (2003). PubMed
Futahashi R, et al., Proc. Natl. Acad. Sci. USA 112, E1247–E1256 (2015) PubMed PMC
Porter ML, et al., Integr. Comp. Biol. 53, 39–49 (2013). PubMed
Douglas RH, Partridge JC, Marshall NJ, Prog. Retin. Eye Res. 17, 597–636 (1998). PubMed
Johnsen S, Ann. Rev. Mar. Sci. 6, 369–392 (2014). PubMed
Munk O, Vidensk. Meddr. Dansk. Naturh. Foren. 129, 73–80 (1966).
Denton EJ, Locket NA, J. Mar. Biol. Assoc. UK 69, 409–435 (1989).
Peichl L, Anat. Rec. A. Discov. Mol. Cell. Evol. Biol. 287, 1001–1012 (2005). PubMed
Roth LS, Kelber A, Proc. R. Soc. B 271, S485–487 (2004). PubMed PMC
C. A. Yovanovich, et al., Phil. Trans. R. Soc. B 372, 20160066 (2017). PubMed PMC
Marshall J, Carleton KL, Cronin Curr T. Opin. Neurobiol. 34, 86–94 (2015). PubMed
De Busserolles F, et al., Brain Behav. Evol. 85, 77–93 (2015). PubMed
Partridge JC, Archer SN, Vanoostrum J, Marine Biol J. Assoc. UK 72, 113–130 (1992).
Michinomae M, Masuda H, Seidou M, Kito Y, J. Exp. Biol. 193, 1–12 (1994). PubMed
Developmental changes of opsin gene expression in ray-finned fishes (Actinopterygii)
Visual Gene Expression Reveals a cone-to-rod Developmental Progression in Deep-Sea Fishes
The round goby genome provides insights into mechanisms that may facilitate biological invasions