Visual Gene Expression Reveals a cone-to-rod Developmental Progression in Deep-Sea Fishes
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34562090
PubMed Central
PMC8662630
DOI
10.1093/molbev/msab281
PII: 6375450
Knihovny.cz E-zdroje
- Klíčová slova
- adaptation, convergence, evolution, gene expression, mesopelagic, opsin, phototransduction, rhodopsin, vision,
- MeSH
- čípky retiny - opsiny * genetika MeSH
- čípky retiny metabolismus MeSH
- exprese genu MeSH
- opsiny genetika metabolismus MeSH
- retina metabolismus MeSH
- ryby genetika metabolismus MeSH
- tyčinkové opsiny genetika MeSH
- vidění barevné * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- čípky retiny - opsiny * MeSH
- opsiny MeSH
- tyčinkové opsiny MeSH
Vertebrates use cone cells in the retina for color vision and rod cells to see in dim light. Many deep-sea fishes have adapted to their environment to have only rod cells in the retina, while both rod and cone genes are still preserved in their genomes. As deep-sea fish larvae start their lives in the shallow, and only later submerge to the depth, they have to cope with diverse environmental conditions during ontogeny. Using a comparative transcriptomic approach in 20 deep-sea fish species from eight teleost orders, we report on a developmental cone-to-rod switch. While adults mostly rely on rod opsin (RH1) for vision in dim light, larvae almost exclusively express middle-wavelength-sensitive ("green") cone opsins (RH2) in their retinas. The phototransduction cascade genes follow a similar ontogenetic pattern of cone-followed by rod-specific gene expression in most species, except for the pearleye and sabretooth (Aulopiformes), in which the cone cascade remains dominant throughout development, casting doubts on the photoreceptor cell identity. By inspecting the whole genomes of five deep-sea species (four of them sequenced within this study: Idiacanthus fasciola, Chauliodus sloani; Stomiiformes; Coccorella atlantica, and Scopelarchus michaelsarsi; Aulopiformes), we found that they possess one or two copies of the rod RH1 opsin gene, and up to seven copies of the cone RH2 opsin genes in their genomes, while other cone opsin classes have been mostly lost. Our findings hence provide molecular evidence for a limited opsin gene repertoire in deep-sea fishes and a conserved vertebrate pattern whereby cone photoreceptors develop first and rod photoreceptors are added only at later developmental stages.
Department of Zoology Faculty of Science Charles University Prague Czech Republic
Queensland Brain Institute The University of Queensland Brisbane QLD Australia
Zobrazit více v PubMed
Andrews S. 2017. FastQC: a quality control tool for high throughput sequence data. Version 0.11.6. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc
Baylor DA. 1987. Photoreceptor signals and vision. Proctor lecture . Investigat Ophthalmol Visual Sci. 28:1. PubMed
Betancur RR, Wiley EO, Arratia G, Acero A, Bailly N, Miya M, Lecointre G, Ortí G.. 2017. Phylogenetic classification of bony fishes. BMC Evol Biol. 17(1):162. PubMed PMC
Biagioni LM, Hunt DM, Collin SP.. 2016. Morphological characterization and topographic analysis of multiple photoreceptor types in the retinae of mesopelagic hatchetfishes with tubular eyes. Front Ecol Evol. 4:25.
Britt LL, Loew ER, McFarland N.. 2001. Visual pigments in the early life stages of Pacific northwest marine fishes. J Exp Biol. 204(14):2581–2587. PubMed
Bowmaker JK, Semo M, Hunt DM, Jeffery G.. 2008. Eel visual pigments revisited: the fate of retinal cones during metamorphosis. Vis Neurosci. 25(3):249–255. PubMed
Bozzano A, Pankhurst PM, Sabatés A.. 2007. Early development of eye and retina in lanternfish larvae. Vis Neurosci. 24(3):423–436. PubMed
Byun J-H, Hyeon J-Y, Kim E-S, Kim B-H, Miyanishi H, Kagawa H, Takeuchi Y, Kim S-J, Takemura A, Hur S-P.. 2020. Gene expression patterns of novel visual and non-visual opsin families in immature and mature Japanese eel males. PeerJ. 8:e8326. PubMed PMC
Carleton KL, Dalton BE, Escobar‐Camacho D, Nandamuri SP.. 2016. Proximate and ultimate causes of variable visual sensitivities: insights from cichlid fish radiations. Genesis 54(6):299–325. PubMed PMC
Carleton KL, Escobar-Camacho D, Stieb SM, Cortesi F, Marshall NJ.. 2020. Seeing the rainbow: mechanisms underlying spectral sensitivity in teleost fishes. J Exp Biol. 223(8):jeb193334. PubMed PMC
Collin SP, Hoskins RV, Partridge JC.. 1998. Seven retinal specializations in the tubular eye of the Scopelarchus michaelsarsi: a case study in visual optimization. Brain Behav Evol. 1998(09):291–314. PubMed
Collin SP, Marshall NJ.. 2003. Sensory processing in aquatic environments. New York: Springer.
Cortesi F, Musilová Z, Stieb SM, Hart NS, Siebeck UE, Malmstrøm M, Tørresen OK, Jentoft S, Cheney KL, Marshall NJ, et al.2015. Ancestral duplications and highly dynamic opsin gene evolution in percomorph fishes. Proc Natl Acad Sci U S A. 112(5):1493–1498.,. PubMed PMC
Cortesi F, et al.2016. From crypsis to mimicry: changes in colour and the configuration of the visual system during ontogenetic habitat transitions in a coral reef fish. J Exp Biol. 219(16):2545–2558. PubMed
Cortesi F, Mitchell LJ, Tettamanti V, Fogg LG, de Busserolles F, Cheney KL, Marshall NJ.. 2020. Visual system diversity in coral reef fishes. Semin Cell Dev Biol. 106:31–42. PubMed
Cortesi F, et al.2021. Multiple ancestral duplications of the red-sensitive opsin gene (LWS) in teleost fishes and convergent spectral shifts to green vision in gobies. bioRxiv. doi: 10.1101/2021.05.08.443214.
de Busserolles F, Cortesi F, Helvik JV, Davies WIL, Templin RM, Sullivan RKP, Michell CT, Mountford JK, Collin SP, Irigoien X, et al.2017. Pushing the limits of photoreception in twilight conditions: the rod-like cone retina of the deep-sea pearlsides. Sci Adv. 3(11):eaao4709. PubMed PMC
de Busserolles F, Fogg L, Cortesi F, Marshall J.. 2020. The exceptional diversity of visual adaptations in deep-sea teleost fishes. Semin Cell Dev Biol. 106:20–30. PubMed
Dalton BE, Loew ER, Cronin TW, Carleton KL.. 2014. Spectral tuning by opsin coexpression in retinal regions that view different parts of the visual field. Proc R Soc B: Biol Sci. 281:1797. PubMed PMC
Denton EJ. 1990. Light and vision at depths greater than 200 metres. In: Herring PJ, Campbell AK, Whitfield M, Maddock L, editors. Light and life in the sea. Cambridge, UK: Cambridge University Press. p. 127–148.
Denton EJ, Herring PJ, Widder EA, Latz MF, Case JF.. 1985. The roles of filters in the photophores of oceanic animals and their relation to vision in the oceanic environment. Proc R Soc Lond Ser B. Biol Sci. 225:1238.
Douglas RH, Partridge JC, Marshall NJ.. 1998. The visual systems of deep-sea fish. I. Optics, tapeta, visual and lenticular pigmentation. Prog. Ret. Eye Res. 17(4):597–636. PubMed
Douglas RH, Genner MJ, Hudson AG, Partridge JC, Wagner HJ.. 2016. Localisation and origin of the bacteriochlorophyll-derived photosensitizer in the retina of the deep-sea dragon fish Malacosteus niger. Sci Rep. 6:39395. PubMed PMC
Downes GB, Gautam N.. 1999. The G protein subunit gene families. Genomics. 62(3):544–552. p PubMed
Enright JM, Toomey MB, Sato S-y, Temple SE, Allen JR, Fujiwara R, Kramlinger VM, Nagy LD, Johnson KM, Xiao Y, et al.2015. Cyp27c1 red-shifts the spectral sensitivity of photoreceptors by converting vitamin A1 into A2. Curr Biol. 25(23):3048–3057. PubMed PMC
Huang Z, Titus T, Postlethwait JH, Meng F.. 2019. Eye degeneration and loss of otx5b expression in the cavefish Sinocyclocheilus tileihornes. J Mol Evol. 87(7–8):199–208. PubMed PMC
Hunt DM, Fitzgibbon J, Slobodyanyuk SJ, Bowmaker JK, Dulai KS.. 1997. Molecular evolution of the cottoid fish endemic to Lake Baikal deduced from nuclear DNA evidence. Mol Phylogenet Evol. 8(3):415–422. PubMed
Hunt DM, Hankins MW, Collin SP, Marshall NJ.. 2014. Evolution of visual and non-visual pigments. Vol. 4. Boston (MA: ): Springer.
Katoh K, Asimenos G, Toh H.. 2009. Bioinformatics for DNA sequence analysis multiple alignment of DNA sequences with MAFFT. Totowa (NJ: ): Humana Press. p. 39–64. PubMed
Kawamura S, Tachibanaki S.. 2012. Explaining the functional differences of rods versus cones. Wires Membr Transp Signal. 1(5):675–683.
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, et al.2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28(12):1647–1649. PubMed PMC
Kenaley CP, , DevaneySC, , Fjeran TT.. 2014. The complex evolutionary history of seeing red: molecular phylogeny and the evolution of an adaptive visual system in deep-sea dragonfishes (Stomiiformes: Stomiidae). Evolution 68(4):996–1013. PubMed
La Vail MM, Rapaport DH, Rakic P.. 1991. Cytogenesis in the monkey retina. J Comp Neurol. 309(1):86–114. PubMed
Lamb TD. 2013. Evolution of phototransduction, vertebrate photoreceptors and retina. Prog Retin Eye Res. 36:52–119. PubMed
Lamb TD. 2019. Evolution of the genes mediating phototransduction in rod and cone photoreceptors. Prog Retinal Eye Res. 76:100823. PubMed
Larhammar D, Nordström K, Larsson TA.. 2009. Evolution of vertebrate rod and cone phototransduction genes. Phil Trans R Soc B. 364(1531):2867–2880. p PubMed PMC
Liu D-W, Wang F-Y, Lin J-J, Thompson A, Lu Y, Vo D, Yan HY, Zakon H.. 2019. The cone opsin repertoire of osteoglossomorph fishes: gene loss in mormyrid electric fish and a long wavelength-sensitive cone opsin that survived 3R. Mol Biol Evol. 36(3):447–457. PubMed
Lythgoe JN. 1966. In: Rackham O, editor.Light as an ecological factor visual pigments and under – water vision. Oxford: Blackwell.
Luehrmann M, Carleton KL, Cortesi F, Cheney KL, Marshall NJ.. 2019. Cardinalfishes (Apogonidae) show visual system adaptations typical of nocturnally and diurnally active fish. Mol Ecol. 28(12):3025–3041. PubMed
Luo D-G, Silverman D, Frederiksen R, Adhikari R, Cao L-H, Oatis JE, Kono M, Cornwall MC, Yau K-W.. 2020. Apo-opsin and its dark constitutive activity across retinal cone subtypes. Curr Biol. 30(24):4921–4931.e5. PubMed PMC
Mariani AP. 1986. Photoreceptors of the larval tiger salamander retina. Proc R Soc Lond. Ser B. Biol Sci. 227:1249. PubMed
Mears AJ, Kondo M, Swain PK, Takada Y, Bush RA, Saunders TL, Sieving PA, Swaroop A.. 2001. Nrl is required for rod photoreceptor development. Nat Genet. 29(4):447–452. PubMed
Moser HG, Smith PE.. 1993. Larval fish assemblages and oceanic boundaries. Bull Mar Sci. 53(2):283–289.
Munk O. 1990. Changes in the visual cell layer of the duplex retina during growth of the eye of a deep‐sea teleost, Gempylus serpens Cuvier, 1829. Acta Zool. 71(2):89–95.
Musilova Z, Cortesi F, Matschiner M, Davies WIL, Patel JS, Stieb SM, de Busserolles F, Malmstrøm M, Tørresen OK, Brown CJ, et al.2019a. Vision using multiple distinct rod opsins in deep-sea fishes. Science 364(6440):588–592. PubMed PMC
Musilova Z, et al.2019b. Evolution of the visual sensory system in cichlid fishes from crater lake Barombi Mbo in Cameroon. Mol Ecol. 28:5010–5031. PubMed
Musilova Z, Salzburger W, Cortesi F.. 2021. The visual opsin gene repertoires of teleost fishes: evolution, ecology and function. Annu Rev Cell Dev Biol. 37(1). 10.1146/annurev-cellbio-120219-024915. PubMed DOI
Musilova Z, Cortesi F.. 2021. Multiple ancestral and a plethora of recent gene duplications during the evolution of the green sensitive opsin genes (RH2) in teleost fishes. bioRxiv. doi: 10.1101/2021.05.11.443711.
Partridge JC, Shand J, Archer SN, Lythgoe JN, van Groningen-Luyben WA.. 1989. Interspecific variation in the visual pigments of deep-sea fishes. J Comp Physiol A. 164(4):513–529. PubMed
Partridge JC, Archer SN, van Oostrum J.. 1992. Single and multiple visual pigments in deep-sea fishes. J Mar Biol Ass. 72(1):113–130.
Pointer MA, Carvalho LS, Cowing JA, Bowmaker JK, Hunt DM.. 2007. The visual pigments of a deep-sea teleost, the pearl eye Scopelarchus analis. J Exp Biol. 210(16):2829–2835. PubMed
Raymond PA. 1995. Neurobiology and clinical aspects of the outer retina development and morphological organization of photoreceptors. Dordrecht: Springer. p. 1–23.
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP, et al.2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 61(3):539–542. PubMed PMC
Sassa C, Hirota Y.. 2013. Seasonal occurrence of mesopelagic fish larvae on the onshore side of the Kuroshio off southern Japan. Deep Sea Res Part I: Oceanogr Res Papers. 81:49–61.
Savelli I, Flamarique IN, Iwanicki T, Taylor JS.. 2018. Parallel opsin switches in multiple cone types of the starry flounder retina: tuning visual pigment composition for a demersal life style. Sci Rep. 8(1):1. PubMed PMC
Schott RK, Bhattacharyya N, Chang BS.. 2019. Evolutionary signatures of photoreceptor transmutation in geckos reveal potential adaptation and convergence with snakes. Evolution 73(9):1958–1971. PubMed
Sernagor E, Eglen S, Harris B, Wong R.. 2006. Retinal development. New York (NY: ): Cambridge University Press.
Shen YC, Raymond PA.. 2004. Zebrafish cone-rod (crx) homeobox gene promotes retinogenesis. Dev Biol. 269(1):237–251. PubMed
Simoes BF, et al.2016. Multiple rod–cone and cone–rod photoreceptor transmutations in snakes: evidence from visual opsin gene expression. Proc R Soc B: Biol Sci. 283(1823):20152624. PubMed PMC
Stieb SM, de Busserolles F, Carleton KL, Cortesi F, Chung W-S, Dalton BE, Hammond LA, Marshall NJ.. 2019. A detailed investigation of the visual system and visual ecology of the Barrier Reef anemonefish, Amphiprion akindynos. Sci Rep. 9(1):1. PubMed PMC
Sugawara T, Terai Y, Imai H, Turner GF, Koblmuller S, Sturmbauer C, Shichida Y, Okada N.. 2005. Parallelism of amino acid changes at the RH1 affecting spectral sensitivity among deep-water cichlids from Lakes Tanganyika and Malawi. Proc Natl Acad Sci U S A. 102(15):5448–5453. PubMed PMC
Tettamanti V, de Busserolles F, Lecchini D, Marshall NJ, Cortesi F.. 2019. Visual system development of the spotted unicornfish, Naso brevirostris (Acanthuridae). J. Exp. Biol. 222(24):jeb209916. PubMed
Torres-Dowdall J, Pierotti MER, Härer A, Karagic N, Woltering JM, Henning F, Elmer KR, Meyer A.. 2017. Rapid and parallel adaptive evolution of the visual system of Neotropical Midas cichlid fishes. Mol Biol Evol. 34(10):2469–2485. PubMed
Turner JR, White EM, Collins MA, Partridge JC, Douglas RH.. 2009. Vision in lanternfish (Myctophidae): adaptations for viewing bioluminescence in the deep-sea. Deep Sea Res Part I: Oceanogr Res Papers. 56(6):1003–1017.
Valen R, Eilertsen M, Edvardsen RB, Furmanek T, Rønnestad I, van der Meeren T, Karlsen Ø, Nilsen TO, Helvik JV.. 2016. The two-step development of a duplex retina involves distinct events of cone and rod neurogenesis and differentiation. Dev Biol. 416(2):389–401. PubMed
Wagner HJ, Partridge JC, Douglas RH.. 2019. Observations on the retina and ‘optical fold’of a mesopelagic sabretooth fish, Evermanella balbo. Cell Tissue Res. 378(3):411–425. PubMed
Yokoyama S. 2008. Evolution of dim-light and color vision pigments. Annu Rev Genomics Hum Genet. 9:259–282. PubMed
Yokoyama S, Jia H.. 2020. Origin and adaptation of green‐sensitive (RH2) pigments in vertebrates. FEBS Open Bio. 10(5):873–882. PubMed PMC
Zhang H, Futami K, Horie N, Okamura A, Utoh T, Mikawa N, Yamada Y, Tanaka S, Okamoto N.. 2000. Molecular cloning of fresh water and deep‐sea rod opsin genes from Japanese eel Anguilla japonica and expressional analyses during sexual maturation. FEBS Lett. 469(1):39–43. PubMed
Developmental changes of opsin gene expression in ray-finned fishes (Actinopterygii)