Visual Gene Expression Reveals a cone-to-rod Developmental Progression in Deep-Sea Fishes

. 2021 Dec 09 ; 38 (12) : 5664-5677.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34562090

Vertebrates use cone cells in the retina for color vision and rod cells to see in dim light. Many deep-sea fishes have adapted to their environment to have only rod cells in the retina, while both rod and cone genes are still preserved in their genomes. As deep-sea fish larvae start their lives in the shallow, and only later submerge to the depth, they have to cope with diverse environmental conditions during ontogeny. Using a comparative transcriptomic approach in 20 deep-sea fish species from eight teleost orders, we report on a developmental cone-to-rod switch. While adults mostly rely on rod opsin (RH1) for vision in dim light, larvae almost exclusively express middle-wavelength-sensitive ("green") cone opsins (RH2) in their retinas. The phototransduction cascade genes follow a similar ontogenetic pattern of cone-followed by rod-specific gene expression in most species, except for the pearleye and sabretooth (Aulopiformes), in which the cone cascade remains dominant throughout development, casting doubts on the photoreceptor cell identity. By inspecting the whole genomes of five deep-sea species (four of them sequenced within this study: Idiacanthus fasciola, Chauliodus sloani; Stomiiformes; Coccorella atlantica, and Scopelarchus michaelsarsi; Aulopiformes), we found that they possess one or two copies of the rod RH1 opsin gene, and up to seven copies of the cone RH2 opsin genes in their genomes, while other cone opsin classes have been mostly lost. Our findings hence provide molecular evidence for a limited opsin gene repertoire in deep-sea fishes and a conserved vertebrate pattern whereby cone photoreceptors develop first and rod photoreceptors are added only at later developmental stages.

Zobrazit více v PubMed

Andrews S. 2017. FastQC: a quality control tool for high throughput sequence data. Version 0.11.6. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc

Baylor DA. 1987. Photoreceptor signals and vision. Proctor lecture . Investigat Ophthalmol Visual Sci. 28:1. PubMed

Betancur RR, Wiley EO, Arratia G, Acero A, Bailly N, Miya M, Lecointre G, Ortí G.. 2017. Phylogenetic classification of bony fishes. BMC Evol Biol. 17(1):162. PubMed PMC

Biagioni LM, Hunt DM, Collin SP.. 2016. Morphological characterization and topographic analysis of multiple photoreceptor types in the retinae of mesopelagic hatchetfishes with tubular eyes. Front Ecol Evol. 4:25.

Britt LL, Loew ER, McFarland N.. 2001. Visual pigments in the early life stages of Pacific northwest marine fishes. J Exp Biol. 204(14):2581–2587. PubMed

Bowmaker JK, Semo M, Hunt DM, Jeffery G.. 2008. Eel visual pigments revisited: the fate of retinal cones during metamorphosis. Vis Neurosci. 25(3):249–255. PubMed

Bozzano A, Pankhurst PM, Sabatés A.. 2007. Early development of eye and retina in lanternfish larvae. Vis Neurosci. 24(3):423–436. PubMed

Byun J-H, Hyeon J-Y, Kim E-S, Kim B-H, Miyanishi H, Kagawa H, Takeuchi Y, Kim S-J, Takemura A, Hur S-P.. 2020. Gene expression patterns of novel visual and non-visual opsin families in immature and mature Japanese eel males. PeerJ. 8:e8326. PubMed PMC

Carleton KL, Dalton BE, Escobar‐Camacho D, Nandamuri SP.. 2016. Proximate and ultimate causes of variable visual sensitivities: insights from cichlid fish radiations. Genesis 54(6):299–325. PubMed PMC

Carleton KL, Escobar-Camacho D, Stieb SM, Cortesi F, Marshall NJ.. 2020. Seeing the rainbow: mechanisms underlying spectral sensitivity in teleost fishes. J Exp Biol. 223(8):jeb193334. PubMed PMC

Collin SP, Hoskins RV, Partridge JC.. 1998. Seven retinal specializations in the tubular eye of the Scopelarchus michaelsarsi: a case study in visual optimization. Brain Behav Evol. 1998(09):291–314. PubMed

Collin SP, Marshall NJ.. 2003. Sensory processing in aquatic environments. New York: Springer.

Cortesi F, Musilová Z, Stieb SM, Hart NS, Siebeck UE, Malmstrøm M, Tørresen OK, Jentoft S, Cheney KL, Marshall NJ, et al.2015. Ancestral duplications and highly dynamic opsin gene evolution in percomorph fishes. Proc Natl Acad Sci U S A. 112(5):1493–1498.,. PubMed PMC

Cortesi F, et al.2016. From crypsis to mimicry: changes in colour and the configuration of the visual system during ontogenetic habitat transitions in a coral reef fish. J Exp Biol. 219(16):2545–2558. PubMed

Cortesi F, Mitchell LJ, Tettamanti V, Fogg LG, de Busserolles F, Cheney KL, Marshall NJ.. 2020. Visual system diversity in coral reef fishes. Semin Cell Dev Biol. 106:31–42. PubMed

Cortesi F, et al.2021. Multiple ancestral duplications of the red-sensitive opsin gene (LWS) in teleost fishes and convergent spectral shifts to green vision in gobies. bioRxiv. doi: 10.1101/2021.05.08.443214.

de Busserolles F, Cortesi F, Helvik JV, Davies WIL, Templin RM, Sullivan RKP, Michell CT, Mountford JK, Collin SP, Irigoien X, et al.2017. Pushing the limits of photoreception in twilight conditions: the rod-like cone retina of the deep-sea pearlsides. Sci Adv. 3(11):eaao4709. PubMed PMC

de Busserolles F, Fogg L, Cortesi F, Marshall J.. 2020. The exceptional diversity of visual adaptations in deep-sea teleost fishes. Semin Cell Dev Biol. 106:20–30. PubMed

Dalton BE, Loew ER, Cronin TW, Carleton KL.. 2014. Spectral tuning by opsin coexpression in retinal regions that view different parts of the visual field. Proc R Soc B: Biol Sci. 281:1797. PubMed PMC

Denton EJ. 1990. Light and vision at depths greater than 200 metres. In: Herring PJ, Campbell AK, Whitfield M, Maddock L, editors. Light and life in the sea. Cambridge, UK: Cambridge University Press. p. 127–148.

Denton EJ, Herring PJ, Widder EA, Latz MF, Case JF.. 1985. The roles of filters in the photophores of oceanic animals and their relation to vision in the oceanic environment. Proc R Soc Lond Ser B. Biol Sci. 225:1238.

Douglas RH, Partridge JC, Marshall NJ.. 1998. The visual systems of deep-sea fish. I. Optics, tapeta, visual and lenticular pigmentation. Prog. Ret. Eye Res. 17(4):597–636. PubMed

Douglas RH, Genner MJ, Hudson AG, Partridge JC, Wagner HJ.. 2016. Localisation and origin of the bacteriochlorophyll-derived photosensitizer in the retina of the deep-sea dragon fish Malacosteus niger. Sci Rep. 6:39395. PubMed PMC

Downes GB, Gautam N.. 1999. The G protein subunit gene families. Genomics. 62(3):544–552. p PubMed

Enright JM, Toomey MB, Sato S-y, Temple SE, Allen JR, Fujiwara R, Kramlinger VM, Nagy LD, Johnson KM, Xiao Y, et al.2015. Cyp27c1 red-shifts the spectral sensitivity of photoreceptors by converting vitamin A1 into A2. Curr Biol. 25(23):3048–3057. PubMed PMC

Huang Z, Titus T, Postlethwait JH, Meng F.. 2019. Eye degeneration and loss of otx5b expression in the cavefish Sinocyclocheilus tileihornes. J Mol Evol. 87(7–8):199–208. PubMed PMC

Hunt DM, Fitzgibbon J, Slobodyanyuk SJ, Bowmaker JK, Dulai KS.. 1997. Molecular evolution of the cottoid fish endemic to Lake Baikal deduced from nuclear DNA evidence. Mol Phylogenet Evol. 8(3):415–422. PubMed

Hunt DM, Hankins MW, Collin SP, Marshall NJ.. 2014. Evolution of visual and non-visual pigments. Vol. 4. Boston (MA: ): Springer.

Katoh K, Asimenos G, Toh H.. 2009. Bioinformatics for DNA sequence analysis multiple alignment of DNA sequences with MAFFT. Totowa (NJ: ): Humana Press. p. 39–64. PubMed

Kawamura S, Tachibanaki S.. 2012. Explaining the functional differences of rods versus cones. Wires Membr Transp Signal. 1(5):675–683.

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, et al.2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28(12):1647–1649. PubMed PMC

Kenaley CP, , DevaneySC, , Fjeran TT.. 2014. The complex evolutionary history of seeing red: molecular phylogeny and the evolution of an adaptive visual system in deep-sea dragonfishes (Stomiiformes: Stomiidae). Evolution 68(4):996–1013. PubMed

La Vail MM, Rapaport DH, Rakic P.. 1991. Cytogenesis in the monkey retina. J Comp Neurol. 309(1):86–114. PubMed

Lamb TD. 2013. Evolution of phototransduction, vertebrate photoreceptors and retina. Prog Retin Eye Res. 36:52–119. PubMed

Lamb TD. 2019. Evolution of the genes mediating phototransduction in rod and cone photoreceptors. Prog Retinal Eye Res. 76:100823. PubMed

Larhammar D, Nordström K, Larsson TA.. 2009. Evolution of vertebrate rod and cone phototransduction genes. Phil Trans R Soc B. 364(1531):2867–2880. p PubMed PMC

Liu D-W, Wang F-Y, Lin J-J, Thompson A, Lu Y, Vo D, Yan HY, Zakon H.. 2019. The cone opsin repertoire of osteoglossomorph fishes: gene loss in mormyrid electric fish and a long wavelength-sensitive cone opsin that survived 3R. Mol Biol Evol. 36(3):447–457. PubMed

Lythgoe JN. 1966. In: Rackham O, editor.Light as an ecological factor visual pigments and under – water vision. Oxford: Blackwell.

Luehrmann M, Carleton KL, Cortesi F, Cheney KL, Marshall NJ.. 2019. Cardinalfishes (Apogonidae) show visual system adaptations typical of nocturnally and diurnally active fish. Mol Ecol. 28(12):3025–3041. PubMed

Luo D-G, Silverman D, Frederiksen R, Adhikari R, Cao L-H, Oatis JE, Kono M, Cornwall MC, Yau K-W.. 2020. Apo-opsin and its dark constitutive activity across retinal cone subtypes. Curr Biol. 30(24):4921–4931.e5. PubMed PMC

Mariani AP. 1986. Photoreceptors of the larval tiger salamander retina. Proc R Soc Lond. Ser B. Biol Sci. 227:1249. PubMed

Mears AJ, Kondo M, Swain PK, Takada Y, Bush RA, Saunders TL, Sieving PA, Swaroop A.. 2001. Nrl is required for rod photoreceptor development. Nat Genet. 29(4):447–452. PubMed

Moser HG, Smith PE.. 1993. Larval fish assemblages and oceanic boundaries. Bull Mar Sci. 53(2):283–289.

Munk O. 1990. Changes in the visual cell layer of the duplex retina during growth of the eye of a deep‐sea teleost, Gempylus serpens Cuvier, 1829. Acta Zool. 71(2):89–95.

Musilova Z, Cortesi F, Matschiner M, Davies WIL, Patel JS, Stieb SM, de Busserolles F, Malmstrøm M, Tørresen OK, Brown CJ, et al.2019a. Vision using multiple distinct rod opsins in deep-sea fishes. Science 364(6440):588–592. PubMed PMC

Musilova Z, et al.2019b. Evolution of the visual sensory system in cichlid fishes from crater lake Barombi Mbo in Cameroon. Mol Ecol. 28:5010–5031. PubMed

Musilova Z, Salzburger W, Cortesi F.. 2021. The visual opsin gene repertoires of teleost fishes: evolution, ecology and function. Annu Rev Cell Dev Biol. 37(1). 10.1146/annurev-cellbio-120219-024915. PubMed DOI

Musilova Z, Cortesi F.. 2021. Multiple ancestral and a plethora of recent gene duplications during the evolution of the green sensitive opsin genes (RH2) in teleost fishes. bioRxiv. doi: 10.1101/2021.05.11.443711.

Partridge JC, Shand J, Archer SN, Lythgoe JN, van Groningen-Luyben WA.. 1989. Interspecific variation in the visual pigments of deep-sea fishes. J Comp Physiol A. 164(4):513–529. PubMed

Partridge JC, Archer SN, van Oostrum J.. 1992. Single and multiple visual pigments in deep-sea fishes. J Mar Biol Ass. 72(1):113–130.

Pointer MA, Carvalho LS, Cowing JA, Bowmaker JK, Hunt DM.. 2007. The visual pigments of a deep-sea teleost, the pearl eye Scopelarchus analis. J Exp Biol. 210(16):2829–2835. PubMed

Raymond PA. 1995. Neurobiology and clinical aspects of the outer retina development and morphological organization of photoreceptors. Dordrecht: Springer. p. 1–23.

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP, et al.2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 61(3):539–542. PubMed PMC

Sassa C, Hirota Y.. 2013. Seasonal occurrence of mesopelagic fish larvae on the onshore side of the Kuroshio off southern Japan. Deep Sea Res Part I: Oceanogr Res Papers. 81:49–61.

Savelli I, Flamarique IN, Iwanicki T, Taylor JS.. 2018. Parallel opsin switches in multiple cone types of the starry flounder retina: tuning visual pigment composition for a demersal life style. Sci Rep. 8(1):1. PubMed PMC

Schott RK, Bhattacharyya N, Chang BS.. 2019. Evolutionary signatures of photoreceptor transmutation in geckos reveal potential adaptation and convergence with snakes. Evolution 73(9):1958–1971. PubMed

Sernagor E, Eglen S, Harris B, Wong R.. 2006. Retinal development. New York (NY: ): Cambridge University Press.

Shen YC, Raymond PA.. 2004. Zebrafish cone-rod (crx) homeobox gene promotes retinogenesis. Dev Biol. 269(1):237–251. PubMed

Simoes BF, et al.2016. Multiple rod–cone and cone–rod photoreceptor transmutations in snakes: evidence from visual opsin gene expression. Proc R Soc B: Biol Sci. 283(1823):20152624. PubMed PMC

Stieb SM, de Busserolles F, Carleton KL, Cortesi F, Chung W-S, Dalton BE, Hammond LA, Marshall NJ.. 2019. A detailed investigation of the visual system and visual ecology of the Barrier Reef anemonefish, Amphiprion akindynos. Sci Rep. 9(1):1. PubMed PMC

Sugawara T, Terai Y, Imai H, Turner GF, Koblmuller S, Sturmbauer C, Shichida Y, Okada N.. 2005. Parallelism of amino acid changes at the RH1 affecting spectral sensitivity among deep-water cichlids from Lakes Tanganyika and Malawi. Proc Natl Acad Sci U S A. 102(15):5448–5453. PubMed PMC

Tettamanti V, de Busserolles F, Lecchini D, Marshall NJ, Cortesi F.. 2019. Visual system development of the spotted unicornfish, Naso brevirostris (Acanthuridae). J. Exp. Biol. 222(24):jeb209916. PubMed

Torres-Dowdall J, Pierotti MER, Härer A, Karagic N, Woltering JM, Henning F, Elmer KR, Meyer A.. 2017. Rapid and parallel adaptive evolution of the visual system of Neotropical Midas cichlid fishes. Mol Biol Evol. 34(10):2469–2485. PubMed

Turner JR, White EM, Collins MA, Partridge JC, Douglas RH.. 2009. Vision in lanternfish (Myctophidae): adaptations for viewing bioluminescence in the deep-sea. Deep Sea Res Part I: Oceanogr Res Papers. 56(6):1003–1017.

Valen R, Eilertsen M, Edvardsen RB, Furmanek T, Rønnestad I, van der Meeren T, Karlsen Ø, Nilsen TO, Helvik JV.. 2016. The two-step development of a duplex retina involves distinct events of cone and rod neurogenesis and differentiation. Dev Biol. 416(2):389–401. PubMed

Wagner HJ, Partridge JC, Douglas RH.. 2019. Observations on the retina and ‘optical fold’of a mesopelagic sabretooth fish, Evermanella balbo. Cell Tissue Res. 378(3):411–425. PubMed

Yokoyama S. 2008. Evolution of dim-light and color vision pigments. Annu Rev Genomics Hum Genet. 9:259–282. PubMed

Yokoyama S, Jia H.. 2020. Origin and adaptation of green‐sensitive (RH2) pigments in vertebrates. FEBS Open Bio. 10(5):873–882. PubMed PMC

Zhang H, Futami K, Horie N, Okamura A, Utoh T, Mikawa N, Yamada Y, Tanaka S, Okamoto N.. 2000. Molecular cloning of fresh water and deep‐sea rod opsin genes from Japanese eel Anguilla japonica and expressional analyses during sexual maturation. FEBS Lett. 469(1):39–43. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Developmental changes of opsin gene expression in ray-finned fishes (Actinopterygii)

. 2022 Nov 09 ; 289 (1986) : 20221855. [epub] 20221102

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...