Developmental changes of opsin gene expression in ray-finned fishes (Actinopterygii)

. 2022 Nov 09 ; 289 (1986) : 20221855. [epub] 20221102

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36321490

Fish often change their habitat and trophic preferences during development. Dramatic functional differences between embryos, larvae, juveniles and adults also concern sensory systems, including vision. Here, we focus on the photoreceptors (rod and cone cells) in the retina and their gene expression profiles during development. Using comparative transcriptomics on 63 species, belonging to 23 actinopterygian orders, we report general developmental patterns of opsin expression, mostly suggesting an increased importance of the rod opsin (RH1) gene and the long-wavelength-sensitive cone opsin, and a decreasing importance of the shorter wavelength-sensitive cone opsin throughout development. Furthermore, we investigate in detail ontogenetic changes in 14 selected species (from Polypteriformes, Acipenseriformes, Cypriniformes, Aulopiformes and Cichliformes), and we report examples of expanded cone opsin repertoires, cone opsin switches (mostly within RH2) and increasing rod : cone ratio as evidenced by the opsin and phototransduction cascade genes. Our findings provide molecular support for developmental stage-specific visual palettes of ray-finned fishes and shifts between, which most likely arose in response to ecological, behavioural and physiological factors.

Zobrazit více v PubMed

Hunt DM, Hankins MW, Collin SP, Marshall NJ. 2014. Evolution of visual and non-visual pigments, Vol. 4. Boston, MA: Berlin, Germany: Springer.

Carleton KL, Escobar-Camacho D, Stieb SM, Cortesi F, Marshall NJ. 2020. Seeing the rainbow: mechanisms underlying spectral sensitivity in teleost fishes. J. Exp. Biol. 223, jeb.193334. (10.1242/jeb.193334) PubMed DOI PMC

Musilova Z, Salzburger W, Cortesi F. 2021. The visual opsin gene repertoires of teleost fishes: evolution, ecology, and function. Annu. Rev. Cell Dev. Biol. 37, 441-468. (10.1146/annurev-cellbio-120219-024915) PubMed DOI

Lamb TD. 2013. Evolution of phototransduction, vertebrate photoreceptors and retina. Prog. Retinal Eye Res. 36, 52-119. (10.1016/j.preteyeres.2013.06.001) PubMed DOI

Musilova Z, et al. 2019a. Vision using multiple distinct rod opsins in deep-sea fishes. Science 364, 588-592. (10.1126/science.aav4632) PubMed DOI PMC

Cortesi F, et al. 2015. Ancestral duplications and highly dynamic opsin gene evolution in percomorph fishes. Proc. Natl Acad. Sci. USA 112, 1493-1498. (10.1073/pnas.1417803112) PubMed DOI PMC

Musilova Z, Cortesi F. 2021. Multiple ancestral and a plethora of recent gene duplications during the evolution of the green sensitive opsin genes (RH2) in teleost fishes. bioRxiv. (10.1101/2021.05.11.443711) DOI

Cortesi F, et al. . 2021. Multiple ancestral duplications of the red-sensitive opsin gene (LWS) in teleost fishes and convergent spectral shifts to green vision in gobies. bioRxiv. (10.1101/2021.05.08.443214) DOI

Pointer MA, Carvalho LS, Cowing JA, Bowmaker JK, Hunt DM. 2007. The visual pigments of a deep-sea teleost, the pearl eye Scopelarchus analis. J. Exp. Biol. 210, 2829-2835. (10.1242/jeb.006064) PubMed DOI

Lupše N, et al. 2021. Visual gene expression reveals a cone to rod developmental progression in deep-sea fishes. Mol. Biol. Evol. 38, 5664-5677. (10.1093/molbev/msab281) PubMed DOI PMC

Hagedorn M, Fernald RD. 1992. Retinal growth and cell addition during embryogenesis in the teleost, Haplochromis burtoni. J. Comp. Neurol. 321, 193-208. (10.1002/cne.903210203) PubMed DOI

Carleton KL, Spady TC, Streelman JT, Kidd MR, McFarland WN, Loew ER. 2008. Visual sensitivities tuned by heterochronic shifts in opsin gene expression. BMC Biol. 6, 1-14. (10.1186/1741-7007-6-22) PubMed DOI PMC

Fernald RD. 1985. Growth of the teleost eye: novel solutions to complex constraints. Environ. Biol. Fishes 13, 113-123. (10.1007/BF00002579) DOI

Raymond PA. 1995. Development and morphological organization of photoreceptors. In Neurobiology and clinical aspects of the outer retina, pp. 1-23. Dordrecht, The Netherlands: Springer.

Helvik JV, Drivenes Ø, Harboe T, Seo HC. 2001. Topography of different photoreceptor cell types in the larval retina of Atlantic halibut (Hippoglossus hippoglossus). J. Exp. Biol. 204, 2553-2559. (10.1242/jeb.204.14.2553) PubMed DOI

Shen YC, Raymond PA. 2004. Zebrafish cone-rod (crx) homeobox gene promotes retinogenesis. Dev. Biol. 269, 237-251. (10.1016/j.ydbio.2004.01.037) PubMed DOI

Sernagor E, Eglen S, Harris B, Wong R. 2006. Retinal development. Cambridge, UK: Cambridge University Press.

Valen R, et al. 2016. The two-step development of a duplex retina involves distinct events of cone and rod neurogenesis and differentiation. Dev. Biol. 416, 389-401. (10.1016/j.ydbio.2016.06.041) PubMed DOI

Mears AJ, et al. 2001. Nrl is required for rod photoreceptor development. Nat. Genet. 29, 447-452. (10.1038/ng774) PubMed DOI

La Vail MM, Rapaport DH, Rakic P. 1991. Cytogenesis in the monkey retina. J. Comp. Neurol. 309, 86-114. (10.1002/cne.903090107) PubMed DOI

Carleton KL, Dalton BE, Escobar-Camacho D, Nandamuri SP. 2016. Proximate and ultimate causes of variable visual sensitivities: insights from cichlid fish radiations. Genesis 54, 299-325. (10.1002/dvg.22940) PubMed DOI PMC

Hunt DM, Fitzgibbon J, Slobodyanyuk SJ, Bowmaker JK, Dulai KS. 1997. Molecular evolution of the cottoid fish endemic to Lake Baikal deduced from nuclear DNA evidence. Mol. Phylogenet. Evol. 8, 415-422. (10.1006/mpev.1997.0428) PubMed DOI

Sugawara T, et al. 2005. Parallelism of amino acid changes at the RH1 affecting spectral sensitivity among deep-water cichlids from Lakes Tanganyika and Malawi. Proc. Natl Acad. Sci. USA 102, 5448-5453. (10.1073/pnas.0405302102) PubMed DOI PMC

Ricci V, Ronco F, Musilova Z, Salzburger W. 2022. Molecular evolution and depth-related adaptations of rhodopsin in the adaptive radiation of cichlid fishes in Lake Tanganyika. Mol. Ecol. 31, 2882-2897. (10.1111/mec.16429) PubMed DOI PMC

Malinsky M, et al. 2015. Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake. Science 350, 1493-1498. (10.1126/science.aac9927) PubMed DOI PMC

Musilova Z, et al. . 2019. Evolution of the visual sensory system in cichlid fishes from crater lake Barombi Mbo in Cameroon. Mol. Ecol. 28, 5010-5031. (10.1111/mec.15217) PubMed DOI

Douglas RH, Hunt DM, Bowmaker JK.. 2013. Spectral sensitivity tuning in the deep-sea. In Sensory processing in aquatic environments, pp. 323–342. New York, NY: Springer.

Yokoyama S. 2008. Evolution of dim-light and color vision pigments. Annu. Rev. Genomics Hum. Genet. 9, 259-282. (10.1146/annurev.genom.9.081307.164228) PubMed DOI

Yokoyama S, Jia H. 2020. Origin and adaptation of green-sensitive (RH2) pigments in vertebrates. FEBS Open Biol. 10, 873-882. (10.1002/2211-5463.12843) PubMed DOI PMC

Carleton KL, Kocher TD. 2001. Cone opsin genes of African cichlid fishes: tuning spectral sensitivity by differential gene expression. Mol. Biol. Evol. 18, 1540-1550. (10.1093/oxfordjournals.molbev.a003940) PubMed DOI

Manousaki T, et al. . 2013. Parsing parallel evolution: ecological divergence and differential gene expression in the adaptive radiations of thick-lipped Midas cichlid fishes from Nicaragua. Mol. Ecol. 22, 650-669. (10.1111/mec.12034) PubMed DOI

Evans BI, Browman HI. 2004. Variation in the development of the fish retina. In American Fisheries Society Symposium, vol. 40, pp. 145–166.

Härer A, Torres-Dowdall J, Meyer A. 2017. Rapid adaptation to a novel light environment: the importance of ontogeny and phenotypic plasticity in shaping the visual system of Nicaraguan Midas cichlid fish (Amphilophus citrinellus spp.). Mol. Ecol. 26, 5582-5593. PubMed

Shand J, Hart NS, Thomas N, Partridge JC. 2002. Developmental changes in the cone visual pigments of black bream Acanthopagrus butcheri. J. Exp. Biol. 205, 3661-3667. PubMed

Cottrill PB, Davies WL, Bowmaker JK, Hunt DM, Jeffery G. 2009. Developmental dynamics of cone photoreceptors in the eel. BMC Dev. Biol. 9, 1-9. (10.1186/1471-213X-9-71) PubMed DOI PMC

Fogg LG, Cortesi F, Lecchini D, Gache C, Marshall NJ, De Busserolles F. 2022. Development of dim-light vision in the nocturnal reef fish family Holocentridae I: retinal gene expression. J. Exp. Biol. 225, jeb244513. PubMed PMC

Roux N, et al. . 2022. The multi-level regulation of clownfish metamorphosis by thyroid hormones. bioRxiv. (10.1101/2022.03.04.482938) DOI

Stieb SM, Carleton KL, Cortesi F, Marshall NJ, Salzburger W. 2016. Depth-dependent plasticity in opsin gene expression varies between damselfish (Pomacentridae) species. Mol. Ecol. 25, 3645-3661. (10.1111/mec.13712) PubMed DOI

Chang CH, Catchen J, Moran RL, Rivera-Colón AG, Wang YC, Fuller RC. 2021. Sequence analysis and ontogenetic expression patterns of cone opsin genes in the bluefin killifish (Lucania goodei). J. Hered. 112, 357-366. (10.1093/jhered/esab017) PubMed DOI

Chang CH, Wang YC, Shao YT, Liu SH. 2020. Phylogenetic analysis and ontogenetic changes in the cone opsins of the western mosquitofish (Gambusia affinis). PLoS ONE 15, e0240313. (10.1371/journal.pone.0240313) PubMed DOI PMC

Allison WT, Dann SG, Veldhoen KM, Hawryshyn CW. 2006. Degeneration and regeneration of ultraviolet cone photoreceptors during development in rainbow trout. J. Comp. Neurol. 499, 702-715. (10.1002/cne.21164) PubMed DOI

Cortesi F, et al. 2016. From crypsis to mimicry: changes in colour and the configuration of the visual system during ontogenetic habitat transitions in a coral reef fish. J. Exp. Biol. 219, 2545-2558. PubMed

Savelli I, Novales Flamarique I, Iwanicki T, Taylor JS. 2018. Parallel opsin switches in multiple cone types of the starry flounder retina: tuning visual pigment composition for a demersal life style. Sci. Rep. 8, 4763. (10.1038/s41598-018-23008-y) PubMed DOI PMC

De Busserolles F, Marshall NJ, Collin SP. 2014. The eyes of lanternfishes (Myctophidae, teleostei): novel ocular specializations for vision in dim light. J. Comp. Neurol. 522, 1618-1640. (10.1002/cne.23495) PubMed DOI

Tettamanti V, de Busserolles F, Lecchini D, Marshall NJ, Cortesi F. 2019. Visual system development of the spotted unicornfish, Naso brevirostris (Acanthuridae). J. Exp. Biol. 222, jeb209916. PubMed

King JR, McFarlane GA. 2003. Marine fish life history strategies: applications to fishery management. Fish. Manage. Ecol. 10, 249-264. (10.1046/j.1365-2400.2003.00359.x) DOI

Helfman G, Collette BB, Facey DE, Bowen BW. 2009. The diversity of fishes: biology, evolution, and ecology. West Sussex, UK: John Wiley & Sons.

Betancur RR, et al. 2017. Phylogenetic classification of bony fishes. BMC Evol. Biol. 17, 162. (10.1186/s12862-017-0958-3) PubMed DOI PMC

Andrews S. 2017. FastQC: a quality control tool for high throughput sequence data. 2010. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.

Kearse M, et al. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-1649. (10.1093/bioinformatics/bts199) PubMed DOI PMC

de Busserolles F, et al. 2017. Pushing the limits of photoreception in twilight conditions: the rod-like cone retina of the deep-sea pearlsides. Sci. Adv. 3, eaao4709. (10.1126/sciadv.aao4709) PubMed DOI PMC

Cribari-Neto F, Zeileis A. 2010. Beta regression in R. J. Stat. Softw. 34, 1-24. (10.18637/jss.v034.i02) DOI

Evans BI, Fernald RD. 1990. Metamorphosis and fish vision. J. Neurobiol. 21, 1037-1052. (10.1002/neu.480210709) PubMed DOI

Fuiman LA. 1993. Development of predator evasion in Atlantic herring, Clupea harengus L. Anim. Behav. 45, 1101-1116. (10.1006/anbe.1993.1135) DOI

Pankhurst PM, Pankhurst NW, Montgomery JC. 1993. Comparison of behavioural and morphological measures of visual acuity during ontogeny in a teleost fish, Forsterygion varium, Tripterygiidae (Forster, 1801). Brain Behav. Evol. 42, 178-188. (10.1159/000114151) PubMed DOI

Fuiman LA, Delbos BC. 1998. Developmental changes in visual sensitivity of red drum, Sciaenops ocellatus. Copeia 1998, 936-943. (10.2307/1447340) DOI

Hunter JR, Coyne KM. 1982. The onset of schooling in northern anchovy larvae, Engraulis mordax. CalCOFI Rep. 23, 246-251.

Blaxter JHS. 1986. Development of sense organs and behaviour of teleost larvae with special reference to feeding and predator avoidance. Trans. Am. Fish. Soc. 115, 98-114. (10.1577/1548-8659(1986)115<98:NLFCDO>2.0.CO;2) DOI

Carvalho PS, Noltie DB, Tillitt DE. 2002. Ontogenetic improvement of visual function in the medaka Oryzias latipes based on an optomotor testing system for larval and adult fish. Anim. Behav. 64, 1-10. (10.1006/anbe.2002.3028) DOI

Magnuson JT, Stieglitz JD, Garza SA, Benetti DD, Grosell M, Roberts AP. 2020. Development of visual function in early life stage mahi-mahi (Coryphaena hippurus). Mar. Freshw. Behav. Physiol. 53, 203-214. (10.1080/10236244.2020.1804300) DOI

Simoes BF, et al. 2016. Multiple rod–cone and cone–rod photoreceptor transmutations in snakes: evidence from visual opsin gene expression. Proc. R. Soc. B 283, 20152624. (10.1098/rspb.2015.2624) PubMed DOI PMC

Schott RK, Bhattacharyya N, Chang BS. 2019. Evolutionary signatures of photoreceptor transmutation in geckos reveal potential adaptation and convergence with snakes. Evolution 73, 1958-1971. (10.1111/evo.13810) PubMed DOI

Wagner HJ, Partridge JC, Douglas RH. 2019. Observations on the retina and ‘optical fold’ of a mesopelagic sabretooth fish, Evermanella balbo. Cell Tissue Res. 378, 411-425. (10.1007/s00441-019-03060-4) PubMed DOI

Mariani AP, Boycott BB. 1986. Photoreceptors of the larval tiger salamander retina. Proc. R. Soc. Lond. B 227, 483-492. PubMed

Ylönen O, Heikkilä J, Karjalainen J. 2004. Metabolic depression in UV-B exposed larval coregonids. In Annales Zoologici Fennici, pp. 577-585. Finnish Zoological and Botanical Publishing Board.

Guggiana-Nilo DA, Engert F. 2016. Properties of the visible light phototaxis and UV avoidance behaviors in the larval zebrafish. Front. Behav. Neurosci. 10, 160. PubMed PMC

Browman HI, Flamarique IN, Hawryshyn CW. 1994. Ultraviolet photoreception contributes to prey search behavior in two species of zooplanktivorous fishes. J. Exp. Biol. 186, 187-198. (10.1242/jeb.186.1.187) PubMed DOI

Flamarique IN. 2013. Opsin switch reveals function of the ultraviolet cone in fish foraging. Proc. R. Soc. B 280, 20122490. (10.1098/rspb.2012.2490) PubMed DOI PMC

Fattah IA, Castilho NMSM, Valenti WC. 2015. Zooplankton capturing by Nile Tilapia, Oreochromis niloticus (Teleostei: Cichlidae) throughout post-larval development. Zoologia (Curitiba) 32, 469-475. (10.1590/s1984-46702015000600006) DOI

Britt LL, Loew ER, McFarland WN. 2001. Visual pigments in the early life stages of Pacific northwest marine fishes. J. Exp. Biol. 204, 2581-2587. PubMed

Smith EJ, Partridge JC, Parsons KN, White EM, Cuthill IC, Bennett AT, Church SC. 2002. Ultraviolet vision and mate choice in the guppy (Poecilia reticulata). Behav. Ecol. 13, 11-19. (10.1093/beheco/13.1.11) DOI

Siebeck UE, Parker AN, Sprenger D, Mäthger LM, Wallis G. 2010. A species of reef fish that uses ultraviolet patterns for covert face recognition. Curr. Biol. 20, 407-410. (10.1016/j.cub.2009.12.047) PubMed DOI

Rick IP, Bakker TC. 2008. Males do not see only red: UV wavelengths and male territorial aggression in the three-spined stickleback (Gasterosteus aculeatus). Naturwissenschaften 95, 631-638. (10.1007/s00114-008-0365-0) PubMed DOI

Spady TC, Parry JW, Robinson PR, Hunt DM, Bowmaker JK, Carleton KL. 2006. Evolution of the cichlid visual palette through ontogenetic subfunctionalization of the opsin gene arrays. Mol. Biol. Evol. 23, 1538-1547. PubMed

Cheng CL, Flamarique IN. 2007. Chromatic organization of cone photoreceptors in the retina of rainbow trout: single cones irreversibly switch from UV (SWS1) to blue (SWS2) light sensitive opsin during natural development. J. Exp. Biol. 210, 4123-4135. (10.1242/jeb.009217) PubMed DOI

Hofmann CM, O'Quin KE, Marshall NJ, Cronin TW, Seehausen O, Carleton KL. 2009. The eyes have it: regulatory and structural changes both underlie cichlid visual pigment diversity. PLoS Biol. 7, e1000266. (10.1371/journal.pbio.1000266) PubMed DOI PMC

Marshall NJ, Jennings K, McFarland WN, Loew ER, Losey GS. 2003. Visual biology of Hawaiian coral reef fishes. III. Environmental light and an integrated approach to the ecology of reef fish vision. Copeia 2003, 467-480.

Stieb SM, Cortesi F, Sueess L, Carleton KL, Salzburger W, Marshall NJ. 2017. Why UV vision and red vision are important for damselfish (Pomacentridae): structural and expression variation in opsin genes. Mol. Ecol. 26, 1323-1342. (10.1111/mec.13968) PubMed DOI

Watson CT, et al. 2011. Gene duplication and divergence of long wavelength-sensitive opsin genes in the Guppy, Poecilia reticulata. J. Mol. Evol. 72, 240-252. (10.1007/s00239-010-9426-z) PubMed DOI

Hope A, Partridge J, Hayes P. 1998. Rod opsin shifts in the European eel, Anguilla anguilla (L). Proc. R. Soc. B 265, 869-874. (10.1098/rspb.1998.0372) PubMed DOI PMC

Lupše N, Kłodawska M, Truhlářová V, Košátko P, Kašpar V, Bitja Nyom AR, Musilova Z. 2022. Developmental changes of opsin gene expression in ray-finned fishes (Actinopterygii). Figshare. (10.6084/m9.figshare.c.6251658) PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Developmental changes of opsin gene expression in ray-finned fishes (Actinopterygii)

. 2022 Nov 09 ; 289 (1986) : 20221855. [epub] 20221102

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...