Developmental changes of opsin gene expression in ray-finned fishes (Actinopterygii)
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36321490
PubMed Central
PMC9627706
DOI
10.1098/rspb.2022.1855
Knihovny.cz E-zdroje
- Klíčová slova
- Actinopterygii, development, evolution, gene expression, opsin, vision,
- MeSH
- čípky retiny - opsiny * genetika MeSH
- čípky retiny fyziologie MeSH
- exprese genu MeSH
- opsiny * genetika MeSH
- ryby genetika MeSH
- tyčinkové opsiny genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- čípky retiny - opsiny * MeSH
- opsiny * MeSH
- tyčinkové opsiny MeSH
Fish often change their habitat and trophic preferences during development. Dramatic functional differences between embryos, larvae, juveniles and adults also concern sensory systems, including vision. Here, we focus on the photoreceptors (rod and cone cells) in the retina and their gene expression profiles during development. Using comparative transcriptomics on 63 species, belonging to 23 actinopterygian orders, we report general developmental patterns of opsin expression, mostly suggesting an increased importance of the rod opsin (RH1) gene and the long-wavelength-sensitive cone opsin, and a decreasing importance of the shorter wavelength-sensitive cone opsin throughout development. Furthermore, we investigate in detail ontogenetic changes in 14 selected species (from Polypteriformes, Acipenseriformes, Cypriniformes, Aulopiformes and Cichliformes), and we report examples of expanded cone opsin repertoires, cone opsin switches (mostly within RH2) and increasing rod : cone ratio as evidenced by the opsin and phototransduction cascade genes. Our findings provide molecular support for developmental stage-specific visual palettes of ray-finned fishes and shifts between, which most likely arose in response to ecological, behavioural and physiological factors.
Department of Biological Sciences University of Ngaoundéré Ngaoundéré P O Box 454 Cameroon
Department of Zoology Faculty of Science Charles University Vinicna 7 12844 Prague Czech Republic
Zobrazit více v PubMed
Hunt DM, Hankins MW, Collin SP, Marshall NJ. 2014. Evolution of visual and non-visual pigments, Vol. 4. Boston, MA: Berlin, Germany: Springer.
Carleton KL, Escobar-Camacho D, Stieb SM, Cortesi F, Marshall NJ. 2020. Seeing the rainbow: mechanisms underlying spectral sensitivity in teleost fishes. J. Exp. Biol. 223, jeb.193334. (10.1242/jeb.193334) PubMed DOI PMC
Musilova Z, Salzburger W, Cortesi F. 2021. The visual opsin gene repertoires of teleost fishes: evolution, ecology, and function. Annu. Rev. Cell Dev. Biol. 37, 441-468. (10.1146/annurev-cellbio-120219-024915) PubMed DOI
Lamb TD. 2013. Evolution of phototransduction, vertebrate photoreceptors and retina. Prog. Retinal Eye Res. 36, 52-119. (10.1016/j.preteyeres.2013.06.001) PubMed DOI
Musilova Z, et al. 2019a. Vision using multiple distinct rod opsins in deep-sea fishes. Science 364, 588-592. (10.1126/science.aav4632) PubMed DOI PMC
Cortesi F, et al. 2015. Ancestral duplications and highly dynamic opsin gene evolution in percomorph fishes. Proc. Natl Acad. Sci. USA 112, 1493-1498. (10.1073/pnas.1417803112) PubMed DOI PMC
Musilova Z, Cortesi F. 2021. Multiple ancestral and a plethora of recent gene duplications during the evolution of the green sensitive opsin genes (RH2) in teleost fishes. bioRxiv. (10.1101/2021.05.11.443711) DOI
Cortesi F, et al. . 2021. Multiple ancestral duplications of the red-sensitive opsin gene (LWS) in teleost fishes and convergent spectral shifts to green vision in gobies. bioRxiv. (10.1101/2021.05.08.443214) DOI
Pointer MA, Carvalho LS, Cowing JA, Bowmaker JK, Hunt DM. 2007. The visual pigments of a deep-sea teleost, the pearl eye Scopelarchus analis. J. Exp. Biol. 210, 2829-2835. (10.1242/jeb.006064) PubMed DOI
Lupše N, et al. 2021. Visual gene expression reveals a cone to rod developmental progression in deep-sea fishes. Mol. Biol. Evol. 38, 5664-5677. (10.1093/molbev/msab281) PubMed DOI PMC
Hagedorn M, Fernald RD. 1992. Retinal growth and cell addition during embryogenesis in the teleost, Haplochromis burtoni. J. Comp. Neurol. 321, 193-208. (10.1002/cne.903210203) PubMed DOI
Carleton KL, Spady TC, Streelman JT, Kidd MR, McFarland WN, Loew ER. 2008. Visual sensitivities tuned by heterochronic shifts in opsin gene expression. BMC Biol. 6, 1-14. (10.1186/1741-7007-6-22) PubMed DOI PMC
Fernald RD. 1985. Growth of the teleost eye: novel solutions to complex constraints. Environ. Biol. Fishes 13, 113-123. (10.1007/BF00002579) DOI
Raymond PA. 1995. Development and morphological organization of photoreceptors. In Neurobiology and clinical aspects of the outer retina, pp. 1-23. Dordrecht, The Netherlands: Springer.
Helvik JV, Drivenes Ø, Harboe T, Seo HC. 2001. Topography of different photoreceptor cell types in the larval retina of Atlantic halibut (Hippoglossus hippoglossus). J. Exp. Biol. 204, 2553-2559. (10.1242/jeb.204.14.2553) PubMed DOI
Shen YC, Raymond PA. 2004. Zebrafish cone-rod (crx) homeobox gene promotes retinogenesis. Dev. Biol. 269, 237-251. (10.1016/j.ydbio.2004.01.037) PubMed DOI
Sernagor E, Eglen S, Harris B, Wong R. 2006. Retinal development. Cambridge, UK: Cambridge University Press.
Valen R, et al. 2016. The two-step development of a duplex retina involves distinct events of cone and rod neurogenesis and differentiation. Dev. Biol. 416, 389-401. (10.1016/j.ydbio.2016.06.041) PubMed DOI
Mears AJ, et al. 2001. Nrl is required for rod photoreceptor development. Nat. Genet. 29, 447-452. (10.1038/ng774) PubMed DOI
La Vail MM, Rapaport DH, Rakic P. 1991. Cytogenesis in the monkey retina. J. Comp. Neurol. 309, 86-114. (10.1002/cne.903090107) PubMed DOI
Carleton KL, Dalton BE, Escobar-Camacho D, Nandamuri SP. 2016. Proximate and ultimate causes of variable visual sensitivities: insights from cichlid fish radiations. Genesis 54, 299-325. (10.1002/dvg.22940) PubMed DOI PMC
Hunt DM, Fitzgibbon J, Slobodyanyuk SJ, Bowmaker JK, Dulai KS. 1997. Molecular evolution of the cottoid fish endemic to Lake Baikal deduced from nuclear DNA evidence. Mol. Phylogenet. Evol. 8, 415-422. (10.1006/mpev.1997.0428) PubMed DOI
Sugawara T, et al. 2005. Parallelism of amino acid changes at the RH1 affecting spectral sensitivity among deep-water cichlids from Lakes Tanganyika and Malawi. Proc. Natl Acad. Sci. USA 102, 5448-5453. (10.1073/pnas.0405302102) PubMed DOI PMC
Ricci V, Ronco F, Musilova Z, Salzburger W. 2022. Molecular evolution and depth-related adaptations of rhodopsin in the adaptive radiation of cichlid fishes in Lake Tanganyika. Mol. Ecol. 31, 2882-2897. (10.1111/mec.16429) PubMed DOI PMC
Malinsky M, et al. 2015. Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake. Science 350, 1493-1498. (10.1126/science.aac9927) PubMed DOI PMC
Musilova Z, et al. . 2019. Evolution of the visual sensory system in cichlid fishes from crater lake Barombi Mbo in Cameroon. Mol. Ecol. 28, 5010-5031. (10.1111/mec.15217) PubMed DOI
Douglas RH, Hunt DM, Bowmaker JK.. 2013. Spectral sensitivity tuning in the deep-sea. In Sensory processing in aquatic environments, pp. 323–342. New York, NY: Springer.
Yokoyama S. 2008. Evolution of dim-light and color vision pigments. Annu. Rev. Genomics Hum. Genet. 9, 259-282. (10.1146/annurev.genom.9.081307.164228) PubMed DOI
Yokoyama S, Jia H. 2020. Origin and adaptation of green-sensitive (RH2) pigments in vertebrates. FEBS Open Biol. 10, 873-882. (10.1002/2211-5463.12843) PubMed DOI PMC
Carleton KL, Kocher TD. 2001. Cone opsin genes of African cichlid fishes: tuning spectral sensitivity by differential gene expression. Mol. Biol. Evol. 18, 1540-1550. (10.1093/oxfordjournals.molbev.a003940) PubMed DOI
Manousaki T, et al. . 2013. Parsing parallel evolution: ecological divergence and differential gene expression in the adaptive radiations of thick-lipped Midas cichlid fishes from Nicaragua. Mol. Ecol. 22, 650-669. (10.1111/mec.12034) PubMed DOI
Evans BI, Browman HI. 2004. Variation in the development of the fish retina. In American Fisheries Society Symposium, vol. 40, pp. 145–166.
Härer A, Torres-Dowdall J, Meyer A. 2017. Rapid adaptation to a novel light environment: the importance of ontogeny and phenotypic plasticity in shaping the visual system of Nicaraguan Midas cichlid fish (Amphilophus citrinellus spp.). Mol. Ecol. 26, 5582-5593. PubMed
Shand J, Hart NS, Thomas N, Partridge JC. 2002. Developmental changes in the cone visual pigments of black bream Acanthopagrus butcheri. J. Exp. Biol. 205, 3661-3667. PubMed
Cottrill PB, Davies WL, Bowmaker JK, Hunt DM, Jeffery G. 2009. Developmental dynamics of cone photoreceptors in the eel. BMC Dev. Biol. 9, 1-9. (10.1186/1471-213X-9-71) PubMed DOI PMC
Fogg LG, Cortesi F, Lecchini D, Gache C, Marshall NJ, De Busserolles F. 2022. Development of dim-light vision in the nocturnal reef fish family Holocentridae I: retinal gene expression. J. Exp. Biol. 225, jeb244513. PubMed PMC
Roux N, et al. . 2022. The multi-level regulation of clownfish metamorphosis by thyroid hormones. bioRxiv. (10.1101/2022.03.04.482938) DOI
Stieb SM, Carleton KL, Cortesi F, Marshall NJ, Salzburger W. 2016. Depth-dependent plasticity in opsin gene expression varies between damselfish (Pomacentridae) species. Mol. Ecol. 25, 3645-3661. (10.1111/mec.13712) PubMed DOI
Chang CH, Catchen J, Moran RL, Rivera-Colón AG, Wang YC, Fuller RC. 2021. Sequence analysis and ontogenetic expression patterns of cone opsin genes in the bluefin killifish (Lucania goodei). J. Hered. 112, 357-366. (10.1093/jhered/esab017) PubMed DOI
Chang CH, Wang YC, Shao YT, Liu SH. 2020. Phylogenetic analysis and ontogenetic changes in the cone opsins of the western mosquitofish (Gambusia affinis). PLoS ONE 15, e0240313. (10.1371/journal.pone.0240313) PubMed DOI PMC
Allison WT, Dann SG, Veldhoen KM, Hawryshyn CW. 2006. Degeneration and regeneration of ultraviolet cone photoreceptors during development in rainbow trout. J. Comp. Neurol. 499, 702-715. (10.1002/cne.21164) PubMed DOI
Cortesi F, et al. 2016. From crypsis to mimicry: changes in colour and the configuration of the visual system during ontogenetic habitat transitions in a coral reef fish. J. Exp. Biol. 219, 2545-2558. PubMed
Savelli I, Novales Flamarique I, Iwanicki T, Taylor JS. 2018. Parallel opsin switches in multiple cone types of the starry flounder retina: tuning visual pigment composition for a demersal life style. Sci. Rep. 8, 4763. (10.1038/s41598-018-23008-y) PubMed DOI PMC
De Busserolles F, Marshall NJ, Collin SP. 2014. The eyes of lanternfishes (Myctophidae, teleostei): novel ocular specializations for vision in dim light. J. Comp. Neurol. 522, 1618-1640. (10.1002/cne.23495) PubMed DOI
Tettamanti V, de Busserolles F, Lecchini D, Marshall NJ, Cortesi F. 2019. Visual system development of the spotted unicornfish, Naso brevirostris (Acanthuridae). J. Exp. Biol. 222, jeb209916. PubMed
King JR, McFarlane GA. 2003. Marine fish life history strategies: applications to fishery management. Fish. Manage. Ecol. 10, 249-264. (10.1046/j.1365-2400.2003.00359.x) DOI
Helfman G, Collette BB, Facey DE, Bowen BW. 2009. The diversity of fishes: biology, evolution, and ecology. West Sussex, UK: John Wiley & Sons.
Betancur RR, et al. 2017. Phylogenetic classification of bony fishes. BMC Evol. Biol. 17, 162. (10.1186/s12862-017-0958-3) PubMed DOI PMC
Andrews S. 2017. FastQC: a quality control tool for high throughput sequence data. 2010. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
Kearse M, et al. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-1649. (10.1093/bioinformatics/bts199) PubMed DOI PMC
de Busserolles F, et al. 2017. Pushing the limits of photoreception in twilight conditions: the rod-like cone retina of the deep-sea pearlsides. Sci. Adv. 3, eaao4709. (10.1126/sciadv.aao4709) PubMed DOI PMC
Cribari-Neto F, Zeileis A. 2010. Beta regression in R. J. Stat. Softw. 34, 1-24. (10.18637/jss.v034.i02) DOI
Evans BI, Fernald RD. 1990. Metamorphosis and fish vision. J. Neurobiol. 21, 1037-1052. (10.1002/neu.480210709) PubMed DOI
Fuiman LA. 1993. Development of predator evasion in Atlantic herring, Clupea harengus L. Anim. Behav. 45, 1101-1116. (10.1006/anbe.1993.1135) DOI
Pankhurst PM, Pankhurst NW, Montgomery JC. 1993. Comparison of behavioural and morphological measures of visual acuity during ontogeny in a teleost fish, Forsterygion varium, Tripterygiidae (Forster, 1801). Brain Behav. Evol. 42, 178-188. (10.1159/000114151) PubMed DOI
Fuiman LA, Delbos BC. 1998. Developmental changes in visual sensitivity of red drum, Sciaenops ocellatus. Copeia 1998, 936-943. (10.2307/1447340) DOI
Hunter JR, Coyne KM. 1982. The onset of schooling in northern anchovy larvae, Engraulis mordax. CalCOFI Rep. 23, 246-251.
Blaxter JHS. 1986. Development of sense organs and behaviour of teleost larvae with special reference to feeding and predator avoidance. Trans. Am. Fish. Soc. 115, 98-114. (10.1577/1548-8659(1986)115<98:NLFCDO>2.0.CO;2) DOI
Carvalho PS, Noltie DB, Tillitt DE. 2002. Ontogenetic improvement of visual function in the medaka Oryzias latipes based on an optomotor testing system for larval and adult fish. Anim. Behav. 64, 1-10. (10.1006/anbe.2002.3028) DOI
Magnuson JT, Stieglitz JD, Garza SA, Benetti DD, Grosell M, Roberts AP. 2020. Development of visual function in early life stage mahi-mahi (Coryphaena hippurus). Mar. Freshw. Behav. Physiol. 53, 203-214. (10.1080/10236244.2020.1804300) DOI
Simoes BF, et al. 2016. Multiple rod–cone and cone–rod photoreceptor transmutations in snakes: evidence from visual opsin gene expression. Proc. R. Soc. B 283, 20152624. (10.1098/rspb.2015.2624) PubMed DOI PMC
Schott RK, Bhattacharyya N, Chang BS. 2019. Evolutionary signatures of photoreceptor transmutation in geckos reveal potential adaptation and convergence with snakes. Evolution 73, 1958-1971. (10.1111/evo.13810) PubMed DOI
Wagner HJ, Partridge JC, Douglas RH. 2019. Observations on the retina and ‘optical fold’ of a mesopelagic sabretooth fish, Evermanella balbo. Cell Tissue Res. 378, 411-425. (10.1007/s00441-019-03060-4) PubMed DOI
Mariani AP, Boycott BB. 1986. Photoreceptors of the larval tiger salamander retina. Proc. R. Soc. Lond. B 227, 483-492. PubMed
Ylönen O, Heikkilä J, Karjalainen J. 2004. Metabolic depression in UV-B exposed larval coregonids. In Annales Zoologici Fennici, pp. 577-585. Finnish Zoological and Botanical Publishing Board.
Guggiana-Nilo DA, Engert F. 2016. Properties of the visible light phototaxis and UV avoidance behaviors in the larval zebrafish. Front. Behav. Neurosci. 10, 160. PubMed PMC
Browman HI, Flamarique IN, Hawryshyn CW. 1994. Ultraviolet photoreception contributes to prey search behavior in two species of zooplanktivorous fishes. J. Exp. Biol. 186, 187-198. (10.1242/jeb.186.1.187) PubMed DOI
Flamarique IN. 2013. Opsin switch reveals function of the ultraviolet cone in fish foraging. Proc. R. Soc. B 280, 20122490. (10.1098/rspb.2012.2490) PubMed DOI PMC
Fattah IA, Castilho NMSM, Valenti WC. 2015. Zooplankton capturing by Nile Tilapia, Oreochromis niloticus (Teleostei: Cichlidae) throughout post-larval development. Zoologia (Curitiba) 32, 469-475. (10.1590/s1984-46702015000600006) DOI
Britt LL, Loew ER, McFarland WN. 2001. Visual pigments in the early life stages of Pacific northwest marine fishes. J. Exp. Biol. 204, 2581-2587. PubMed
Smith EJ, Partridge JC, Parsons KN, White EM, Cuthill IC, Bennett AT, Church SC. 2002. Ultraviolet vision and mate choice in the guppy (Poecilia reticulata). Behav. Ecol. 13, 11-19. (10.1093/beheco/13.1.11) DOI
Siebeck UE, Parker AN, Sprenger D, Mäthger LM, Wallis G. 2010. A species of reef fish that uses ultraviolet patterns for covert face recognition. Curr. Biol. 20, 407-410. (10.1016/j.cub.2009.12.047) PubMed DOI
Rick IP, Bakker TC. 2008. Males do not see only red: UV wavelengths and male territorial aggression in the three-spined stickleback (Gasterosteus aculeatus). Naturwissenschaften 95, 631-638. (10.1007/s00114-008-0365-0) PubMed DOI
Spady TC, Parry JW, Robinson PR, Hunt DM, Bowmaker JK, Carleton KL. 2006. Evolution of the cichlid visual palette through ontogenetic subfunctionalization of the opsin gene arrays. Mol. Biol. Evol. 23, 1538-1547. PubMed
Cheng CL, Flamarique IN. 2007. Chromatic organization of cone photoreceptors in the retina of rainbow trout: single cones irreversibly switch from UV (SWS1) to blue (SWS2) light sensitive opsin during natural development. J. Exp. Biol. 210, 4123-4135. (10.1242/jeb.009217) PubMed DOI
Hofmann CM, O'Quin KE, Marshall NJ, Cronin TW, Seehausen O, Carleton KL. 2009. The eyes have it: regulatory and structural changes both underlie cichlid visual pigment diversity. PLoS Biol. 7, e1000266. (10.1371/journal.pbio.1000266) PubMed DOI PMC
Marshall NJ, Jennings K, McFarland WN, Loew ER, Losey GS. 2003. Visual biology of Hawaiian coral reef fishes. III. Environmental light and an integrated approach to the ecology of reef fish vision. Copeia 2003, 467-480.
Stieb SM, Cortesi F, Sueess L, Carleton KL, Salzburger W, Marshall NJ. 2017. Why UV vision and red vision are important for damselfish (Pomacentridae): structural and expression variation in opsin genes. Mol. Ecol. 26, 1323-1342. (10.1111/mec.13968) PubMed DOI
Watson CT, et al. 2011. Gene duplication and divergence of long wavelength-sensitive opsin genes in the Guppy, Poecilia reticulata. J. Mol. Evol. 72, 240-252. (10.1007/s00239-010-9426-z) PubMed DOI
Hope A, Partridge J, Hayes P. 1998. Rod opsin shifts in the European eel, Anguilla anguilla (L). Proc. R. Soc. B 265, 869-874. (10.1098/rspb.1998.0372) PubMed DOI PMC
Lupše N, Kłodawska M, Truhlářová V, Košátko P, Kašpar V, Bitja Nyom AR, Musilova Z. 2022. Developmental changes of opsin gene expression in ray-finned fishes (Actinopterygii). Figshare. (10.6084/m9.figshare.c.6251658) PubMed DOI PMC
Developmental changes of opsin gene expression in ray-finned fishes (Actinopterygii)