Molecular evolution and depth-related adaptations of rhodopsin in the adaptive radiation of cichlid fishes in Lake Tanganyika

. 2022 May ; 31 (10) : 2882-2897. [epub] 20220330

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35302684

The visual sensory system is essential for animals to perceive their environment and is thus under strong selection. In aquatic environments, light intensity and spectrum differ primarily along a depth gradient. Rhodopsin (RH1) is the only opsin responsible for dim-light vision in vertebrates and has been shown to evolve in response to the respective light conditions, including along a water depth gradient in fishes. In this study, we examined the diversity and sequence evolution of RH1 in virtually the entire adaptive radiation of cichlid fishes in Lake Tanganyika, focusing on adaptations to the environmental light with respect to depth. We show that Tanganyikan cichlid genomes contain a single copy of RH1. The 76 variable amino acid sites detected in RH1 across the radiation were not uniformly distributed along the protein sequence, and 31 of these variable sites show signals of positive selection. Moreover, the amino acid substitutions at 15 positively selected sites appeared to be depth-related, including three key tuning sites that directly mediate shifts in the peak spectral sensitivity, one site involved in protein stability and 11 sites that may be functionally important on the basis of their physicochemical properties. Among the strongest candidate sites for deep-water adaptations are two known key tuning sites (positions 292 and 299) and three newly identified variable sites (37, 104 and 290). Our study, which is the first comprehensive analysis of RH1 evolution in a massive adaptive radiation of cichlid fishes, provides novel insights into the evolution of RH1 in a freshwater environment.

Zobrazit více v PubMed

Boughman, J. W. (2002). How sensory drive can promote speciation. Trends in Ecology and Evolution, 17(12), 571–577. 10.1016/S0169-5347(02)02595-8 DOI

Bowmaker, J. K. (2008). Evolution of vertebrate visual pigments. Vision Research, 48, 2022–2041. 10.1016/j.visres.2008.03.025 PubMed DOI

Carleton, K. L. , Escobar‐Camacho, D. , Stieb, S. M. , Cortesi, F. , & Marshall, N. J. (2020). Seeing the rainbow: Mechanisms underlying spectral sensitivity in teleost fishes. Journal of Experimental Biology, 223(8), jeb193334. 10.1242/jeb.193334 PubMed DOI PMC

Castiglione, G. M. , & Chang, B. S. W. (2018). Functional trade‐offs and environmental variation shaped ancient trajectories in the evolution of dim‐light vision. eLife, 7, 1–30. 10.7554/eLife.35957 PubMed DOI PMC

Charif, D. , & Lobry, J. R. (2007). SeqinR 1.0‐2: A contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis. In Bastolla U., Porto M., Roman H. E., & Vendruscolo M. (Eds.), Structural approaches to sequence evolution: Molecules, networks, populations, series Biological and Medical Physics, Biomedical Engineering (pp. 207–232). Springer Verlag.

Darriba, D. , Taboada, G. L. , Doallo, R. , & Posada, D. (2011). ProtTest 3: Fast selection of best‐fit models of protein evolution. Bioinformatics, 27(8), 1164–1165. 10.1093/bioinformatics/btr088 PubMed DOI PMC

Darriba, D. , Taboada, G. L. , Doallo, R. , & Posada, D. (2012). JModelTest 2: More models, new heuristics and parallel computing. Nature Methods, 9(8), 772. 10.1038/nmeth.2109 PubMed DOI PMC

Davies, W. I. L. , Collin, S. P. , & Hunt, D. M. (2012). Molecular ecology and adaptation of visual photopigments in craniates. Molecular Ecology, 21(13), 3121–3158. 10.1111/j.1365-294X.2012.05617.x PubMed DOI

Escobar‐Camacho, D. , & Carleton, K. L. (2015). Sensory modalities in cichlid fish behavior. Current Opinion in Behavioral Sciences, 6, 115–124. 10.1016/j.cobeha.2015.11.002 PubMed DOI PMC

Fotiadis, D. , Liang, Y. , Filipek, S. , Saperstein, D. A. , Engel, A. , & Palczewski, K. (2003). Rhodopsin dimers in native disc membranes. Nature, 421(6919), 127–128. PubMed

Guo, W. , Shi, L. , Filizola, M. , Weinstein, H. , & Javitch, J. A. (2005). Crosstalk in G protein‐coupled receptors: Changes at the transmembrane homodimer interface determine activation. Proceedings of the National Academy of Sciences of the United States of America, 102(48), 17495–17500. 10.1073/pnas.0508950102 PubMed DOI PMC

Hauser, F. E. , & Chang, B. S. (2017). Insights into visual pigment adaptation and diversity from model ecological and evolutionary systems. Current Opinion in Genetics and Development, 47(November), 110–120. 10.1016/j.gde.2017.09.005 PubMed DOI

Hauzman, E. , Bonci, D. M. O. , Suárez‐Villota, E. Y. , Neitz, M. , & Ventura, D. F. (2017). Daily activity patterns influence retinal morphology, signatures of selection, and spectral tuning of opsin genes in colubrid snakes. BMC Evolutionary Biology, 17(1), 1–14. 10.1186/s12862-017-1110-0 PubMed DOI PMC

Hofmann, C. M. , O’Quin, K. E. , Marshall, N. J. , Cronin, T. W. , Seehausen, O. , & Carleton, K. L. (2009). The eyes have it: Regulatory and structural changes both underlie cichlid visual pigment diversity. PLoS Biology, 7(12), e1000266. 10.1371/journal.pbio.1000266 PubMed DOI PMC

Hope, A. J. , Partridge, J. C. , Dulai, K. S. , & Hunt, D. M. (1997). Mechanisms of wavelength tuning in the rod opsins of deep‐sea fishes. Proceedings of the Royal Society B: Biological Sciences, 264(1379), 155–163. 10.1098/rspb.1997.0023 PubMed DOI PMC

Hunt, D. M. , & Collin, S. P. (2014). The evolution of photoreceptors and visual photopigments in vertebrates. In Hunt D. M., Hankins M. W., Collin S. P. & Marshall N. J. (Eds.), Evolution of visual and non‐visual pigments (pp. 163–217). 10.1007/978-1-4614-4355-1 DOI

Hunt, D. M. , Dulai, K. S. , Partridge, J. C. , Cottrill, P. , & Bowmaker, J. K. (2001). The molecular basis for spectral tuning of rod visual pigments in deep‐sea fish. Journal of Experimental Biology, 204(19), 3333–3344. 10.1242/jeb.204.19.3333 PubMed DOI

Hunt, D. M. , Fitzgibbon, J. , Slobodyanyuk, S. J. , & Bowmaker, J. K. (1996). Spectral tuning and molecular evolution of rod visual pigments in the species flock of cottoid fish in Lake Baikal. Vision Research, 36(9), 1217–1224. 10.1016/0042-6989(95)00228-6 PubMed DOI

Katoh, K. , & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772–780. 10.1093/molbev/mst010 PubMed DOI PMC

Kocher, T. D. (2004). Adaptive evolution and explosive speciation: The cichlid fish model. Nature Reviews Genetics, 5(4), 288–298. 10.1038/nrg1316 PubMed DOI

Kosakovsky Pond, S. L. , Frost, S. D. W. , & Muse, S. V. (2005). HyPhy: Hypothesis testing using phylogenies. Bioinformatics, 21(5), 676–679. 10.1093/bioinformatics/bti079 PubMed DOI

Li, H. , & Durbin, R. (2009). Fast and accurate short read alignment with Burrows‐Wheeler transform. Bioinformatics, 25(14), 1754–1760. 10.1093/bioinformatics/btp324 PubMed DOI PMC

Li, H. , Handsaker, B. , Wysoker, A. , Fennell, T. , Ruan, J. , Homer, N. , Marth, G. , Abecasis, G. , & Durbin, R. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16), 2078–2079. 10.1093/bioinformatics/btp352 PubMed DOI PMC

Lin, J. J. , Wang, F. Y. , Li, W. H. , & Wang, T. Y. (2017). The rises and falls of opsin genes in 59 ray‐finned fish genomes and their implications for environmental adaptation. Scientific Reports, 7(1), 1–13. 10.1038/s41598-017-15868-7 PubMed DOI PMC

Maan, M. E. , Hofker, K. D. , Van Alphen, J. J. M. , & Seehausen, O. (2006). Sensory drive in cichlid speciation. The American Naturalist, 167(6), 947–954. 10.1086/503532 PubMed DOI

Malinsky, M. , Challis, R. J. , Tyers, A. M. , Schiffels, S. , Terai, Y. , Ngatunga, B. P. , Miska, E. A. , Durbin, R. , Genner, M. J. , & Turner, G. F. (2015). Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake. Science, 350(6267), 1493–1498. 10.1126/science.aac9927 PubMed DOI PMC

Mano, H. , Kojima, D. , & Fukada, Y. (1999). Exo‐rhodopsin: A novel rhodopsin expressed in the zebrafish pineal gland. Molecular Brain Research, 73(1–2), 110–118. 10.1016/S0169-328X(99)00242-9 PubMed DOI

McGee, M. D. , Borstein, S. R. , Meier, J. I. , Marques, D. A. , Mwaiko, S. , Taabu, A. , Kishe, M. A. , O’Meara, B. , Bruggmann, R. , Excoffier, L. , & Seehausen, O. (2020). The ecological and genomic basis of explosive adaptive radiation. Nature, 586, 75–79. 10.1038/s41586-020-2652-7 PubMed DOI

Menon, S. T. , Han, M. , & Sakmar, T. P. (2001). Rhodopsin: Structural basis of molecular physiology. Physiological Reviews, 81(4), 1659–1688. 10.1152/physrev.2001.81.4.1659 PubMed DOI

Miyagi, R. , Terai, Y. , Aibara, M. , Sugawara, T. , Imai, H. , Tachida, H. , Mzighani, S. I. , Okitsu, T. , Wada, A. , & Okada, N. (2012). Correlation between nuptial colors and visual sensitivities tuned by opsins leads to species richness in sympatric Lake Victoria cichlid fishes. Molecular Biology and Evolution, 29(11), 3281–3296. 10.1093/molbev/mss139 PubMed DOI

Munz, F. W. , & McFarland, W. N. (1977). Evolutionary adaptations of fishes to the photic environment. In Crescitelli F. (Ed.), The visual system in vertebrates (pp. 193–274). Springer Verlag. 10.1007/978-3-642-66468-7_4 DOI

Muschick, M. , Indermaur, A. , & Salzburger, W. (2012). Convergent evolution within an adaptive radiation of cichlid fishes. Current Biology, 22(24), 10.1016/j.cub.2012.10.048 PubMed DOI

Musilova, Z. , Cortesi, F. , Matschiner, M. , Davies, W. I. L. , Patel, J. S. , Stieb, S. M. , De Busserolles, F. , Malmstrøm, M. , Tørresen, O. K. , Brown, C. J. , Mountford, J. K. , Hanel, R. , Stenkamp, D. L. , Jakobsen, K. S. , Carleton, K. L. , Jentoft, S. , Marshall, J. , & Salzburger, W. (2019). Vision using multiple distinct rod opsins in deep‐sea fishes. Science, 364(6440), 588–592. 10.1126/science.aav4632 PubMed DOI PMC

Musilova, Z. , Indermaur, A. , Bitja‐Nyom, A. R. , Omelchenko, D. , Kłodawska, M. , Albergati, L. , Remišová, K. , & Salzburger, W. (2019). Evolution of the visual sensory system in cichlid fishes from crater lake Barombi Mbo in Cameroon. Molecular Ecology, 28, 5010–5031. 10.1111/mec.15217 PubMed DOI

Musilova, Z. , Salzburger, W. , & Cortesi, F. (2021). The visual opsin gene repertoires of teleost fishes: Evolution, ecology, and function. Annual Review of Cell and Developmental Biology, 37(1), 441–468. 10.1146/annurev-cellbio-120219-024915 PubMed DOI

Nagai, H. , Terai, Y. , Sugawara, T. , Imai, H. , Nishihara, H. , Hori, M. , & Okada, N. (2011). Reverse evolution in RH1 for adaptation of cichlids to water depth in Lake Tanganyika. Molecular Biology and Evolution, 28(6), 1769–1776. 10.1093/molbev/msq344 PubMed DOI

Nguyen, L. T. , Schmidt, H. A. , Von Haeseler, A. , & Minh, B. Q. (2014). IQ‐TREE: A fast and effective stochastic algorithm for estimating maximum‐likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268–274. 10.1093/molbev/msu300 PubMed DOI PMC

Ou, W.‐b. , Yi, T. , Kim, J. M. , & Khorana, H. G . (2011). The roles of transmembrane domain helix‐III during rhodopsin photoactivation. PLoS One, 6(2), 1–13. 10.1371/journal.pone.0017398 PubMed DOI PMC

Palczewski, K. , Kumasaka, T. , Hori, T. , Behnke, C. A. , Motoshima, H. , Fox, B. A. , Le Trong, I. , Teller, D. C. , Okada, T. , Stenkamp, R. E. , Yamamoto, M. , & Miyano, M. (2000). Crystal structure of rhodopsin: A G protein‐coupled receptor. Science, 289(5480), 739–745. 10.1126/science.289.5480.739 PubMed DOI

Paradis, E. , Claude, J. , & Strimmer, K. (2004). APE: Analyses of phylogenetics and evolution in R language. Bioinformatics, 20(2), 289–290. 10.1093/bioinformatics/btg412 PubMed DOI

Porter, M. L. , Roberts, N. W. , & Partridge, J. C. (2016). Evolution under pressure and the adaptation of visual pigment compressibility in deep‐sea environments. Molecular Phylogenetics and Evolution, 105, 160–165. 10.1016/j.ympev.2016.08.007 PubMed DOI

Quinlan, A. R. , & Hall, I. M. (2010). BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics, 26(6), 841–2. 10.1093/bioinformatics/btq033 PubMed DOI PMC

Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3(2), 217–223. 10.1111/j.2041-210X.2011.00169.x DOI

Robinson, D. F. , & Foulds, L. R. (1981). Comparison of phylogenetic trees. Mathematical Biosciences, 53(1–2), 10.1016/0025-5564(81)90043-2 DOI

Ronco, F. , Matschiner, M. , Böhne, A. , Boila, A. , Büscher, H. H. , El Taher, A. , Indermaur, A. , Malinsky, M. , Ricci, V. , Kahmen, A. , Jentoft, S. , & Salzburger, W. (2021). Drivers and dynamics of a massive adaptive radiation in cichlid fishes. Nature, 589(February), 76–81. 10.1038/s41586-020-2930-4 PubMed DOI

Ronquist, F. , & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12), 1572–1574. 10.1093/bioinformatics/btg180 PubMed DOI

Salzburger, W. (2018). Understanding explosive diversification through cichlid fish genomics. Nature Reviews Genetics, 19(11), 705–717. 10.1038/s41576-018-0043-9 PubMed DOI

Salzburger, W. , Bocxlaer, B. V. , & Cohen, A. S. (2014). Ecology and evolution of the African great lakes and their faunas. Annual Review of Ecology, Evolution, and Systematics, 45, 519–545. 10.1146/annurev-ecolsys-120213-091804 DOI

Salzburger, W. , Ewing, G. B. , & Von Haeseler, A. (2011). The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Molecular Ecology, 20(9), 1952–1963. 10.1111/j.1365-294X.2011.05066.x PubMed DOI

Salzburger, W. , Mack, T. , Verheyen, E. , & Meyer, A. (2005). Out of Tanganyika: Genesis, explosive speciation, key‐innovations and phylogeography of the haplochromine cichlid fishes. BMC Evolutionary Biology, 5(1983), 1–15. 10.1186/1471-2148-5-17 PubMed DOI PMC

Schliep, K. P. (2011). phangorn: Phylogenetic analysis in R. Bioinformatics, 27(4), 592–593. 10.1093/bioinformatics/btq706 PubMed DOI PMC

Schneider, R. F. , Rometsch, S. J. , Torres‐Dowdall, J. , & Meyer, A. (2020). Habitat light sets the boundaries for the rapid evolution of cichlid fish vision, while sexual selection can tune it within those limits. Molecular Ecology, 29(8), 1476–1493. 10.1111/mec.15416 PubMed DOI

Schott, R. K. , Refvik, S. P. , Hauser, F. E. , López‐Fernández, H. , & Chang, B. S. W. (2014). Divergent positive selection in rhodopsin from lake and riverine cichlid fishes. Molecular Biology and Evolution, 31(5), 1149–1165. 10.1093/molbev/msu064 PubMed DOI

Seehausen, O. , Terai, Y. , Magalhaes, I. S. , Carleton, K. L. , Mrosso, H. D. J. , Miyagi, R. , Van Der Sluijs, I. , Schneider, M. V. , Maan, M. E. , Tachida, H. , Imai, H. , & Okada, N. (2008). Speciation through sensory drive in cichlid fish. Nature, 455(7213), 620–626. 10.1038/nature07285 PubMed DOI

Spady, T. C. , Seehausen, O. , Loew, E. R. , Jordan, R. C. , Kocher, T. D. , & Carleton, K. L. (2005). Adaptive molecular evolution in the opsin genes of rapidly speciating cichlid species. Molecular Biology and Evolution, 22(6), 1412–1422. 10.1093/molbev/msi137 PubMed DOI

Sugawara, T. , Terai, Y. , Imai, H. , Turner, G. F. , Koblmüller, S. , Sturmbauer, C. , Shichida, Y. , & Okada, N. (2005). Parallelism of amino acid changes at the RH1 affecting spectral sensitivity among deep‐water cichlids from Lakes Tanganyika and Malawi. Proceedings of the National Academy of Sciences of the United States of America, 102(15), 5448–5453. 10.1073/pnas.0405302102 PubMed DOI PMC

Talling, J. F. (1991). Lake Tanganyika and its life. Coulter G. W. (Ed.) with contributions from J.‐J. Tiercelin, A. Mondegver, R.E. Hecky and R.H. Spigel. Aquatic conservation: Marine and freshwater ecosystems (pp. 190‐191). British Museum (Natural History) Publications — Oxford University Press. 10.1016/0169-5347(91)90231-l DOI

Team R Development Core (2018). A language and environment for statistical computing. R Foundation for Statistical Computing; (p. 2). https://www.R‐project.org

Terai, Y. , Mayer, W. E. , Klein, J. , Tichy, H. , & Okada, N. (2002). The effect of selection on a long wavelength‐sensitive (LWS) opsin gene of Lake Victoria cichlid fishes. Proceedings of the National Academy of Sciences of the United States of America, 99(24), 15501–15506. 10.1073/pnas.232561099 PubMed DOI PMC

Terai, Y. , Miyagi, R. , Aibara, M. , Mizoiri, S. , Imai, H. , Okitsu, T. , Wada, A. , Takahashi‐Kariyazono, S. , Sato, A. , Tichy, H. , Mrosso, H. D. J. , Mzighani, S. I. , & Okada, N. (2017). Visual adaptation in Lake Victoria cichlid fishes: Depth‐related variation of color and scotopic opsins in species from sand/mud bottoms. BMC Evolutionary Biology, 17(1), 1–12. 10.1186/s12862-017-1040-x PubMed DOI PMC

Terai, Y. , Seehausen, O. , Sasaki, T. , Takahashi, K. , Mizoiri, S. , Sugawara, T. , Sato, T. , Watanabe, M. , Konijnendijk, N. , Mrosso, H. D. J. , Tachida, H. , Imai, H. , Shichida, Y. , & Okada, N. (2006). Divergent selection on opsins drives incipient speciation in Lake Victoria cichlids. PLoS Biology, 4(12), 2244–2251. 10.1371/journal.pbio.0040433 PubMed DOI PMC

Terakita, A. (2005). The opsins. Genome Biology, 6(3), 1–9. 10.1186/gb-2005-6-3-213 PubMed DOI PMC

Torres‐Dowdall, J. , Henning, F. , Elmer, K. R. , & Meyer, A. (2015). Ecological and lineage‐specific factors drive the molecular evolution of rhodopsin in cichlid fishes. Molecular Biology and Evolution, 32(11), 2876–2882. 10.1093/molbev/msv159 PubMed DOI

Varela, A. I. , & Ritchie, P. A. (2015). Critical amino acid replacements in the rhodopsin gene of 19 teleost species occupying different light environments from shallow‐waters to the deep‐sea. Environmental Biology of Fishes, 98, 193–200. 10.1007/s10641-014-0249-4 DOI

Warrant, E. J. , & Locket, N. A. (2004). Vision in the deep sea. Biological Reviews of the Cambridge Philosophical Society, 79, 671–712. 10.1017/S1464793103006420 PubMed DOI

Wilgenbusch, J. C. , & Swofford, D. (2003). Inferring evolutionary trees with PAUP *. Current Protocols in Bioinformatics, 00(1), 6.4.1‐6.4.28. 10.1002/0471250953.bi0604s00 PubMed DOI

Wright, D. S. , van Eijk, R. , Schuart, L. , Seehausen, O. , Groothuis, T. G. G. , & Maan, M. E. (2020). Testing sensory drive speciation in cichlid fish: Linking light conditions to opsin expression, opsin genotype and female mate preference. Journal of Evolutionary Biology, 33, 422–434. 10.1111/jeb.13577 PubMed DOI PMC

Yang, Z. (2007). PAML 4: Phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24(8), 1586–1591. 10.1093/molbev/msm088 PubMed DOI

Yokoyama, S. (2008). Evolution of dim‐light and color vision pigments. Annual Review of Genomics and Human Genetics, 9, 259–282. 10.1146/annurev.genom.9.081307.164228 PubMed DOI

Yokoyama, S. , Tada, T. , Zhang, H. , & Britt, L. (2008). Elucidation of phenotypic adaptations: Molecular analyses of dim‐light vision proteins in vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 105(36), 13480–13485. 10.1073/pnas.0802426105 PubMed DOI PMC

Yokoyama, S. , & Yokoyama, R. (1996). Adaptive evolution of photoreceptors and visual pigments in vertebrates. Annual Review of Ecology and Systematics, 27, 543–567.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Developmental changes of opsin gene expression in ray-finned fishes (Actinopterygii)

. 2022 Nov 09 ; 289 (1986) : 20221855. [epub] 20221102

Zobrazit více v PubMed

Dryad
10.5061/dryad.4mw6m90c7

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...