The round goby genome provides insights into mechanisms that may facilitate biological invasions
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
31992286
PubMed Central
PMC6988351
DOI
10.1186/s12915-019-0731-8
PII: 10.1186/s12915-019-0731-8
Knihovny.cz E-zdroje
- Klíčová slova
- Adaptation, Detoxification, Epigenetics, Evolution, Fish, Gene duplication, Genomics, Innate immunity, Invasive species, Neogobius melanostomus, Olfaction, Osmoregulation, PacBio, Vision,
- MeSH
- genom * MeSH
- ryby genetika fyziologie MeSH
- zavlečené druhy * MeSH
- zvířata MeSH
- zvláštnosti životní historie * MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The invasive benthic round goby (Neogobius melanostomus) is the most successful temperate invasive fish and has spread in aquatic ecosystems on both sides of the Atlantic. Invasive species constitute powerful in situ experimental systems to study fast adaptation and directional selection on short ecological timescales and present promising case studies to understand factors involved the impressive ability of some species to colonize novel environments. We seize the unique opportunity presented by the round goby invasion to study genomic substrates potentially involved in colonization success. RESULTS: We report a highly contiguous long-read-based genome and analyze gene families that we hypothesize to relate to the ability of these fish to deal with novel environments. The analyses provide novel insights from the large evolutionary scale to the small species-specific scale. We describe expansions in specific cytochrome P450 enzymes, a remarkably diverse innate immune system, an ancient duplication in red light vision accompanied by red skin fluorescence, evolutionary patterns of epigenetic regulators, and the presence of osmoregulatory genes that may have contributed to the round goby's capacity to invade cold and salty waters. A recurring theme across all analyzed gene families is gene expansions. CONCLUSIONS: The expanded innate immune system of round goby may potentially contribute to its ability to colonize novel areas. Since other gene families also feature copy number expansions in the round goby, and since other Gobiidae also feature fascinating environmental adaptations and are excellent colonizers, further long-read genome approaches across the goby family may reveal whether gene copy number expansions are more generally related to the ability to conquer new habitats in Gobiidae or in fish.
Biocenter University of Basel Klingelbergstrasse 50 70 4056 Basel Switzerland
Department of Biology McMaster University 1280 Main Street West Hamilton ON Canada
Department of Marine Sciences University of Gothenburg Medicinaregatan 9C 41390 Gothenburg Sweden
Department of Zoology Charles University Vinicna 7 12844 Prague Czech Republic
Genetic Diversity Centre ETH Universitätsstrasse 16 8092 Zurich Switzerland
Institute for Genetics University of Cologne Zülpicher Strasse 47a 50674 Köln Germany
Research Institute of Molecular Pathology 1030 Vienna Austria
University of Bern Institute for Fish and Wildlife Health Länggassstrasse 122 3012 Bern Austria
Zobrazit více v PubMed
Prentis PJ, Wilson JR, Dormontt EE, Richardson D, Lowe AJ. Adaptive evolution in invasive species. Trends Plant Sci. 2008;13(6):288–294. doi: 10.1016/j.tplants.2008.03.004. PubMed DOI
Tsutsui ND, Suarez AV, Holway DA, Case TJ. Reduced genetic variation and the success of an invasive species. Proc Natl Acad Sci. 2000;97(11):5948. doi: 10.1073/pnas.100110397. PubMed DOI PMC
Lee CE. Evolutionary genetics of invasive species. Trends Ecol Evolution. 2002;17(8):386–391. doi: 10.1016/S0169-5347(02)02554-5. DOI
Bock DG, Caseys C, Cousens RD, Hahn MA, Heredia SM, Hübner S, et al. What we still don’t know about invasion genetics. Mol Ecol. 2015;24(9):2277–2297. doi: 10.1111/mec.13032. PubMed DOI
Jude DJ, Reider RH, Smith GR. Establishment of Gobiidae in the Great Lakes Basin. Can J Fish Aquat Sci. 1992;49(2):416–421. doi: 10.1139/f92-047. DOI
Michalek M, Puntila R, Strake S, Werner M. HELCOM Baltic Sea Environment Fact Sheet 2012: Helcom. 2012.
Roche KF, Janač M, Jurajda P. A review of Gobiid expansion along the Danube-Rhine corridor – geopolitical change as a driver for invasion. Knowl Manag Aquat Ecosyst. 2013;3(411):1. doi: 10.1051/kmae/2013066. DOI
Hirsch Philipp E., N’Guyen Anouk, Adrian-Kalchhauser Irene, Burkhardt-Holm Patricia. What do we really know about the impacts of one of the 100 worst invaders in Europe? A reality check. Ambio. 2015;45(3):267–279. doi: 10.1007/s13280-015-0718-9. PubMed DOI PMC
Aparicio S, Chapman J, Stupka E, Putnam N, Chia J, Dehal P, et al. Whole-genome shotgun assembly and analysis of the genome of fugu rubripes. Science. 2002;297(5585):1301. doi: 10.1126/science.1072104. PubMed DOI
Amemiya CT, Alföldi J, Lee AP, Fan S, Philippe H, MacCallum I, et al. The African coelacanth genome provides insights into tetrapod evolution. Nature. 2013;496:311 EP. doi: 10.1038/nature12027. PubMed DOI PMC
Star B, Nederbragt AJ, Jentoft S, Grimholt U, Malmstrom M, Gregers TF, et al. The genome sequence of Atlantic cod reveals a unique immune system. Nature. 2011;477(7363):207–210. doi: 10.1038/nature10342. PubMed DOI PMC
Li J, Hou G, Kong X, Li C, Zeng J, Li H, et al. The fate of recent duplicated genes following a fourth-round whole genome duplication in a tetraploid fish, common carp (Cyprinus carpio) Scientific Reports. 2015;5:8199 EP. doi: 10.1038/srep08199. PubMed DOI PMC
van Kessel N, Dorenbosch M, Kranenbarg J, van der Velde G, Leuven R. Invasive Ponto-Caspian gobies rapidly reduce the abundance of protected native bullhead. Aquat Invasions. 2016;11(2):179–188. doi: 10.3391/ai.2016.11.2.07. DOI
Burkett EM, Jude DJ. Long-term impacts of invasive round goby Neogobius melanostomus on fish community diversity and diets in the St. Clair River, Michigan. J Great Lakes Res. 2015;41(3):862–872. doi: 10.1016/j.jglr.2015.05.004. DOI
Števove B, Kováč V. Do invasive bighead goby Neogobius kessleri and round goby N. melanostomus (Teleostei, Gobiidae) compete for food? Knowledge and Management of Aquatic. Ecosystems. 2013;410:8.
Dufour BA, Hogan TM, Heath DD. Ten polymorphic microsatellite markers in the invasive round goby (Neogobius melanostomus) and cross-species amplification. Mol Ecol Notes. 2007;7(6):1205–1207. doi: 10.1111/j.1471-8286.2007.01833.x. DOI
Adrian-Kalchhauser I, Svensson O, Kutschera VE, Alm Rosenblad M, Pippel M, Winkler S, et al. The mitochondrial genome sequences of the round goby and the sand goby reveal patterns of recent evolution in gobiid fish. BMC Genomics. 2017;18(1):177. doi: 10.1186/s12864-017-3550-8. PubMed DOI PMC
Feldheim KA, Willink P, Brown JE, Murphy DJ, Neilson ME, Stepien CA. Microsatellite loci for Ponto-Caspian gobies: markers for assessing exotic invasions. Mol Ecol Resour. 2009;9(2):639–644. doi: 10.1111/j.1755-0998.2008.02495.x. PubMed DOI
Neilson ME, Stepien CA. Escape from the Ponto-Caspian: evolution and biogeography of an endemic goby species flock (Benthophilinae: Gobiidae: Teleostei) Mol Phylogenet Evol. 2009;52(1):84–102. doi: 10.1016/j.ympev.2008.12.023. PubMed DOI
Bowley LA, Alam F, Marentette JR, Balshine S, Wilson JY. Characterization of vitellogenin gene expression in round goby (Neogobius melanostomus) using a quantitative polymerase chain reaction assay. Environ Toxicol Chem. 2010;29(12):2751–2760. doi: 10.1002/etc.324. PubMed DOI
Thacker CE, Roje DM. Phylogeny of Gobiidae and identification of gobiid lineages. Syst Biodivers. 2011;9(4):329–347. doi: 10.1080/14772000.2011.629011. DOI
Thacker CE, Thompson AR, Roje DM. Phylogeny and evolution of Indo-Pacific shrimp-associated gobies (Gobiiformes: Gobiidae) Mol Phylogenet Evol. 2011;59(1):168–176. doi: 10.1016/j.ympev.2011.02.007. PubMed DOI
Musilova Z, Cortesi F, Matschiner M, Davies WIL, Patel JS, Stieb SM, et al. Vision using multiple distinct rod opsins in deep-sea fishes. Science. 2019;364(6440):588. doi: 10.1126/science.aav4632. PubMed DOI PMC
Seehausen O, van Alphen JJM, Witte F. Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science. 1997;277(5333):1808. doi: 10.1126/science.277.5333.1808. DOI
Seehausen O, Terai Y, Magalhaes IS, Carleton KL, Mrosso HDJ, Miyagi R, et al. Speciation through sensory drive in cichlid fish. Nature. 2008;455(7213):620–U23. doi: 10.1038/nature07285. PubMed DOI
Barth FG, Schmid A, Douglas RH. The ecology of teleost fish visual pigments: a good example of sensory adaptation to the environment?: Ecology of Sensing. Berlin Heidelberg: Springer; 2001.
Hornsby MAW, Sabbah S, Robertson RM, Hawryshyn CW. Modulation of environmental light alters reception and production of visual signals in Nile tilapia. J Exp Biol. 2013;216(16):3110–3122. doi: 10.1242/jeb.081331. PubMed DOI
You X, Bian C, Zan Q, Xu X, Liu X, Chen J, et al. Mudskipper genomes provide insights into the terrestrial adaptation of amphibious fishes. Nat Commun. 2014;5:5594. PubMed PMC
Busserolles F de, Cortesi F, Helvik JV, Davies WIL, Templin RM, Sullivan RKP et al. Pushing the limits of photoreception in twilight conditions: The rod-like cone retina of the deep-sea pearlsides. Sci Adv. 2017;3(11):eaa04709. PubMed PMC
Kenaley CP, Devaney SC, Fjeran TT. The complex evolutionary history of seeing red: molecular phylogeny and the evolution of an adaptive visual system in deep-sea dragonfishes (Stomiiformes: Stomiidae) Evolution. 2014;68(4):996–1013. doi: 10.1111/evo.12322. PubMed DOI
Corkum LD, Arbuckle WJ, Belanger AJ, Gammon DB, Li W, Scott AP, et al. Evidence of a male sex pheromone in the round goby (Neogobius melanostomus) Biol Invasions. 2006;8(1):105–112. doi: 10.1007/s10530-005-0333-y. DOI
Farwell M, Hughes G, Smith JL, Clelland E, Loeb SJ, Semeniuk C, et al. Differential female preference for individual components of a reproductive male round goby (Neogobius melanostomus) pheromone. J Great Lakes Res. 2017;43(2):379–386. doi: 10.1016/j.jglr.2016.12.007. DOI
Tierney KB, Kereliuk M, Katare YK, Scott AP, Loeb SJ, Zielinski B. Invasive male round gobies (Neogobius melanostomus) release pheromones in their urine to attract females. Can J Fish Aquat Sci. 2012;70(3):393–400. doi: 10.1139/cjfas-2012-0246. DOI
Laframboise AJ, Katare Y, Scott AP, Zielinski BS. The effect of elevated steroids released by reproductive male round gobies, Neogobius melanostomus, on olfactory responses in females. J Chem Ecol. 2011;37(3):260–262. doi: 10.1007/s10886-011-9923-6. PubMed DOI
Marentette JR, Gooderham KL, McMaster ME, Ng T, Parrott JL, Wilson JY, et al. Signatures of contamination in invasive round gobies (Neogobius melanostomus): a double strike for ecosystem health? Ecotoxicol Environ Saf. 2010;73(7):1755–1764. doi: 10.1016/j.ecoenv.2010.06.007. PubMed DOI
Marentette JR, Balshine S. Altered prey responses in round goby from contaminated sites. Ethology. 2012;118(9):812–820. doi: 10.1111/j.1439-0310.2012.02071.x. DOI
McCallum ES, Charney RE, Marenette JR, Young JAM, Koops MA, Earn DJD, et al. Persistence of an invasive fish (Neogobius melanostomus) in a contaminated ecosystem. Biol Invasions. 2014;16(11):2449–2461. doi: 10.1007/s10530-014-0677-2. DOI
Goldstone JV, Hamdoun A, Cole BJ, Howard-Ashby M, Nebert DW, Scally M, et al. The chemical defensome: environmental sensing and response genes in the Strongylocentrotus purpuratus genome. Dev Biol. 2006;300(1):366–384. doi: 10.1016/j.ydbio.2006.08.066. PubMed DOI PMC
Ellis SM, MacIsaac HJ. Salinity tolerance of Great Lakes invaders. Freshw Biol. 2009;54(1):77–89. doi: 10.1111/j.1365-2427.2008.02098.x. DOI
Karsiotis SI, Pierce LR, Brown JE, Stepien CA. Salinity tolerance of the invasive round goby: experimental implications for seawater ballast exchange and spread to north American estuaries. J Great Lakes Res. 2012;38(1):121–128. doi: 10.1016/j.jglr.2011.12.010. DOI
Lee KA, Klasing KC. A role for immunology in invasion biology. Trends Ecol Evolution. 2004;19(10):523–529. doi: 10.1016/j.tree.2004.07.012. PubMed DOI
David GM, Staentzel C, Schlumberger O, Perrot-Minnot M, Beisel J, Hardion L. A minimalist macroparasite diversity in the round goby of the Upper Rhine reduced to an exotic acanthocephalan lineage. Parasitology. 2018;145(8):1020–1026. doi: 10.1017/S0031182017002177. PubMed DOI
Jaenisch R, Bird A. Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nature Genetics. 2003;33:245 EP. doi: 10.1038/ng1089. PubMed DOI
Zamudio N, Barau J, Teissandier A, Walter M, Borsos M, Servant N, et al. DNA methylation restrains transposons from adopting a chromatin signature permissive for meiotic recombination. Genes Dev. 2015;29(12):1256–1270. doi: 10.1101/gad.257840.114. PubMed DOI PMC
Choi J, Lyons DB, Kim Y, Moore JD, Zilberman D. DNA methylation and histone H1 cooperatively repress transposable elements and aberrant intragenic transcripts. bioRxiv 2019:527523. PubMed
Feinberg AP, Irizarry RA. Stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. Proc Natl Acad Sci. 2010;107:1757–1764. doi: 10.1073/pnas.0906183107. PubMed DOI PMC
Herman JJ, Sultan SE. DNA methylation mediates genetic variation for adaptive transgenerational plasticity. Proc R Soc B Biol Sci. 2016;283(1838):20160988. doi: 10.1098/rspb.2016.0988. PubMed DOI PMC
Cortijo S, Wardenaar R, Colomé-Tatché M, Gilly A, Etcheverry M, Labadie K, et al. Mapping the epigenetic basis of complex traits. Science. 2014;343(6175):1145. doi: 10.1126/science.1248127. PubMed DOI
Wellband KW, Heath DD. Plasticity in gene transcription explains the differential performance of two invasive fish species. Evol Appl. 2017;10(6):563–576. doi: 10.1111/eva.12463. PubMed DOI PMC
Adrian-Kalchhauser I, Walser J, Schwaiger M, Burkhardt-Holm P. RNA sequencing of early round goby embryos reveals that maternal experiences can shape the maternal RNA contribution in a wild vertebrate. BMC Evol Biol. 2018;18(1):34. doi: 10.1186/s12862-018-1132-2. PubMed DOI PMC
Somerville Vincent, Schwaiger Michaela, Hirsch Philipp E., Walser Jean-Claude, Bussmann Karen, Weyrich Alexandra, Burkhardt-Holm Patricia, Adrian-Kalchhauser Irene. DNA Methylation Patterns in the Round Goby Hypothalamus Support an On-The-Spot Decision Scenario for Territorial Behavior. Genes. 2019;10(3):219. doi: 10.3390/genes10030219. PubMed DOI PMC
Grimm SA, Shimbo T, Takaku M, Thomas JW, Auerbach S, Bennett BD, et al. DNA methylation in mice is influenced by genetics as well as sex and life experience. Nat Commun. 2019;10(1):305. doi: 10.1038/s41467-018-08067-z. PubMed DOI PMC
Weyrich Alexandra, Benz Stephanie, Karl Stephan, Jeschek Marie, Jewgenow Katarina, Fickel Joerns. Paternal heat exposure causes DNA methylation and gene expression changes ofStat3in Wild guinea pig sons. Ecology and Evolution. 2016;6(9):2657–2666. doi: 10.1002/ece3.1993. PubMed DOI PMC
Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature. 2011;469(7330):343–349. doi: 10.1038/nature09784. PubMed DOI PMC
Gibbs DJ, Tedds HM, Labandera A, Bailey M, White MD, Hartman S, et al. Oxygen-dependent proteolysis regulates the stability of angiosperm polycomb repressive complex 2 subunit VERNALIZATION 2. Nat Commun. 2018;9(1):5438. doi: 10.1038/s41467-018-07875-7. PubMed DOI PMC
Martinez P, Vinas AM, Sanchez L, Diaz N, Ribas L, Piferrer F. Genetic architecture of sex determination in fish: applications to sex ratio control in aquaculture. Front Genet. 2014;5:340. PubMed PMC
Hardie DC, Hebert PD. The nucleotypic effects of cellular DNA content in cartilaginous and ray-finned fishes. Genome. 2003;46(4):683–706. doi: 10.1139/g03-040. PubMed DOI
Hardie DC, Hebert PD. Genome-size evolution in fishes. Can J Fish Aquat Sci. 2004;61(9):1636–1646. doi: 10.1139/f04-106. DOI
Gregory TR. Animal Genome Size Database 2019. Available from: URL: http://www.genomesize.com.
Adrian-Kalchhauser I, Blomberg A, Larsson T, Musilova Z, Peart CR, Pippel M et al. Neogobius melanostomus isolate 20150602_KH_C, whole genome shotgun sequencing project, Genbank accession number VHKM00000000; 2019. Available from: URL: https://www.ncbi.nlm.nih.gov/nuccore/VHKM00000000.
Wellband KW, Heath DD. Round goby liver transcriptome, NCBI SRA archive, BioProject accession: PRJNA321539. Available from: URL: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA321539.
Adrian-Kalchhauser I. Round goby RAD sequencing data, NCBI SRA Archive, BioProject Accession: PRJNA547536. Available from: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA547536.
Adrian-Kalchhauser I. Round goby RAD sequencing data, NCBI SRA archive, BioProject accession: PRJNA515617. Available from: URL: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA515617.
Adrian-Kalchhauser I. Round goby liver and brain ATACseq data, NCBI SRA archive, BioProject accession: PRJNA551348. Available from: URL: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA551348.
Adrian-Kalchhauser I. Round goby brain methylome, NCBI SRA Archive, BioProject Accession: PRJNA515617. Available from: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA515617.
Cortesi F, Musilova Z, Stieb SM, Hart NS, Siebeck UE, Malmstrom M, et al. Ancestral duplications and highly dynamic opsin gene evolution in percomorph fishes. Proc Natl Acad Sci. 2015;112(5):1493–1498. doi: 10.1073/pnas.1417803112. PubMed DOI PMC
Liu D, Wang F, Lin J, Thompson A, Lu Y, Vo D, et al. The cone opsin repertoire of osteoglossomorph fishes: gene loss in mormyrid electric fish and a long wavelength-sensitive cone opsin that survived 3R. Mol Biol Evol. 2019;36(3):447–457. doi: 10.1093/molbev/msy241. PubMed DOI
Yokoyama Shozo. Evolution of Dim-Light and Color Vision Pigments. Annual Review of Genomics and Human Genetics. 2008;9(1):259–282. doi: 10.1146/annurev.genom.9.081307.164228. PubMed DOI
Michiels NK, Anthes N, Hart NS, Herler J, Meixner AJ, Schleifenbaum F, et al. Red fluorescence in reef fish: a novel signalling mechanism? BMC Ecol. 2008;8:14. doi: 10.1186/1472-6785-8-16. PubMed DOI PMC
Niimura Y. Olfactory receptor multigene family in vertebrates: from the viewpoint of evolutionary genomics. Curr Genomics. 2012;13(2):103–114. doi: 10.2174/138920212799860706. PubMed DOI PMC
Niimura Y. On the origin and evolution of vertebrate olfactory receptor genes: comparative genome analysis among 23 chordate species. Genome Biol Evolution. 2009;1:34–44. doi: 10.1093/gbe/evp003. PubMed DOI PMC
Nelson DR. Comparison of P450s from human and fugu: 420 million years of vertebrate P450 evolution. Arch Biochem Biophys. 2003;409(1):18–24. doi: 10.1016/S0003-9861(02)00553-2. PubMed DOI
Goldstone JV, McArthur AG, Kubota A, Zanette J, Parente T, Jönsson ME, et al. Identification and developmental expression of the full complement of cytochrome P450 genes in Zebrafish. BMC Genomics. 2010;11:643. doi: 10.1186/1471-2164-11-643. PubMed DOI PMC
Zhang J, Yao J, Wang R, Zhang Y, Liu S, Sun L, et al. The cytochrome P450 genes of channel catfish: their involvement in disease defense responses as revealed by meta-analysis of RNA-Seq data sets. Biochim Biophys Acta. 2014;1840(9):2813–2828. doi: 10.1016/j.bbagen.2014.04.016. PubMed DOI PMC
Kirischian N, McArthur AG, Jesuthasan C, Krattenmacher B, Wilson JY. Phylogenetic and functional analysis of the vertebrate cytochrome p450 2 family. J Mol Evol. 2011;72(1):56–71. doi: 10.1007/s00239-010-9402-7. PubMed DOI
Dejong CA, Wilson JY. The cytochrome P450 superfamily complement (CYPome) in the annelid Capitella teleta. PLoS One. 2014;9(11):e107728. doi: 10.1371/journal.pone.0107728. PubMed DOI PMC
Luch Andreas, Baird William M. The Carcinogenic Effects of Polycyclic Aromatic Hydrocarbons. 2005. Metabolic Activation and Detoxification of Polycyclic Aromatic Hydrocarbons; pp. 19–96.
Yan J, Cai Z. Molecular evolution and functional divergence of the cytochrome P450 3 (CYP3) family in Actinopterygii (ray-finned fish) PLoS One. 2010;5(12):e14276. doi: 10.1371/journal.pone.0014276. PubMed DOI PMC
Yokoyama C, Yabuki T, Inoue H, Tone Y, Hara S, Hatae T, et al. Human gene encoding prostacyclin synthase (PTGIS): genomic organization, chromosomal localization, and promoter activity. Genomics. 1996;36(2):296–304. doi: 10.1006/geno.1996.0465. PubMed DOI
Li Y, Chiang C, Yeh H, Hsu P, Whitby FG, Wang L, et al. Structures of prostacyclin synthase and its complexes with substrate analog and inhibitor reveal a ligand-specific heme conformation change. J Biol Chem. 2008;283(5):2917–2926. doi: 10.1074/jbc.M707470200. PubMed DOI PMC
Finn RN, Cerdà J. Aquaporin evolution in fishes. Front Physiol. 2011;2:44. doi: 10.3389/fphys.2011.00044. PubMed DOI PMC
Finn RN, Chauvigné F, Hlidberg JB, Cutler CP, Cerdà J. The lineage-specific evolution of aquaporin gene clusters facilitated tetrapod terrestrial adaptation. PLoS One. 2014;9(11):e113686. doi: 10.1371/journal.pone.0113686. PubMed DOI PMC
Loh YH, Christoffels A, Brenner S, Hunziker W, Venkatesh B. Extensive expansion of the claudin gene family in the teleost fish, Fugu rubripes. Genome Research. 2004;14(7):1248–1257. doi: 10.1101/gr.2400004. PubMed DOI PMC
Hwang P, Chou M. Zebrafish as an animal model to study ion homeostasis. Pflugers Arch - Eur J Physiol. 2013;465(9):1233–1247. doi: 10.1007/s00424-013-1269-1. PubMed DOI PMC
Ronkin D, Seroussi E, Nitzan T, Doron-Faigenboim A, Cnaani A. Intestinal transcriptome analysis revealed differential salinity adaptation between two tilapiine species. Comp Biochem Physiol Part D Genomics Proteomics. 2015;13:35–43. doi: 10.1016/j.cbd.2015.01.003. PubMed DOI
Rim JS, Atta MG, Dahl SC, Berry GT, Handler JS, Kwon HM. Transcription of the sodium/myo-inositol cotransporter gene is regulated by multiple tonicity-responsive enhancers spread over 50 kilobase pairs in the 5 ‘-flanking region. J Biol Chem. 1998;273(32):20615–20621. doi: 10.1074/jbc.273.32.20615. PubMed DOI PMC
Wang X, Kültz D. Osmolality/salinity-responsive enhancers (OSREs) control induction of osmoprotective genes in euryhaline fish. Proc Natl Acad Sci. 2017;114(13):E2729–E2738. doi: 10.1073/pnas.1614712114. PubMed DOI PMC
Sacchi R, Gardell AM, Chang N, Kültz D. Osmotic regulation and tissue localization of the myo-inositol biosynthesis pathway in tilapia (Oreochromis mossambicus) larvae. J Exp Zool A Ecol Genet Physiol. 2014;321(8):457–466. doi: 10.1002/jez.1878. PubMed DOI
Sacchi R, Li J, Villarreal F, Gardell AM, Kültz D. Salinity-induced regulation of the <em>myo</em>-inositol biosynthesis pathway in tilapia gill epithelium. J Exp Biol. 2013;216(24):4626. doi: 10.1242/jeb.093823. PubMed DOI PMC
Flajnik MF. A cold-blooded view of adaptive immunity. Nat Rev Immunol. 2018;18(7):438–453. doi: 10.1038/s41577-018-0003-9. PubMed DOI PMC
Grimholt U, Tsukamoto K, Azuma T, Leong J, Koop BF, Dijkstra JM. A comprehensive analysis of teleost MHC class I sequences. BMC Evol Biol. 2015;15:32. doi: 10.1186/s12862-015-0309-1. PubMed DOI PMC
McConnell SC, Hernandez KM, Wcisel DJ, Kettleborough RN, Stemple DL, Yoder JA, et al. Alternative haplotypes of antigen processing genes in zebrafish diverged early in vertebrate evolution. Proc Natl Acad Sci. 2016;113(34):E5014–E5023. doi: 10.1073/pnas.1607602113. PubMed DOI PMC
Mashoof S, Criscitiello MF. Fish Immunoglobulins. Biology (Basel) 2016;5(4):45. PubMed PMC
Riera Romo M, Perez-Martinez D, Castillo FC. Innate immunity in vertebrates: an overview. Immunology. 2016;148(2):125–139. doi: 10.1111/imm.12597. PubMed DOI PMC
Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21(7):677–687. doi: 10.1038/nm.3893. PubMed DOI PMC
Nie L, Cai S, Shao J, Chen J. Toll-like receptors, associated biological roles, and signaling networks in non-mammals. Front Immunol. 2018;9:1523. doi: 10.3389/fimmu.2018.01523. PubMed DOI PMC
Zhang J, Liu S, Rajendran KV, Sun L, Zhang Y, Sun F, et al. Pathogen recognition receptors in channel catfish: III phylogeny and expression analysis of toll-like receptors. Dev Comp Immunol. 2013;40(2):185–194. doi: 10.1016/j.dci.2013.01.009. PubMed DOI
Solbakken MH, Tørresen OK, Nederbragt AJ, Seppola M, Gregers TF, Jakobsen KS, et al. Evolutionary redesign of the Atlantic cod (Gadus morhua L.) Toll-like receptor repertoire by gene losses and expansions. Sci Rep. 2016;6:25211. doi: 10.1038/srep25211. PubMed DOI PMC
Solbakken Monica Hongrø, Voje Kjetil Lysne, Jakobsen Kjetill Sigurd, Jentoft Sissel. Linking species habitat and past palaeoclimatic events to evolution of the teleost innate immune system. Proceedings of the Royal Society B: Biological Sciences. 2017;284(1853):20162810. doi: 10.1098/rspb.2016.2810. PubMed DOI PMC
Lupfer C, Kanneganti T. Unsolved mysteries in NLR biology. Front Immunol. 2013;4:285. doi: 10.3389/fimmu.2013.00285. PubMed DOI PMC
Laing Kerry J, Purcell Maureen K, Winton James R, Hansen John D. A genomic view of the NOD-like receptor family in teleost fish: identification of a novel NLR subfamily in zebrafish. BMC Evolutionary Biology. 2008;8(1):42. doi: 10.1186/1471-2148-8-42. PubMed DOI PMC
Howe K, Schiffer PH, Zielinski J, Wiehe T, Laird GK, Marioni JC, et al. Structure and evolutionary history of a large family of NLR proteins in the zebrafish. Open Biol. 2016;6(4):160009. doi: 10.1098/rsob.160009. PubMed DOI PMC
Tørresen OK, Brieuc MSO, Solbakken MH, Sørhus E, Nederbragt AJ, Jakobsen KS, et al. Genomic architecture of haddock (Melanogrammus aeglefinus) shows expansions of innate immune genes and short tandem repeats. BMC Genomics. 2018;19(1):240. doi: 10.1186/s12864-018-4616-y. PubMed DOI PMC
Li J, Chu Q, Xu T. A genome-wide survey of expansive NLR-C subfamily in miiuy croaker and characterization of the NLR-B30.2 genes. Dev Comp Immunol. 2016;61:116–125. doi: 10.1016/j.dci.2016.03.011. PubMed DOI
Xu T, Xu G, Che R, Wang R, Wang Y, Li J, et al. The genome of the miiuy croaker reveals well-developed innate immune and sensory systems. Sci Rep. 2016;6:21902. doi: 10.1038/srep21902. PubMed DOI PMC
Rajendran KV, Zhang J, Liu S, Kucuktas H, Wang X, Liu H, et al. Pathogen recognition receptors in channel catfish: I. identification, phylogeny and expression of NOD-like receptors. Dev Comp Immunol. 2012;37(1):77–86. doi: 10.1016/j.dci.2011.12.005. PubMed DOI
Li J, Gao K, Shao T, Fan D, Hu C, Sun C, et al. Characterization of an NLRP1 Inflammasome from zebrafish reveals a unique sequential activation mechanism underlying inflammatory caspases in ancient vertebrates. J Immunol. 2018;201(7):1946–1966. doi: 10.4049/jimmunol.1800498. PubMed DOI
Kuri P, Schieber NL, Thumberger T, Wittbrodt J, Schwab Y, Leptin M. Dynamics of in vivo ASC speck formation. J Cell Biol. 2017;216(9):2891–2909. doi: 10.1083/jcb.201703103. PubMed DOI PMC
Schwartz YB, Pirrotta V. A new world of Polycombs: Unexpected partnerships and emerging functions. Nat Rev Genet. 2013;14:853 EP. doi: 10.1038/nrg3603. PubMed DOI
Mu W, Starmer J, Shibata Y. Della Yee, Magnuson T. EZH1 in germ cells safeguards the function of PRC2 during spermatogenesis. Dev Biol. 2017;424(2):198–207. doi: 10.1016/j.ydbio.2017.02.017. PubMed DOI PMC
Xu J, Shao Z, Li D, Xie H, Kim W, Huang J, et al. Developmental control of polycomb subunit composition by GATA factors mediates a switch to non-canonical functions. Mol Cell. 2015;57(2):304–316. doi: 10.1016/j.molcel.2014.12.009. PubMed DOI PMC
San B, Chrispijn ND, Wittkopp N, van Heeringen SJ, Lagendijk AK, Aben M, et al. Normal formation of a vertebrate body plan and loss of tissue maintenance in the absence of ezh2. Sci Rep. 2016;6:24658. doi: 10.1038/srep24658. PubMed DOI PMC
Völkel P, Bary A, Raby L, Chapart A, Dupret B, Le Bourhis X, et al. Ezh1 arises from Ezh2 gene duplication but its function is not required for zebrafish development. Sci Rep. 2019;9(1):4319. doi: 10.1038/s41598-019-40738-9. PubMed DOI PMC
Jeltsch A, Jurkowska RZ. New concepts in DNA methylation. Trends Biochem Sci. 2014;39(7):310–318. doi: 10.1016/j.tibs.2014.05.002. PubMed DOI
Ponger L, Li W. Evolutionary diversification of DNA Methyltransferases in eukaryotic genomes. Mol Biol Evol. 2005;22(4):1119–1128. doi: 10.1093/molbev/msi098. PubMed DOI
Wang F, Yan L, Shi H, Liu X, Zheng Q, Sun L, et al. Genome-wide identification, evolution of DNA methyltransferases and their expression during gonadal development in Nile tilapia. Comp Biochem Physiol B: Biochem Mol Biol. 2018;226:73–84. doi: 10.1016/j.cbpb.2018.08.007. PubMed DOI
Stapley J, Santure AW, Dennis SR. Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species. Mol Ecol. 2015;24(9):2241–2252. doi: 10.1111/mec.13089. PubMed DOI
Pysek P, Skalova H, Cuda J, Guo W, Suda J, Dolezal J, et al. Small genome separates native and invasive populations in an ecologically important cosmopolitan grass. Ecology. 2018;99(1):79–90. doi: 10.1002/ecy.2068. PubMed DOI
Pezold FL. Evidence for multiple sex-chromosomes in the fresh-water goby Gobionellus Shufeldti (Pisces, Gobiidae) Copeia. 1984;1:235–238. doi: 10.2307/1445066. DOI
Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, et al. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature. 2004;431(7011):946–957. doi: 10.1038/nature03025. PubMed DOI
Pauli A, Valen E, Lin MF, Garber M, Vastenhouw NL, Levin JZ, et al. Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res. 2012;22(3):577–591. doi: 10.1101/gr.133009.111. PubMed DOI PMC
Bitton P, Christmann SAY, Santon M, Harant UK, Michiels NK. Visual modelling validates prey detection by means of diurnal active photolocation in a small cryptobenthic fish. bioRxiv 2018:338640. PubMed PMC
Carleton KL, Dalton BE, Escobar-Camacho D, Nandamuri SP. Proximate and ultimate causes of variable visual sensitivities: insights from cichlid fish radiations. Genesis. 2016;54(6):299–325. doi: 10.1002/dvg.22940. PubMed DOI PMC
Marshall Justin, Johnsen Sonke. Fluorescence as a means of colour signal enhancement. Philosophical Transactions of the Royal Society B: Biological Sciences. 2017;372(1724):20160335. doi: 10.1098/rstb.2016.0335. PubMed DOI PMC
Olsson KH, Johansson S, Blom E, Lindström K, Svensson O, Nilsson Sköld H, et al. Dark eyes in female sand gobies indicate readiness to spawn. PLoS One. 2017;12(6):e0177714. doi: 10.1371/journal.pone.0177714. PubMed DOI PMC
Anthes N, Theobald J, Gerlach T, Meadows MG, Michiels NK. Diversity and ecological correlates of red fluorescence in marine fishes. Front Ecol Evol. 2016;4:216.
Vélez-Espino LA, Koops MA, Balshine S. Invasion dynamics of round goby (Neogobius melanostomus) in Hamilton Harbour, Lake Ontario. Biological Invasions. 2010;12(11):3861–3875. doi: 10.1007/s10530-010-9777-9. DOI
Young JAM, Marentette JR, Gross C, McDonald JI, Verma A, Marsh-Rollo SE, et al. Demography and substrate affinity of the round goby (Neogobius melanostomus) in Hamilton Harbour. J Great Lakes Res. 2010;36(1):115–122. doi: 10.1016/j.jglr.2009.11.001. DOI
Behrens JW, van Deurs M, Christensen EAF. Evaluating dispersal potential of an invasive fish by the use of aerobic scope and osmoregulation capacity. PLoS One. 2017;12(4):e0176038. doi: 10.1371/journal.pone.0176038. PubMed DOI PMC
Hirsch PE, Adrian-Kalchhauser I, Flämig S, N’Guyen A, Defila R, Di Giulio A, et al. A tough egg to crack: recreational boats as vectors for invasive goby eggs and transdisciplinary management approaches. Ecol Evolution. 2016;6(3):707–715. doi: 10.1002/ece3.1892. PubMed DOI PMC
Miladi H, Elabed H, Ben Slama R, Rhim A, Bakhrouf A. Molecular analysis of the role of osmolyte transporters opuCA and betL in Listeria monocytogenes after cold and freezing stress. Arch Microbiol. 2017;199(2):259–265. doi: 10.1007/s00203-016-1300-y. PubMed DOI
Vigoder FM, Parker DJ, Cook N, Tournière O, Sneddon T, Ritchie MG. Inducing cold-sensitivity in the Frigophilic Fly Drosophila montana by RNAi. PLoS One. 2016;11(11):e0165724. doi: 10.1371/journal.pone.0165724. PubMed DOI PMC
Reis Marta I. R., do Vale Ana, Pereira Pedro J. B., Azevedo Jorge E., dos Santos Nuno M. S. Caspase-1 and IL-1β Processing in a Teleost Fish. PLoS ONE. 2012;7(11):e50450. doi: 10.1371/journal.pone.0050450. PubMed DOI PMC
Vojtech LN, Scharping N, Woodson JC, Hansen JD. Roles of inflammatory caspases during processing of zebrafish interleukin-1β in Francisella noatunensis infection. Infect Immun. 2012;80(8):2878–2885. doi: 10.1128/IAI.00543-12. PubMed DOI PMC
Richter K, Sagawe S, Hecker A, Küllmar M, Askevold I, Damm J, et al. C-reactive protein stimulates nicotinic acetylcholine receptors to control ATP-mediated monocytic inflammasome activation. Front Immunol. 2018;9:1604. doi: 10.3389/fimmu.2018.01604. PubMed DOI PMC
Cao R, Zhang Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell. 2004;15(1):57–67. doi: 10.1016/j.molcel.2004.06.020. PubMed DOI
Ciferri C, Lander GC, Maiolica A, Herzog F, Aebersold R, Nogales E. Molecular architecture of human polycomb repressive complex 2. Elife. 2012;1:e00005. doi: 10.7554/eLife.00005. PubMed DOI PMC
Chittock EC, Latwiel S, Miller TCR, Müller CW. Molecular architecture of polycomb repressive complexes. Biochem Soc Trans. 2017;45(1):193–205. doi: 10.1042/BST20160173. PubMed DOI PMC
Cao Q, Wang X, Zhao M, Yang R, Malik R, Qiao Y, et al. The central role of EED in the orchestration of polycomb group complexes. Nat Commun. 2014;5:3127. doi: 10.1038/ncomms4127. PubMed DOI PMC
Liu X, Yang J, Wu N, Song R, Zhu H. Evolution and coevolution of PRC2 genes in vertebrates and mammals. Adv Protein Chem Struct Biol. 2015;101:125–148. doi: 10.1016/bs.apcsb.2015.06.010. PubMed DOI
Davidovich C, Cech TR. The recruitment of chromatin modifiers by long noncoding RNAs: lessons from PRC2. RNA. 2015;21(12):2007–2022. doi: 10.1261/rna.053918.115. PubMed DOI PMC
Cross S, Kovarik P, Schmidtke J, Bird A. Non-methylated islands in fish genomes are GC-poor. Nucleic Acids Res. 1991;19(7):1469–1474. doi: 10.1093/nar/19.7.1469. PubMed DOI PMC
Jiang N, Wang L, Chen J, Wang L, Leach L, Luo Z. Conserved and divergent patterns of DNA methylation in higher vertebrates. Genome Biol Evolution. 2014;6(11):2998–3014. doi: 10.1093/gbe/evu238. PubMed DOI PMC
Han L, Zhao Z. Comparative analysis of CpG islands in four fish genomes. Comp Funct Genomics. 2008;565631 PubMed PMC
Huska Matthew, Vingron Martin. Improved Prediction of Non-methylated Islands in Vertebrates Highlights Different Characteristic Sequence Patterns. PLOS Computational Biology. 2016;12(12):e1005249. doi: 10.1371/journal.pcbi.1005249. PubMed DOI PMC
McGaughey DM, Abaan HO, Miller RM, Kropp PA, Brody LC. Genomics of CpG methylation in developing and developed zebrafish. G3 (Bethesda) 2014;4(5):861–869. doi: 10.1534/g3.113.009514. PubMed DOI PMC
Skvortsova K, Tarbashevich K, Stehling M, Lister R, Irimia M, Raz E, et al. Retention of paternal DNA methylome in the developing zebrafish germline. Nat Commun. 2019;10(1):3054. doi: 10.1038/s41467-019-10895-6. PubMed DOI PMC
Potok ME, Nix DA, Parnell TJ, Cairns BR. Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern. Cell. 2013;153(4):759–772. doi: 10.1016/j.cell.2013.04.030. PubMed DOI PMC
Fellous Alexandre, Labed-Veydert Tiphaine, Locrel Mélodie, Voisin Anne-Sophie, Earley Ryan L., Silvestre Frederic. DNA methylation in adults and during development of the self-fertilizing mangrove rivulus, Kryptolebias marmoratus. Ecology and Evolution. 2018;8(12):6016–6033. doi: 10.1002/ece3.4141. PubMed DOI PMC
Wang X, Bhandari RK. DNA methylation dynamics during epigenetic reprogramming of medaka embryo. Epigenetics. 2019;14(6):611–622. doi: 10.1080/15592294.2019.1605816. PubMed DOI PMC
Campos C, Valente LM, Fernandes JM. Molecular evolution of zebrafish dnmt3 genes and thermal plasticity of their expression during embryonic development. Gene. 2012;500(1):93–100. doi: 10.1016/j.gene.2012.03.041. PubMed DOI
Takayama K, Shimoda N, Takanaga S, Hozumi S, Kikuchi Y. Expression patterns of dnmt3aa, dnmt3ab, and dnmt4 during development and fin regeneration in zebrafish. Gene Expr Patterns. 2014;14(2):105–110. doi: 10.1016/j.gep.2014.01.005. PubMed DOI
Firmino J, Carballo C, Armesto P, Campinho MA, Power DM, Manchado M. Phylogeny, expression patterns and regulation of DNA methyltransferases in early development of the flatfish, Solea senegalensis. BMC Developmental Biol. 2017;17(1):11. doi: 10.1186/s12861-017-0154-0. PubMed DOI PMC
Wood RK, Crowley E, Martyniuk CJ. Developmental profiles and expression of the DNA methyltransferase genes in the fathead minnow (Pimephales promelas) following exposure to di-2-ethylhexyl phthalate. Fish Physiol Biochem. 2016;42(1):7–18. doi: 10.1007/s10695-015-0112-3. PubMed DOI
Berthelot C, Brunet F, Chalopin D, Juanchich A, Bernard M, Noël B, et al. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat Commun. 2014;5:3657. doi: 10.1038/ncomms4657. PubMed DOI PMC
Lien S, Koop BF, Sandve SR, Miller JR, Kent MP, Nome T, et al. The Atlantic salmon genome provides insights into rediploidization. Nature. 2016;533:200 EP. doi: 10.1038/nature17164. PubMed DOI PMC
Kim B, Amores A, Kang S, Ahn D, Kim J, Kim I, et al. Antarctic blackfin icefish genome reveals adaptations to extreme environments. Nat Ecol Evol. 2019;3(3):469–478. doi: 10.1038/s41559-019-0812-7. PubMed DOI PMC
Mu Y, Huo J, Guan Y, Fan D, Xiao X, Wei J, et al. An improved genome assembly for Larimichthys crocea reveals hepcidin gene expansion with diversified regulation and function. Commun Biol. 2018;1:195. doi: 10.1038/s42003-018-0207-3. PubMed DOI PMC
Liu Z, Liu S, Yao J, Bao L, Zhang J, Li Y, et al. The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts. Nat Commun. 2016;7 PubMed PMC
Wu C, Di Zhang, Kan M, Lv Z, Zhu A, Su Y et al. The draft genome of the large yellow croaker reveals well-developed innate immunity. Nat Commun. 2014;5:5227. PubMed PMC
El-Brolosy MA, Kontarakis Z, Rossi A, Kuenne C, Günther S, Fukuda N, et al. Genetic compensation triggered by mutant mRNA degradation. Nature. 2019;568(7751):193–197. doi: 10.1038/s41586-019-1064-z. PubMed DOI PMC
Kondrashov FA. Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc R Soc B Biol Sci. 2012;279(1749):5048–5057. doi: 10.1098/rspb.2012.1108. PubMed DOI PMC
Wu N, Zhang S, Li X, Cao Y, Liu X, Wang Q, et al. Fall webworm genomes yield insights into rapid adaptation of invasive species. Nat Ecol Evol. 2019;3(1):105–115. doi: 10.1038/s41559-018-0746-5. PubMed DOI
Makino T, Kawata M. Invasive invertebrates associated with highly duplicated gene content. Mol Ecol. 2019;28(7):1652–1663. doi: 10.1111/mec.15019. PubMed DOI
Roche K, Janáč M, Šlapanský L, Mikl L, Kopeček L, Jurajda P. A newly established round goby (Neogobius melanostomus ) population in the upper stretch of the river Elbe. Knowl Manag Aquat Ecosyst. 2015;416:33. doi: 10.1051/kmae/2015030. DOI
Patzner RA, VanTassel J.L., Kovačić M, Kapoor BG, editors. The biology of gobies. Enfield: Science Publishers; 2011.
Xing J, Zhou X, Tang X, Sheng X, Zhan W. Characterization of toll-like receptor 22 in turbot (Scophthalmus maximus) Fish Shellfish Immunol. 2017;66:156–162. doi: 10.1016/j.fsi.2017.05.025. PubMed DOI
Paria A, Makesh M, Chaudhari A, Purushothaman CS, Rajendran KV. Toll-like receptor (TLR) 22, a non-mammalian TLR in Asian seabass, Lates calcarifer: characterisation, ontogeny and inductive expression upon exposure with bacteria and ligands. Dev Comp Immunol. 2018;81:180–186. doi: 10.1016/j.dci.2017.11.021. PubMed DOI
Qi Z, Wang S, Zhu X, Yang Y, Han P, Zhang Q, et al. Molecular characterization of three toll-like receptors (TLR21, TLR22, and TLR25) from a primitive ray-finned fish Dabry’s sturgeon (Acipenser dabryanus) Fish Shellfish Immunol. 2018;82:200–211. doi: 10.1016/j.fsi.2018.08.033. PubMed DOI
White RJ, Collins JE, Sealy IM, Wali N, Dooley CM, Digby Z, et al. A high-resolution mRNA expression time course of embryonic development in zebrafish. Elife. 2017;6:e30860. PubMed PMC
Zhang L, Gao Z, Yu L, Zhang B, Wang J, Zhou J. Nucleotide-binding and oligomerization domain (NOD)-like receptors in teleost fish: current knowledge and future perspectives. J Fish Dis. 2018;41(9):1317–1330. doi: 10.1111/jfd.12841. PubMed DOI
Nowoshilow S, Schloissnig S, Fei J, Dahl A, Pang AWC, Pippel M, et al. The axolotl genome and the evolution of key tissue formation regulators. Nature. 2018;554(7690):50–55. doi: 10.1038/nature25458. PubMed DOI
Grohme MA, Schloissnig S, Rozanski A, Pippel M, Young GR, Winkler S, et al. The genome of Schmidtea mediterranea and the evolution of core cellular mechanisms. Nature. 2018;554(7690):56–61. doi: 10.1038/nature25473. PubMed DOI PMC
Chin C, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nature Methods. 2013;10(6):563. doi: 10.1038/nmeth.2474. PubMed DOI
Cantarel BL, Korf I, Robb SMC, Parra G, Ross E, Moore B, et al. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 2008;18(1):188–196. doi: 10.1101/gr.6743907. PubMed DOI PMC
Campbell MS, Holt C, Moore B, Yandell M. Genome annotation and Curation using MAKER and MAKER-P. Curr Protoc Bioinformatics. 2014;48:4.11.1–4.1139. doi: 10.1002/0471250953.bi0411s48. PubMed DOI PMC
Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al. Ensembl 2018. Nucleic Acids Res. 2018;46(D1):D754–D761. doi: 10.1093/nar/gkx1098. PubMed DOI PMC
The UniProt Consortium UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47(D1):D506–D515. doi: 10.1093/nar/gky1049. PubMed DOI PMC
Korf Ian. BMC Bioinformatics. 2004;5(1):59. doi: 10.1186/1471-2105-5-59. PubMed DOI PMC
Stanke M, Diekhans M, Baertsch R, Haussler D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics. 2008;24(5):637–644. doi: 10.1093/bioinformatics/btn013. PubMed DOI
Smit A, Hubley R, Green P. RepeatMasker Open-4.0; 2013-2015.
Bao W, Kojima KK, Kohany O. Repbase update, a database of repetitive elements in eukaryotic genomes. Mob DNA. 2015;6(1):11. doi: 10.1186/s13100-015-0041-9. PubMed DOI PMC
Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G, et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol Biol Evol. 2017;35(3):543–548. doi: 10.1093/molbev/msx319. PubMed DOI PMC
Kriventseva EV, Zdobnov EM, Simão FA, Ioannidis P, Waterhouse RM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI
Dunn NA, Unni D, Buels R, Sargent L, Diesch C, Lewis SE et al. GMOD/Apollo: 2.2.0 JB#1.15.4-release.
Lee E, Helt GA, Reese JT, Munoz-Torres MC, Childers CP, Buels RM, et al. Web Apollo: a web-based genomic annotation editing platform. Genome Biol. 2013;14(8):R93. doi: 10.1186/gb-2013-14-8-r93. PubMed DOI PMC
Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One. 2008;3(10):e3376. doi: 10.1371/journal.pone.0003376. PubMed DOI PMC
Roesti M, Hendry AP, Salzburger W, Berner D. Genome divergence during evolutionary diversification as revealed in replicate lake-stream stickleback population pairs. Mol Ecol. 2012;21(12):2852–2862. doi: 10.1111/j.1365-294X.2012.05509.x. PubMed DOI
Roesti M, Kueng B, Moser D, Berner D. The genomics of ecological vicariance in threespine stickleback fish. Nat Commun. 2015;6:8767. doi: 10.1038/ncomms9767. PubMed DOI PMC
Hohenlohe PA, Bassham S, Etter PD, Stiffler N, Johnson EA, Cresko WA. Population genomics of parallel adaptation in Threespine stickleback using sequenced RAD tags. PLoS Genet. 2010;6(2):e1000862. doi: 10.1371/journal.pgen.1000862. PubMed DOI PMC
Rochette NC, Catchen JM. Deriving genotypes from RAD-seq short-read data using stacks. Nat Protoc. 2017;12(12):2640–2659. doi: 10.1038/nprot.2017.123. PubMed DOI
Ocalewicz K, Sapota M. Cytogenetic characteristics of the round goby Neogobius melanostomus (Pallas, 1814) (Teleostei: Gobiidae: Benthophilinae) Mar Biol Res. 2011;7(2):195–201. doi: 10.1080/17451000.2010.489613. DOI
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC
Ward MN, Churcher AM, Dick KJ, Laver CRJ, Owens GL, Polack MD, et al. The molecular basis of color vision in colorful fish: four long wave-sensitive (LWS) opsins in guppies (Poecilia reticulata) are defined by amino acid substitutions at key functional sites. BMC Evol Biol. 2008;8:210. doi: 10.1186/1471-2148-8-210. PubMed DOI PMC
Rennison DJ, Owens GL, Taylor JS. Opsin gene duplication and divergence in ray-finned fish. Mol Phylogenet Evol. 2012;62(3):986–1008. doi: 10.1016/j.ympev.2011.11.030. PubMed DOI
Lin J, Wang F, Li W, Wang T. The rises and falls of opsin genes in 59 ray-finned fish genomes and their implications for environmental adaptation. Sci Rep. 2017;7:15568. PubMed PMC
Register EA, Yokoyama R, Yokoyama S. Multiple origins of the green-sensitive opsin genes in fish. J Mol Evol. 1994;39(3):268–273. doi: 10.1007/BF00160150. PubMed DOI
Katoh K, Kuma K, Toh H, Miyata T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005;33(2):511–518. doi: 10.1093/nar/gki198. PubMed DOI PMC
Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9(8):772. doi: 10.1038/nmeth.2109. PubMed DOI PMC
Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52(5):696–704. doi: 10.1080/10635150390235520. PubMed DOI
Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19(12):1572–1574. doi: 10.1093/bioinformatics/btg180. PubMed DOI
Hajkova P, Jeffries SJ, Lee C, Miller N, Jackson SP, Surani MA. Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science. 2010;329(5987):78. doi: 10.1126/science.1187945. PubMed DOI PMC
Brawand D, Wagner CE, Li YI, Malinsky M, Keller I, Fan S, et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature. 2014;513(7518):375–381. doi: 10.1038/nature13726. PubMed DOI PMC
Peichel CL, Sullivan ST, Liachko I, White MA. Improvement of the Threespine stickleback genome using a hi-C-based proximity-guided assembly. J Hered. 2017;108(6):693–700. doi: 10.1093/jhered/esx058. PubMed DOI PMC
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494–1512. doi: 10.1038/nprot.2013.084. PubMed DOI PMC
Wheeler TJ, Eddy SR. Nhmmer: DNA homology search with profile HMMs. Bioinformatics. 2013;29(19):2487–2489. doi: 10.1093/bioinformatics/btt403. PubMed DOI PMC
Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20(4):1160–1166. doi: 10.1093/bib/bbx108. PubMed DOI PMC
Trifinopoulos J, Nguyen L, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44(W1):W232–W235. doi: 10.1093/nar/gkw256. PubMed DOI PMC
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Le Vinh S. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35(2):518–522. doi: 10.1093/molbev/msx281. PubMed DOI PMC
Altschul S. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Buels R, Yao E, Diesh CM, Hayes RD, Munoz-Torres M, Helt G, et al. JBrowse: a dynamic web platform for genome visualization and analysis. Genome Biol. 2016;17:66. doi: 10.1186/s13059-016-0924-1. PubMed DOI PMC
Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, et al. The Pfam protein families database. Nucleic Acids Res. 2010;38(Database issue):D211–D222. doi: 10.1093/nar/gkp985. PubMed DOI PMC
Sigrist CJA, Cerutti L, de Castro E, Langendijk-Genevaux PS, Bulliard V, Bairoch A, et al. PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Res. 2010;38(Database issue):D161–D166. doi: 10.1093/nar/gkp885. PubMed DOI PMC
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539. doi: 10.1038/msb.2011.75. PubMed DOI PMC
Maddison WP, Maddison MP. Mesquite: a modular system for evolutionary analysis. 2016; version 3.10. Available from: URL: http://mesquiteproject.org.
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Rambaut A. Figtree v1.4.3: Tree figure drawing tool. 2016. Available from: URL: http://tree.bio.ed.ac.uk/software/figtree/.
O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44(D1):D733–D745. doi: 10.1093/nar/gkv1189. PubMed DOI PMC
Guindon S, Dufayard J, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59(3):307–321. doi: 10.1093/sysbio/syq010. PubMed DOI
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421. doi: 10.1186/1471-2105-10-421. PubMed DOI PMC
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–842. doi: 10.1093/bioinformatics/btq033. PubMed DOI PMC
Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004;5:113. doi: 10.1186/1471-2105-5-113. PubMed DOI PMC
Kumar Sudhir, Stecher Glen, Tamura Koichiro. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution. 2016;33(7):1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC
Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics. 2011;27(8):1164–1165. doi: 10.1093/bioinformatics/btr088. PubMed DOI PMC
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22(21):2688–2690. doi: 10.1093/bioinformatics/btl446. PubMed DOI
Eddy Sean R. Accelerated Profile HMM Searches. PLoS Computational Biology. 2011;7(10):e1002195. doi: 10.1371/journal.pcbi.1002195. PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Wang P, Moore BM, Panchy NL, Meng F, Lehti-Shiu MD, Shiu S. Factors influencing gene family size variation among related species in a plant family, Solanaceae. Genome Biol Evol. 2018;10(10):2596–2613. doi: 10.1093/gbe/evy193. PubMed DOI PMC
Crooks GE, Hon G, Chandonia J, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004;14(6):1188–1190. doi: 10.1101/gr.849004. PubMed DOI PMC
Olson SA. EMBOSS opens up sequence analysis. European molecular biology open software suite. Brief Bioinform. 2002;3(1):87–91. doi: 10.1093/bib/3.1.87. PubMed DOI
Edwards JR, Yarychkivska O, Boulard M, Bestor TH. DNA methylation and DNA methyltransferases. Epigenetics Chromatin. 2017;10:23. doi: 10.1186/s13072-017-0130-8. PubMed DOI PMC
Ranwez V, Harispe S, Delsuc F, Douzery EJP. MACSE: multiple alignment of coding SEquences accounting for frameshifts and stop codons. PLoS One. 2011;6(9):e22594. doi: 10.1371/journal.pone.0022594. PubMed DOI PMC
Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol. 2017;34(3):772–773. PubMed
Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17(8):754–755. doi: 10.1093/bioinformatics/17.8.754. PubMed DOI
Smit A, Hubley R, Green P. RepeatModeler Open-1.0 2008-2015. Available from: URL: http://www.repeatmasker.org.
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27(2):573–580. doi: 10.1093/nar/27.2.573. PubMed DOI PMC
Xu Z, Wang H. LTR_FINDER: An efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007;35(suppl_2):W265–W268. doi: 10.1093/nar/gkm286. PubMed DOI PMC
Ellinghaus D, Kurtz S, Willhoeft U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics. 2008;9(1):18. doi: 10.1186/1471-2105-9-18. PubMed DOI PMC
Steinbiss S, Willhoeft U, Gremme G, Kurtz S. Fine-grained annotation and classification of de novo predicted LTR retrotransposons. Nucleic Acids Res. 2009;37(21):7002–7013. doi: 10.1093/nar/gkp759. PubMed DOI PMC
Adrian-Kalchhauser I, Larsson T, Töpel M, Alm Rosenblad M. Round goby Neogobius melanostomus genome annotation: Zenodo; 2019. Available from: URL: 10.5281/zenodo.3561919.