Vision
Dotaz
Zobrazit nápovědu
BACKGROUND: As the healthcare sector evolves, Artificial Intelligence's (AI's) potential to enhance laboratory medicine is increasingly recognized. However, the adoption rates and attitudes towards AI across European laboratories have not been comprehensively analyzed. This study aims to fill this gap by surveying European laboratory professionals to assess their current use of AI, the digital infrastructure available, and their attitudes towards future implementations. METHODS: We conducted a methodical survey during October 2023, distributed via EFLM mailing lists. The survey explored six key areas: general characteristics, digital equipment, access to health data, data management, AI advancements, and personal perspectives. We analyzed responses to quantify AI integration and identify barriers to its adoption. RESULTS: From 426 initial responses, 195 were considered after excluding incomplete and non-European entries. The findings revealed limited AI engagement, with significant gaps in necessary digital infrastructure and training. Only 25.6 % of laboratories reported ongoing AI projects. Major barriers included inadequate digital tools, restricted access to comprehensive data, and a lack of AI-related skills among personnel. Notably, a substantial interest in AI training was expressed, indicating a demand for educational initiatives. CONCLUSIONS: Despite the recognized potential of AI to revolutionize laboratory medicine by enhancing diagnostic accuracy and efficiency, European laboratories face substantial challenges. This survey highlights a critical need for strategic investments in educational programs and infrastructure improvements to support AI integration in laboratory medicine across Europe. Future efforts should focus on enhancing data accessibility, upgrading technological tools, and expanding AI training and literacy among professionals. In response, our working group plans to develop and make available online training materials to meet this growing educational demand.
- MeSH
- klinické laboratoře MeSH
- lidé MeSH
- průzkumy a dotazníky MeSH
- umělá inteligence * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
The topic of the diagnosis of phaeochromocytomas remains highly relevant because of advances in laboratory diagnostics, genetics, and therapeutic options and also the development of imaging methods. Computed tomography still represents an essential tool in clinical practice, especially in incidentally discovered adrenal masses; it allows morphological evaluation, including size, shape, necrosis, and unenhanced attenuation. More advanced post-processing tools to analyse digital images, such as texture analysis and radiomics, are currently being studied. Radiomic features utilise digital image pixels to calculate parameters and relations undetectable by the human eye. On the other hand, the amount of radiomic data requires massive computer capacity. Radiomics, together with machine learning and artificial intelligence in general, has the potential to improve not only the differential diagnosis but also the prediction of complications and therapy outcomes of phaeochromocytomas in the future. Currently, the potential of radiomics and machine learning does not match expectations and awaits its fulfilment.
- MeSH
- feochromocytom * diagnostické zobrazování MeSH
- lidé MeSH
- nádory nadledvin * diagnostické zobrazování MeSH
- paragangliom * diagnostické zobrazování MeSH
- počítačová rentgenová tomografie metody MeSH
- počítačové zpracování obrazu metody MeSH
- radiomika MeSH
- strojové učení MeSH
- umělá inteligence MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Závěrečná práce NCO NZO
1 svazek : tabulky, grafy ; 30 cm
- Klíčová slova
- naivní model, transfuzní přípravek,
- MeSH
- dárci krve MeSH
- krevní bankovnictví organizace a řízení MeSH
- strojové učení zásobování a distribuce MeSH
- techniky plánování MeSH
- umělá inteligence zásobování a distribuce MeSH
- vybavení a zásoby nemocnice MeSH
- Konspekt
- Patologie. Klinická medicína
- NLK Publikační typ
- závěrečné práce
Přestože myšlenku umělé inteligence (AI) lze nalézt již u starověkých filozofů, teprve rozvoj výpočetní techniky v posledních desetiletích umožnil praktický vývoj AI. V posledních dekádách se začíná AI významněji prosazovat v mnoha oborech, v poslední dekádě také v medicíně, neurologii nevyjímaje. AI se v současnosti testuje v diagnostice a plánování léčby u mnoha neurologických onemocnění. Nadějné se zdá především využití AI ve vyhodnocování nálezů neurozobrazovacích metod. AI je testována v diagnostice a léčbě neurodegenerativních onemocnění, především Alzheimerovy demence, diagnostice a léčbě cévních mozkových příhod, roztroušené sklerózy, monitorování epilepsie či v neurorehabilitaci a neuroonkologii. K dalším významným oblastem využití AI patří neurologický výzkum. Nicméně rozvoj AI přináší také mnoho etických problémů, které bude potřeba v budoucnu vyřešit. Ačkoli má AI značný potenciál v diagnostice a léčbě neurologických onemocnění, je potřeba pečlivě a kriticky validovat jednotlivé výsledky konkrétního použití AI a až následně ji integrovat do klinických pracovních postupů.
Although the idea of artificial intelligence (AI) can be found as early as the ancient philosophers, it is only the development of computing technology in recent decades that has enabled the practical development of AI. In recent decades, AI has begun to make a significant impact in many fields, including medicine, not least neurology. AI is currently being tested in diagnosis and treatment planning for many neurological diseases. In particular, the use of AI in evaluating neuroimaging findings seems promising. AI is being tested in the diagnosis and treatment of neurodegenerative diseases, especially Alzheimer's dementia, diagnosis and treatment of stroke, multiple sclerosis, monitoring of epilepsy or in neurorehabilitation and neuro-oncology. Other important applications of AI include neurological research. However, the development of AI also raises many ethical issues that will need to be resolved in the future. Although AI has considerable potential in the diagnosis and treatment of neurological diseases, there is a need to carefully and critically validate individual results of specific applications of AI before integrating it into clinical workflows.
- MeSH
- Alzheimerova nemoc diagnóza MeSH
- cévní mozková příhoda diagnóza MeSH
- diagnóza počítačová MeSH
- lidé MeSH
- neurologie * MeSH
- umělá inteligence * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH
Počet případů demence celosvětově narůstá. Na světě trpí demencí více než 55 milionů lidí a podle odhadů světové zdravotnické organizace se toto číslo může v příštích 30 letech více než zdvojnásobit. Demence tedy představuje globální zdravotní výzvu. Report komise časopisu Lancet (2024) identifikoval 14 modifikovatelných rizikových faktorů, jejichž eliminací by bylo možné předejít až 45 % případů demence. Mezi klíčové faktory patří nízké vzdělání, ztráta sluchu, vysoký LDL cholesterol, deprese, traumatické poranění mozku, nedostatečná fyzická aktivita, diabetes, kouření, hypertenze, obezita, nadměrná konzumace alkoholu, sociální izolace, znečištěné ovzduší a neléčená ztráta zraku. Význam jednotlivých rizikových faktorů se mění v průběhu života, ale jejich včasné ovlivnění může významně snížit riziko rozvoje demence. Identifikace a cílená intervence modifikovatelných rizikových faktorů by měla být prioritou jak v individuální klinické praxi, tak na úrovni veřejného zdravotnictví.
The number of dementia cases is increasing globally. Currently, more than 55 million people worldwide are living with dementia, and according to the World Health Organization, this number is expected to more than double in the next 30 years. Dementia thus represents a significant global health challenge. The 2024 Lancet Commission report identified 14 modifiable risk factors, the elimination of which could potentially prevent up to 45 % of dementia cases. These key risk factors include low education, hearing loss, high LDL cholesterol, depression, traumatic brain injury, physical inactivity, diabetes, smoking, hypertension, obesity, excessive alcohol consumption, social isolation, air pollution, and untreated vision loss. The relevance of individual risk factors varies across the lifespan; however, early intervention can significantly reduce the risk of developing dementia. The identification and targeted intervention of modifiable risk factors should be a priority in both individual clinical practice and public health strategies.
- MeSH
- demence * etiologie prevence a kontrola MeSH
- kognitivní poruchy etiologie prevence a kontrola MeSH
- lidé MeSH
- rizikové faktory MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH
The establishment of the first JBI Affiliated group in Poland at Wroclaw Medical University marks a significant advancement in evidence-based healthcare (EBHC) nationally. This editorial explores the evolution of EBHC and the critical role of JBI in driving its progress. Founded in 1996 as a research institute at the Royal Adelaide Hospital in South Australia and now based at the University of Adelaide, JBI has emerged as an international leader in evidence synthesis, transfer and implementation. Its Feasibility, Appropriateness, Meaningfulness, and Effectiveness (FAME) framework highlights the feasibility, appropriateness, meaningfulness, and effectiveness of healthcare practices, ensuring that decisions are patient-centered and contextually relevant. JBI's global collaboration network encompasses over 85 entities, with 23 located in Europe, emphasizing the importance of cultural inclusivity and international partnerships. Recent initiatives include translating the JBI Model of into Polish, German and Czech, linking global knowledge to local contexts, and enhancing understanding for professionals and students alike. This editorial also underscores the collaborative achievements of JBI entities in Wroclaw, Brandenburg an der Havel, Prague, and Olomouc. These partnerships have propelled regional implementation, research and education, fostering a shared vision for elevating healthcare quality. Launching a new EBHC section in the Advances in Clinical and Experimental Medicine journal is a significant step forward, inviting global contributions and stimulating innovation and knowledge sharing in EBHC. The presence of a JBI Affiliated group at Wroclaw Medical University symbolizes a transformative commitment to excellence and collaboration. It sets new benchmarks for healthcare in Poland and beyond while reinforcing the global mission of evidence-based practice.
The eye represents a highly specialized organ, with its main function being to convert light signals into electrical impulses. Any damage or disease of the eye induces a local inflammatory reaction that could be harmful for the specialized ocular cells. Therefore, the eye developed several immunoregulatory mechanisms which protect the ocular structures against deleterious immune reactions. This protection is ensured by the production of a variety of immunosuppressive molecules, which create the immune privilege of the eye. In addition, ocular cells are potent producers of numerous growth and trophic factors which support the survival and regeneration of diseased and damaged cells. If the immune privilege of the eye is interrupted and the regulatory mechanisms are not sufficiently effective, the eye disease can progress and result in worsening of vision or even blindness. In such cases, external immunotherapeutic interventions are needed. One perspective possibility of treatment is represented by mesenchymal stromal/stem cell (MSC) therapy. MSCs, which can be administered intraocularly or locally into diseased site, are potent producers of various immunoregulatory and regenerative molecules. The main advantages of MSC therapy include the safety of the treatment, the possibility to use autologous (patient's own) cells, and observations that the therapeutic properties of MSCs can be intentionally regulated by external factors during their preparation. In this review, we provide a survey of the immunoregulatory and regenerative mechanisms in the eye and describe the therapeutic potential of MSC application for corneal damages and retinal diseases.
The introduction of ChatGPT3 in 2023 disrupted the field of artificial intelligence (AI). ChatGPT uses large language models (LLMs) but has no access to copyrighted material including scientific articles and books. This review is limited by the lack of access to: (1) prior peer-reviewed articles and (2) proprietary information owned by the companies. Despite these limitations, the article reviews the use of LLMs in the publishing of scientific articles. The first use was plagiarism software. The second use by the American Psychological Association and Elsevier helped their journal editors to screen articles before their review. These two publishers have in common a large number of copyrighted journals and textbooks but, more importantly, a database of article abstracts. Elsevier is the largest of the five large publishing houses and the only one with a database of article abstracts developed to compete with the bibliometric experts of the Web of Science. The third use and most relevant, Scopus AI, was announced on 16 January 2024, by Elsevier; a version of ChatGPT-3.5 was trained using Elsevier copyrighted material written since 2013. Elsevier's description suggests to the authors that Scopus AI can write review articles or the introductions of original research articles with no human intervention. The editors of non-Elsevier journals not willing to approve the use of Scopus AI for writing scientific articles have a problem on their hands; they will need to trust that the authors who have submitted articles have not lied and have not used Scopus AI at all.
- MeSH
- lidé MeSH
- periodika jako téma MeSH
- psaní MeSH
- publikování * normy MeSH
- umělá inteligence * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Digitalizace postupně proniká do velké části medicínských oblastí včetně patologie. Společně s digitálním zpracováním dat přichází aplikace metod umělé inteligence za účelem zjednodušení rutinních procesů, zvýšení bezpečnosti apod. Ačkoliv se obecné povědomí o metodách umělé inteligence zvyšuje, stále není pravidlem, že by odborníci z netechnických oborů měli detailní představu o tom, jak takové systémy fungují a jak se učí. Cílem tohoto textu je přístupnou formou vysvětlit základy strojového učení s využitím příkladů a ilustrací z oblasti digitální patologie. Nejedná se samozřejmě o ucelený přehled ani o představení nejmodernějších metod. Držíme se spíše úplných základů a představujeme fundamentální myšlenky, které stojí za většinou učících systémů, s použitím nejjednodušších modelů. V textu se věnujeme zejména rozhodovacím stromům, jejichž funkce je snadno vysvětlitelná, a elementárním neuronovým sítím, které jsou hlavním modelem používaným v dnešní umělé inteligenci. Pokusíme se také popsat postup spolupráce mezi lékaři, kteří dodávají data, a informatiky, kteří s jejich pomocí vytvářejí učící systémy. Věříme, že tento text pomůže překlenout rozdíly mezi znalostmi lékařů a informatiků a tím přispěje k efektivnější mezioborové spolupráci.
Digitalization has gradually made its way into many areas of medicine, including pathology. Along with digital data processing comes the application of artificial intelligence methods to simplify routine processes, enhance safety, etc. Although general awareness of artificial intelligence methods is increasing, it is still not common for professionals from non-technical fields to have a detailed understanding of how such systems work and learn. This text aims to explain the basics of machine learning in an accessible way using examples and illustrations from digital pathology. This is not intended to be a comprehensive overview or an introduction to cutting-edge methods. Instead, we use the simplest models to focus on fundamental concepts behind most learning systems. The text concentrates on decision trees, whose functionality is easy to explain, and basic neural networks, the primary models used in today’s artificial intelligence. We also attempt to describe the collaborative process between medical specialists, who provide the data, and computer scientists, who use this data to develop learning systems. This text will help bridge the knowledge gap between medical professionals and computer scientists, contributing to more effective interdisciplinary collaboration.
- MeSH
- lidé MeSH
- patologie * trendy MeSH
- strojové učení * trendy MeSH
- umělá inteligence trendy MeSH
- Check Tag
- lidé MeSH