-
Something wrong with this record ?
The current and upcoming era of radiomics in phaeochromocytoma and paraganglioma
Z. Tüdös, L. Veverková, J. Baxa, I. Hartmann, F. Čtvrtlík
Language English Country Netherlands
Document type Journal Article, Review, Research Support, Non-U.S. Gov't
- MeSH
- Pheochromocytoma * diagnostic imaging MeSH
- Humans MeSH
- Adrenal Gland Neoplasms * diagnostic imaging MeSH
- Paraganglioma * diagnostic imaging MeSH
- Tomography, X-Ray Computed methods MeSH
- Image Processing, Computer-Assisted methods MeSH
- Radiomics MeSH
- Machine Learning MeSH
- Artificial Intelligence MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
The topic of the diagnosis of phaeochromocytomas remains highly relevant because of advances in laboratory diagnostics, genetics, and therapeutic options and also the development of imaging methods. Computed tomography still represents an essential tool in clinical practice, especially in incidentally discovered adrenal masses; it allows morphological evaluation, including size, shape, necrosis, and unenhanced attenuation. More advanced post-processing tools to analyse digital images, such as texture analysis and radiomics, are currently being studied. Radiomic features utilise digital image pixels to calculate parameters and relations undetectable by the human eye. On the other hand, the amount of radiomic data requires massive computer capacity. Radiomics, together with machine learning and artificial intelligence in general, has the potential to improve not only the differential diagnosis but also the prediction of complications and therapy outcomes of phaeochromocytomas in the future. Currently, the potential of radiomics and machine learning does not match expectations and awaits its fulfilment.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25010515
- 003
- CZ-PrNML
- 005
- 20250429135114.0
- 007
- ta
- 008
- 250415s2025 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.beem.2024.101923 $2 doi
- 035 __
- $a (PubMed)39227277
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Tüdös, Zbyněk $u Department of Radiology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- 245 14
- $a The current and upcoming era of radiomics in phaeochromocytoma and paraganglioma / $c Z. Tüdös, L. Veverková, J. Baxa, I. Hartmann, F. Čtvrtlík
- 520 9_
- $a The topic of the diagnosis of phaeochromocytomas remains highly relevant because of advances in laboratory diagnostics, genetics, and therapeutic options and also the development of imaging methods. Computed tomography still represents an essential tool in clinical practice, especially in incidentally discovered adrenal masses; it allows morphological evaluation, including size, shape, necrosis, and unenhanced attenuation. More advanced post-processing tools to analyse digital images, such as texture analysis and radiomics, are currently being studied. Radiomic features utilise digital image pixels to calculate parameters and relations undetectable by the human eye. On the other hand, the amount of radiomic data requires massive computer capacity. Radiomics, together with machine learning and artificial intelligence in general, has the potential to improve not only the differential diagnosis but also the prediction of complications and therapy outcomes of phaeochromocytomas in the future. Currently, the potential of radiomics and machine learning does not match expectations and awaits its fulfilment.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a feochromocytom $x diagnostické zobrazování $7 D010673
- 650 12
- $a nádory nadledvin $x diagnostické zobrazování $7 D000310
- 650 12
- $a paragangliom $x diagnostické zobrazování $7 D010235
- 650 _2
- $a strojové učení $7 D000069550
- 650 _2
- $a počítačová rentgenová tomografie $x metody $7 D014057
- 650 _2
- $a umělá inteligence $7 D001185
- 650 _2
- $a počítačové zpracování obrazu $x metody $7 D007091
- 650 _2
- $a radiomika $7 D000097188
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a přehledy $7 D016454
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Veverková, Lucia $u Department of Radiology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- 700 1_
- $a Baxa, Jan $u Department of Imaging Methods, Faculty Hospital Pilsen and Faculty of Medicine in Pilsen, Charles University, Czech Republic
- 700 1_
- $a Hartmann, Igor $u Department of Urology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- 700 1_
- $a Čtvrtlík, Filip $u Department of Radiology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic. Electronic address: Filip.Ctvrtlik@fnol.cz
- 773 0_
- $w MED00013220 $t Baillière's best practice & research. Clinical endocrinology & metabolism $x 1878-1594 $g Roč. 39, č. 1 (2025), s. 101923
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39227277 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250415 $b ABA008
- 991 __
- $a 20250429135109 $b ABA008
- 999 __
- $a ok $b bmc $g 2311714 $s 1247596
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2025 $b 39 $c 1 $d 101923 $e 20240823 $i 1878-1594 $m Baillière's best practice & research. Clinical endocrinology & metabolism $n Best Pract Res Clin Endocrinol Metab $x MED00013220
- LZP __
- $a Pubmed-20250415