Estimation of Hg(II) in Soil Samples by Bioluminescent Bacterial Bioreporter E. coli ARL1, and the Effect of Humic Acids and Metal Ions on the Biosensor Performance

. 2020 Jun 02 ; 20 (11) : . [epub] 20200602

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32498220

Grantová podpora
UJEP-IGA-TC-2019-44-01-2 Univerzite Jan Evangelista Purkyne v Ústí nad Labem
LM2015073 Ministerstvo Školství, Mládeže a Tělovýchovy
RVO67985831 Ministerstvo Školství, Mládeže a Tělovýchovy

Mercury is a ubiquitous environmental pollutant of dominantly anthropogenic origin. A critical concern for human health is the introduction of mercury to the food chain; therefore, monitoring of mercury levels in agricultural soil is essential. Unfortunately, the total mercury content is not sufficiently informative as mercury can be present in different forms with variable bioavailability. Since 1990, the use of bioreporters has been investigated for assessment of the bioavailability of pollutants; however, real contaminated soils have rarely been used in these studies. In this work, a bioassay with whole-cell bacterial bioreporter Escherichia coli ARL1 was used for estimation of bioavailable concentration of mercury in 11 soil samples. The bioreporter emits bioluminescence in the presence of Hg(II). Four different pretreatments of soil samples prior to the bioassay were tested. Among them, laccase mediated extraction was found to be the most suitable over water extraction, alkaline extraction, and direct use of water-soil suspensions. Nevertheless, effect of the matrix on bioreporter signal was found to be severe and not possible to be completely eliminated by the method of standard addition. In order to elucidate the matrix role, influences of humic acid and selected metal ions present in soil on the bioreporter signal were tested separately in laboratory solutions. Humic acids were found to have a positive effect on the bioreporter growth, but a negative effect on the measured bioluminescence, likely due to shading and Hg binding resulting in decreased bioavailability. Each of the tested metal ions solutions affected the bioluminescence signal differently; cobalt (II) positively, iron (III) negatively, and the effects of iron (II) and nickel (II) were dependent on their concentrations. In conclusion, the information on bioavailable mercury estimated by bioreporter E. coli ARL1 is valuable, but the results must be interpreted with caution. The route to functional bioavailability bioassay remains long.

Zobrazit více v PubMed

Grases F., Costa-Bauza A., Prieto R.M., Gomila I., Pieras E., Sohnel O. Non-infectious phosphate renal calculi: Fine structure, chemical and phase composition. Scand. J. Clin. Lab. Investig. 2011;71:407–412. doi: 10.3109/00365513.2011.575952. PubMed DOI

Antoniadis V., Shaheen S.M., Boersch J., Frohne T., Du Laing G., Rinklebe J. Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. J. Environ. Manag. 2017;186:192–200. doi: 10.1016/j.jenvman.2016.04.036. PubMed DOI

Ha E., Basu N., Bose-O’Reilly S., Dórea J.G., McSorley E., Sakamoto M., Chan H.M. Current progress on understanding the impact of mercury on human health. Environ. Res. 2017;152:419–433. doi: 10.1016/j.envres.2016.06.042. PubMed DOI

Sonke J.E., Heimbürger L.E., Dommergue A. Mercury biogeochemistry: Paradigm shifts, outstanding issues and research needs. Comptes Rendus Geosci. 2013;345:213–224. doi: 10.1016/j.crte.2013.05.002. DOI

Arnold J., Gustin M.S., Weisberg P.J. Evidence for Nonstomatal Uptake of Hg by Aspen and Translocation of Hg from Foliage to Tree Rings in Austrian Pine. Environ. Sci. Technol. 2018;52:1174–1182. doi: 10.1021/acs.est.7b04468. PubMed DOI

Azevedo R., Rodriguez E. Phytotoxicity of Mercury in Plants: A Review. J. Bot. 2012;2012 doi: 10.1155/2012/848614. DOI

Kabata-Pendias A., Pendias H. Trace Elements in Soils and Plants. 3rd ed. CRC Press; Washington, DC, USA: 2001.

Navratil T., Roll M., Zak K., Novakova T., Rohovec J. Mapovani distribuce a zasob rtuti v povrchove organicke vrstve lesnich pud na uzemi CHKO Brdy. Bohemia Cent. 2019;35:7–25.

Navrátil T., Shanley J., Rohovec J., Hojdová M., Penížek V., Buchtová J. Distribution and pools of mercury in Czech forest soils. Water. Air. Soil Pollut. 2014;225:1829. doi: 10.1007/s11270-013-1829-1. DOI

Ottesen R.T., Birke M., Finne T.E., Gosar M., Locutura J., Reimann C., Tarvainen T., Albanese S., Andersson M., Arnoldussen A., et al. Mercury in European agricultural and grazing land soils. Appl. Geochem. 2013;33:1–12. doi: 10.1016/j.apgeochem.2012.12.013. DOI

Gabriel M.C., Williamson D.G. Principal biogeochemical factors affecting the speciation and transport of mercury through the terrestrial environment. Environ. Geochem. Health. 2004;26:421–434. doi: 10.1007/s10653-004-1308-0. PubMed DOI

Skyllberg U. Environmental Chemistry and Toxicology of Mercury. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2011. Chemical Speciation of Mercury in Soil and Sediment; pp. 219–258.

Hojdová M., Navrátil T., Rohovec J., Penížek V., Grygar T. Mercury distribution and speciation in soils affected by historic mercury mining. Water. Air. Soil Pollut. 2009;200:89–99. doi: 10.1007/s11270-008-9895-5. DOI

Navrátil T., Shanley J., Rohovec J., Oulehle F., Krám P., Matoušková Š., Tesař M., Hojdová M. Mercury in stream water at five Czech catchments across a Hg and S deposition gradient. J. Geochem. Explor. 2015;158:201–211. doi: 10.1016/j.gexplo.2015.07.016. DOI

Ministry of Environment of the Czech Repubic Decree No. 334/1992 Coll., On the Protection of Agricultural Land Fund, as amended by Act No. 41/2015 Coll. Ministry of Environment of the Czech Repubic; Prague, Czech Repubic: 2015.

Ministry of Environment of the Czech Repubic Decree No. 153/2016 Coll. Laying Down Detailed Rules for the Protection of the Quality of Agricultural Land and Amending Decree No. 13/1994 Coll., which Regulates Some Details of the Protection of the Agricultural Land Fund. Ministry of Environment of the Czech Repubic; Prague, Czech Republic: 2016.

Ministry of Health of the Czech Republic Decree No. 252/2004 Coll., On Laying Down Hygiene Requirements for Drinking and Hot Water and Frequency and Scope of Drinking Water Control. Ministry of Health of the Czech Republic; Prague, Czech Republic: 2004.

Różański S.Ł., Castejón J.M.P., Fernández G.G. Bioavailability and mobility of mercury in selected soil profiles. Environ. Earth Sci. 2016;75:1065. doi: 10.1007/s12665-016-5863-3. DOI

Li Y.B., Cai Y. Progress in the study of mercury methylation and demethylation in aquatic environments. Chin. Sci. Bull. 2013;58:177–185. doi: 10.1007/s11434-012-5416-4. DOI

Leiva G.M.A., Morales S., Segura R. Comparative measurements and their compliance with standards of total mercury analysis in soil by cold vapour and thermal decomposition, amalgamation and atomic absorption spectrometry. Water. Air. Soil Pollut. 2013;224:1390. doi: 10.1007/s11270-012-1390-3. DOI

Kallithrakas-Kontos N., Foteinis S. Recent Advances in the Analysis of Mercury in Water—Review. Curr. Anal. Chem. 2015;12:22–36. doi: 10.2174/157341101201151007120324. DOI

Biester H., Scholz C. Determination of mercury binding forms in contaminated soils: Mercury pyrolysis versus sequential extractions. Environ. Sci. Technol. 1997;31:233–239. doi: 10.1021/es960369h. DOI

Barrocas P.R.G., Landing W.M., Hudson R.J.M. Assessment of mercury(II) bioavailability using a bioluminescent bacterial biosensor: Practical and theoretical challenges. J. Environ. Sci. 2010;22:1137–1143. doi: 10.1016/S1001-0742(09)60229-1. PubMed DOI

Xu T.T., Close D.M., Webb J.D., Price S.L., Ripp S.A., Sayler G.S. Continuous, real-time bioimaging of chemical bioavailability and toxicology using autonomously bioluminescent human cell lines; Proceedings of the Sensing Technologies for Global Health, Military Medicine, and Environmental Monitoring Iii; Baltimore, MA, USA. 29 April–3 May 2013. PubMed PMC

Schamfuss S., Neu T.R., Harms H., Wick L.Y. A Whole Cell Bioreporter Approach to Assess Transport and Bioavailability of Organic Contaminants in Water Unsaturated Systems. Jove-Journal Vis. Exp. 2014;94:e52334. doi: 10.3791/52334. PubMed DOI PMC

Thomas S.A., Tong T., Gaillard J.F. Hg(II) bacterial biouptake: The role of anthropogenic and biogenic ligands present in solution and spectroscopic evidence of ligand exchange reactions at the cell surface. Metallomics. 2014;6:2213–2222. doi: 10.1039/C4MT00172A. PubMed DOI

Yoon Y., Kim S., Chae Y., Kang Y., Lee Y., Jeong S.W., An Y.J. Use of Tunable Whole-Cell Bioreporters to Assess Bioavailable Cadmium and Remediation Performance in Soils. PLoS ONE. 2016;11:e0154506. doi: 10.1371/journal.pone.0154506. PubMed DOI PMC

Solovyev A.I., Kostejn M., Kuncova G., Dostalek P., Rohovec J., Navratil T. Preconcentration and detection of mercury with bioluminescent bioreporter E-coli ARL1. Appl. Microbiol. Biotechnol. 2015;99:8793–8802. doi: 10.1007/s00253-015-6747-2. PubMed DOI

Solovyev A., Kuncova G., Demnerova K. Whole-cell optical biosensor for mercury-operational conditions in saline water. Chem. Pap. 2015;69:183–191. doi: 10.1515/chempap-2015-0009. DOI

Selifonova O., Burlage R., Barkay T. Bioluminescent sensors for detection of bioavailable Hg(II) in the environment. Appl. Environ. Microbiol. 1993;59:3083–3090. doi: 10.1128/AEM.59.9.3083-3090.1993. PubMed DOI PMC

Száková J., Kolihová D., Miholová D., Mader P. Single-Purpose Atomic Absorption Spectrometer AMA-254 for Mercury Determination and its Performance in Analysis of Agricultural and Environmental Materials. Chem. Pap. 2004;58:311–315.

Synek V., Mjasnikovičová K., Ederer J., Novák P. Observation of soil contamination with mercury in Ústí nad Labem and its surroundings. Stud. Oecologica. 2011;2:86–92.

Kurniawati S., Nicell J.A. Characterization of Trametes versicolor laccase for the transformation of aqueous phenol. Bioresour. Technol. 2008;99:7825–7834. doi: 10.1016/j.biortech.2008.01.084. PubMed DOI

Trögl J., Kuncová G., Kubicová L., Pařík P., Hálová J., Demnerová K., Ripp S., Sayler G.S. Response of the bioluminescent bioreporter Pseudomonas fluorescens HK44 to analogs of naphthalene and salicylic acid. Folia Microbiol. (Praha) 2007;52:3–14. doi: 10.1007/BF02932131. PubMed DOI

Kuncova G., Pazlarova J., Hlavata A., Ripp S., Sayler G.S. Bioluminescent bioreporter Pseudomonas putida TVA8 as a detector of water pollution. Operational conditions and selectivity of free cells sensor. Ecol. Indic. 2011;11:882–887. doi: 10.1016/j.ecolind.2010.12.001. DOI

Trögl J., Ripp S., Kuncová G., Sayler G.S.S., Churavá A., Pařík P., Demnerová K., Hálová J., Kubicová L. Selectivity of whole cell optical biosensor with immobilized bioreporter Pseudomonas fluorescens HK44. Sens. Actuators B-Chem. 2005;107:98–103. doi: 10.1016/j.snb.2004.07.039. DOI

Young S.D., Zhang H., Tye A.M., Maxted A., Thums C., Thornton I. Characterizing the availability of metals in contaminated soils. I. The solid phase: Sequential extraction and isotopic dilution. Soil Use Manag. 2006;21:450–458. doi: 10.1079/SUM2005348. DOI

Tessier A., Campbell P.G.C., Bisson M. Sequential extraction procedure for the speciation of particulate trace-metals. Anal. Chem. 1979;51:844–851. doi: 10.1021/ac50043a017. DOI

Ure A.M., Quevauviller P., Muntau H., Griepink B. Speciation of heavy-metals in soils and sediments—An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission-of-the-European-Communities. Int. J. Environ. Anal. Chem. 1993;51:135–151. doi: 10.1080/03067319308027619. DOI

Harms H., Wells M.C., van der Meer J.R. Whole-cell living biosensors—Are they ready for environmental application? Appl. Microbiol. Biotechnol. 2006;70:273–280. doi: 10.1007/s00253-006-0319-4. PubMed DOI

Heitzer A., Applegate B., Kehrmeyer S., Pinkart H., Webb O.F., Phelps T.J., White D.C., Sayler G.S. Physiological considerations of environmental applications of lux reporter fusions. J. Microbiol. Methods. 1998;33:45–57. doi: 10.1016/S0167-7012(98)00043-8. DOI

Troegl J., Chauhan A., Ripp S., Layton A.C.A.C., Kuncova G., Sayler G.S.S.G.S. Pseudomonas fluorescens HK44: Lessons Learned from a Model Whole-Cell Bioreporter with a Broad Application History. Sensors. 2012;12:1544–1571. doi: 10.3390/s120201544. PubMed DOI PMC

Kuncová G., Trögl J. Physiology of microorganisms immobilized into inorganic polymers. In: Morrison D.A., editor. Handbook of Inorganic Chemistry Research. Nova Science Publishers, Inc.; New York, NY, USA: 2010. pp. 53–101. Chemistry Research and Applications.

Rasmussen L.D., Sørensen S.J., Turner R.R., Barkay T. Application of a mer-lux biosensor for estimating bioavailable mercury in soil. Soil Biol. Biochem. 2000;32:639–646. doi: 10.1016/S0038-0717(99)00190-X. DOI

Bañuelos G.S., Ajwa H.A. Trace elements in soils and plants: An overview. J. Environ. Sci. Heal. Part A Toxic/Hazardous Subst. Environ. Eng. 1999;34:951–974. doi: 10.1080/10934529909376875. DOI

Du L.Y., Arnholt K., Ripp S., Sayler G., Wang S.Q., Liang C.H., Wang J.K., Zhuang J. Biological toxicity of cellulose nanocrystals (CNCs) against the luxCDABE-based bioluminescent bioreporter Escherichia coli 652T7. Ecotoxicology. 2015;24:2049–2053. doi: 10.1007/s10646-015-1555-0. PubMed DOI

Tikhonov V.V., Yakushev A.V., Zavgorodnyaya Y.A., Byzov B.A., Demin V.V. Effects of humic acids on the growth of bacteria. Eurasian Soil Sci. 2010;43:305–313. doi: 10.1134/S1064229310030087. DOI

Rodríguez Couto S., Toca Herrera J.L. Industrial and biotechnological applications of laccases: A review. Biotechnol. Adv. 2006;24:500–513. doi: 10.1016/j.biotechadv.2006.04.003. PubMed DOI

King J.M.H., Digrazia P.M., Applegate B., Burlage R., Sanseverino J., Dunbar P., Larimer F., Sayler G.S. Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation. Science. 1990;249:778–781. doi: 10.1126/science.249.4970.778. PubMed DOI

Close D., Xu T.T., Smartt A., Rogers A., Crossley R., Price S., Ripp S., Sayler G. The Evolution of the Bacterial Luciferase Gene Cassette (lux) as a Real-Time Bioreporter. Sensors. 2012;12:732–752. doi: 10.3390/s120100732. PubMed DOI PMC

Elad T., Benovich E., Magrisso S., Belkin S. Toxicant Identification by a Luminescent Bacterial Bioreporter Panel: Application of Pattern Classification Algorithms. Environ. Sci. Technol. 2008;42:8486–8491. doi: 10.1021/es801489a. PubMed DOI

Marseaut S., Debourg A., Dostalek P., Votruba J., Kuncova G., Tobin J.M. A silica matrix biosorbent of cadmium. Int. Biodeterior. Biodegrad. 2004;54:209–214. doi: 10.1016/j.ibiod.2004.03.014. DOI

Zajic J., Bittner M., Branyik T., Solovyev A., Sabata S., Kuncova G., Pospisilova M. Repetitive inductions of bioluminescence of Pseudomonas putida TVA8 immobilised by adsorption on optical fiber. Chem. Pap. 2016;70:877–887. doi: 10.1515/chempap-2016-0031. DOI

Pospíšilová M., Kuncová G., Trögl J., Pospisilova M., Kuncova G., Trogl J., Troegl J. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors. Sensors. 2015;15:25208–25259. doi: 10.3390/s151025208. PubMed DOI PMC

Puglisi E., Patterson C.J., Paton G.I. Non-exhaustive extraction techniques (NEETs) for bioavailability assessment of organic hydrophobic compounds in soils. Agronomie. 2003;23:755–756. doi: 10.1051/agro:2003049. DOI

Patterson C.J., Semple K.T., Paton G.I. Non-exhaustive extraction techniques (NEETs) for the prediction of naphthalene mineralisation in soil. Fems Microbiol. Lett. 2004;241:215–220. doi: 10.1016/j.femsle.2004.10.023. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...