Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors

. 2015 Sep 30 ; 15 (10) : 25208-59. [epub] 20150930

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid26437407

This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS) and biosensors (FOBS). Fiber optic sensor (FOS) systems use the ability of optical fibers (OF) to guide the light in the spectral range from ultraviolet (UV) (180 nm) up to middle infrared (IR) (10 μm) and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors.

Zobrazit více v PubMed

Wolfbeis O.S. Fiber-optic chemical sensors and biosensors. Anal. Chem. 2006;78:3859–3874. doi: 10.1021/ac060490z. PubMed DOI

Wolfbeis O.S. Fiber-optic chemical sensors and biosensors. Anal. Chem. 2004;76:3269–3284. doi: 10.1021/ac040049d. PubMed DOI

Wang X.D., Wolfbeis O.S. Fiber-optic chemical sensors and biosensors (2008–2012) Anal. Chem. 2013;85:487–508. doi: 10.1021/ac303159b. PubMed DOI

Espinosa Bosch M., Ruiz Sanchez A.J., Sanchez Rojas F., Bosch Ojeda C. Recent development in optical fiber biosensors. Sensors. 2007;7:797–859. doi: 10.3390/s7060797. DOI

Ince R., Narayanaswamy R. Analysis of the performance of interferometry, surface plasmon resonance and luminescence as biosensors and chemosensors. Anal. Chim. Acta. 2006;569:1–20. doi: 10.1016/j.aca.2006.03.058. DOI

Narayanaswamy R. Optical chemical sensors and biosensors for food safety and security applications. Acta Biol. Szeged. 2006;50:105–108.

Baldini F., Chester A.N., Homola J., Martellucci S. Optical Chemical Sensors. Springer; Dordrecht, The Netherlands: 2006.

Monk D.J., Walt D.R. Optical fiber-based biosensors. Anal. Bioanal. Chem. 2004;379:931–945. doi: 10.1007/s00216-004-2650-x. PubMed DOI

Wolfbeis O.S. Fiber-optic chemical sensors and biosensors. Anal. Chem. 2008;80:4269–4283. doi: 10.1021/ac800473b. PubMed DOI

Lowe C.R. Handbook of Biosensors and Biochips. John Wiley & Sons, Ltd; New York, NY, USA: 2008. Overview of Biosensor and Bioarray Technologies.

Tagawa T., Tamura T., Oberg P.A. Biomedical Sensors and Instruments. 2nd ed. CRC Press; Boca Raton, FL, USA: 2011.

Dakin J., Culshaw B. Optical Fiber Sensors: Principles and Components. Artech House; Boston, MA, USA: 1988.

Udd E., Spillman W.B. Fiber Optic Sensors: An Introduction for Engineers and Scientists. Wiley; New York, NY, USA: 2011.

Yin S., Ruffin P.B., Yu F.T.S. Fiber Optic Sensors. 2nd ed. CRC Press; Boca Raton, FL, USA: 2008.

Wolfbeis O.S. Chemical Sensing Using Indicator Dyes. In: Dakin J., Culshaw B., editors. Optical Fiber Sensors: Applications, Analysis and Future Trends. Artech House; Boston, MA, USA/London, UK: 1997.

Fang Z., Chin K., Qu R., Cai H., Chang K. Fundamentals of Optical Fiber Sensors. Wiley; New York, NY, USA: 2012.

Méndez A., Morse T.F. Specialty Optical Fibers Handbook. Academic Press; Burlington, VT, USA: 2007.

Martan T., Kanka J., Kasik I., Matejec V. Theoretical analysis and preparation of tapered suspended core microstructure fibers. Int. J. Optomech. 2009;3:233–249. doi: 10.1080/15599610903174457. DOI

Matejec V., Mrazek J., Podrazky O., Hayer M., Pospisilova M. Fiber-optic u-shaped detection elements for the investigation of photocatalytic activity of optical fibers coated with layer of TiO2. Sens. Lett. 2009;7:900–904. doi: 10.1166/sl.2009.1169. DOI

Chomat M., Berkova D., Matejec V., Kasik I., Kuncova G. The effect of hydrodynamic conditions on the detection of aqueous solutions of toluene by means of an inverted graded-index fiber. Sens. Actuators B Chem. 2003;90:151–156. doi: 10.1016/S0925-4005(03)00037-6. DOI

Latifi H., Zibaii M.I., Hosseini S.M., Jorge P. Nonadiabatic tapered optical fiber for biosensor applications. Photonic Sens. 2012;2:340–356. doi: 10.1007/s13320-012-0086-z. DOI

Rahman H.A., Harun S.W., Yasin M., Phang S.W., Damanhuri S.S.A., Arof H., Ahmad H. Tapered plastic multimode fiber sensor for salinity detection. Sens. Actuators B Phys. 2011;171:219–222. doi: 10.1016/j.sna.2011.09.024. DOI

Beres C., Batista de Nazare F.V., Chagas de Souza N.C., Lemos Miguel M.A., Werneck M.M. Tapered plastic optical fiber-based biosensor—Tests and application. Biosens. Bioelectron. 2011;30:328–332. doi: 10.1016/j.bios.2011.09.024. PubMed DOI

Optical Fibers. [(accessed on 16 September 2015)]. Available online: http://www.fiberguide.com/product/optical-fibers/

Medical Devices for Laser Medicine & Endoscopy. [(accessed on 16 September 2015)]. Available online: http://www.leonifo.com/pdf_catalog/en_medical_devices_02.pdf.

Chomat M., Berkova D., Matejec V., Kasik I., Kuncova G., Gagnaire H., Trouillet A., Bardin F. Optical detection of toluene in water by using IGI fibers. Mater. Sci. Eng. C Biomim. Supramol. Syst. 2002;21:211–215. doi: 10.1016/S0928-4931(02)00089-9. DOI

Matejec V., Berkova D., Chomat M., Zabrodsky M. Detection of toluene by using specially coated pcs fibers excited by an inclined collimated beam. Mater. Sci. Eng. C Biomim. Supramol. Syst. 2002;21:217–221. doi: 10.1016/S0928-4931(02)00091-7. DOI

Cherif K., Mrazek J., Hleli S., Matejec V., Abdelghani A., Chomat M., Jaffrezic-Renault N., Kasik I. Detection of aromatic hydrocarbons in air and water by using xerogel layers coated on pcs fibers excited by an inclined collimated beam. Sens. Actuators B Chem. 2003;95:97–106. doi: 10.1016/S0925-4005(03)00414-3. DOI

Matejec V., Chomat M., Kasik I., Ctyroky J., Berkova D., Hayer M. Inverted-graded index fiber structures for evanescent-wave chemical sensing. Sens. Actuators B Chem. 1998;51:340–347. doi: 10.1016/S0925-4005(98)00190-7. DOI

Matejec V., Chomat M., Pospisilova M., Hayer M., Kasik I. Optical-fiber with novel geometry for evanescent-wave sensing. Sens. Actuators B Chem. 1995;29:416–422. doi: 10.1016/0925-4005(95)01717-8. DOI

Argyros A. Microstructured polymer optical fibers. J. Lightw. Technol. 2009;27:1571–1579. doi: 10.1109/JLT.2009.2020609. DOI

Lezal D., Petrovska B., Kuncova G., Pospisilova M., Gotz J. Chalcogenide—Halide glasses for Optical Waveguides; Proceedings of the SPIE; The Hague, Netherlands. 30 March 1987; pp. 44–53.

Harrington J.A. Infrared Fibers and Their Applications. SPIE Press; Bellingham, WA, USA: 2004.

Nemec M., Jelinkova H., Fibrich M., Koranda P., Miyagi M., Iwai K., Shi Y.W., Matsuura Y. Mid-infrared radiation spatial profile delivered by cop/Ag hollow glass waveguide. Laser Phys. Lett. 2007;4:761–767. doi: 10.1002/lapl.200710057. DOI

Jelinkova H., Nemec M., Koranda P., Miyagi M., Shi Y.W., Matsuura Y. Compact hollow glass waveguide system for Er: Yag laser radiation; Proceedings of the Conference on Optical Fibers and Sensors for Medical Applications V; San Jose, CA, USA. 23 May 2005; pp. 192–199.

Todorov F., Chomat M., Berkova D., Ctyroky J., Matejec V., Kasik I. Sensitivity characteristics of long-period gratings written with a CO2 laser in fiber with parabolic-index cladding. Sens. Lett. 2009;7:979–983. doi: 10.1166/sl.2009.1184. DOI

Chomat M., Berkova D., Todorov F., Ctyroky J., Matejec V., Kasik I., Probostova J., Salvia M., Jehid J. Bend sensing with long-period fiber gratings in capillaries embedded in structures. Mater. Sci. Eng. C Biomim. Supramol. Syst. 2008;28:716–721. doi: 10.1016/j.msec.2007.10.014. DOI

Kim S.C., Jeong Y.C., Kim S.W., Kwon J.J., Park N.K., Lee B.H. Control of the characteristics of a long-period grating by cladding etching. Appl. Opt. 2000;39:2038–2042. doi: 10.1364/AO.39.002038. PubMed DOI

Rao Y.J., Wang Y.P., Ran Z.L., Zhu T. Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses. J. Lightw. Technol. 2003;21:1320–1327.

Del Villar I., Matias I.R., Arregui F.J., Lalanne P. Optimization of sensitivity in long period fiber gratings with overlay deposition. Opt. Express. 2005;13:56–69. doi: 10.1364/OPEX.13.000056. PubMed DOI

Hanumegowda N.M., Stica C.J., Patel B.C., White I., Fan X.D. Refractometric sensors based on microsphere resonators. Appl. Phys. Lett. 2005;87:201107. doi: 10.1063/1.2132076. DOI

Quan H., Guo Z., Pau S. Parametric Studies of Whispering-Gallery Mode Resonator; Proceedings of the Nanosensing: Materials and Devices; Philadelphia, PA, USA. 25 October 2004; pp. 593–602.

Matejec V., Jelinek M., Todorov F., Chomat M., Kubecek V., Berkova D., Martan T. Effect of sol-gel modifications on characteristics of silica spherical microresonators. Sens. Lett. 2011;9:2265–2267. doi: 10.1166/sl.2011.1801. DOI

Todorov F., Ctyroky J., Jelinek M., Chomat M., Matejec V., Kubecek V., Martan T., Berkova D. Bottle microresonators fabricated by shaping optical fibers with a beam of a CO2 laser. Sens. Lett. 2011;9:2279–2282. doi: 10.1166/sl.2011.1813. DOI

Vollmer F., Arnold S. Whispering-gallery-mode biosensing: Label-free detection down to single molecules. Nat. Methods. 2008;5:591–596. doi: 10.1038/nmeth.1221. PubMed DOI

Zajic J. Detection of pH with Fiber Optic Detection Elements. FBMI CTU; Kladno, Czech Republic: 2013.

Pospisilova M., Kasik I., Matejec V. Vlaknova Optika Pro Biologii a Medicinu. CTU Publishing House; Praha, Czech Republic: 2011.

Lee W.I., Verdugo P. Ciliary activity by laser light-scattering spectroscopy. Ann. Biomed. Eng. 1977;5:248–259. doi: 10.1007/BF02407872. PubMed DOI

Leopold J., Pospisilova M. Endoscopic Evaluation of Cilia Motion on the Respiratory Epithelial by Laser Reflectometry Utilizing Optical Fibers. In: Vrbova M., Machan R., editors. Instruments and Methods for Biology and Medicine. Czech Technical University; Kladno, Czech Republic: 2012. pp. 61–63.

Snyder A.W., Love J. Optical Waveguide Theory. Springer; New York, NY, USA: 2012.

Harrick N.J. Internal Reflection Spectroscopy. Harrick Scientific; New York, NY, USA: 1979.

Freger V., Ben-David A. Use of attenuated total reflection infrared spectroscopy for analysis of partitioning of solutes between thin films and solution. Anal. Chem. 2005;77:6019–6025. doi: 10.1021/ac050689w. PubMed DOI

Gao H.H., Chen Z.P., Kumar J., Tripathy S.K., Kaplan D.L. Tapered fiber tips for fiber optic biosensors. Opt. Eng. 1995;34:3465–3470. doi: 10.1117/12.215379. DOI

Homola J. Surface Plasmon Resonance Based Sensors. Springer; Berlin/Heidelberg, Germany: 2006.

Bardin F., Kasik I., Trouillet A., Matejec V., Gagnaire H., Chomat M. Surface plasmon resonance sensor using an optical fiber with an inverted graded-index profile. Appl. Opt. 2002;41:2514–2520. doi: 10.1364/AO.41.002514. PubMed DOI

Gupta B.D., Verma R.K. Surface plasmon resonance-based fiber optic sensors: Principle, probe designs, and some applications. J. Sens. 2009;2009:12. doi: 10.1155/2009/979761. DOI

Shambat G., Kothapalli S.R., Khurana A., Provine J., Sarmiento T., Cheng K., Cheng Z., Harris J., Daldrup-Link H., Gambhir S.S., Vuckovic J. A photonic crystal cavity-optical fiber tip nanoparticle sensor for biomedical applications. Appl. Phys. Lett. 2012;100:213702. doi: 10.1063/1.4719520. DOI

Shay T.M. Theory of electronically phased coherent beam combination without a reference beam. Opt. Express. 2006;14:12188–12195. doi: 10.1364/OE.14.012188. PubMed DOI

Arnold M.A. Fiberoptic chemical sensors. Anal. Chem. 1992;64:A1015–A1025.

Peterson J.I., Goldstein S.R., Fitzgerald R.V., Buckhold D.K. Fiber optic pH probe for physiological use. Anal. Chem. 1980;52:864–869. doi: 10.1021/ac50056a022. PubMed DOI

Goldstein S.R., Peterson J.I., Fitzgerald R.V. A miniature fiber optic pH sensor for physiological use. J. Biomech. Eng. Trans. Asme. 1980;102:141–146. PubMed

Matejec V., Rose K., Hayer M., Pospisilova M., Chomat M. Development of organically modified polysiloxanes for coating optical fibers and their sensitivity to gases and solvents. Sens. Actuators B Chem. 1997;39:438–442. doi: 10.1016/S0925-4005(97)00026-9. DOI

Rose K., Matejec V., Hayer M., Pospisilova M. Organopolysiloxanes as chemically sensitive coatings for optical fibers. J. Sol. Gel Sci. Technol. 1998;13:729–733. doi: 10.1023/A:1008605424922. DOI

Mandelis A. Signal-to-noise ratio in lock-in amplifier synchronous detection—A generalized communications-systems approach with applications to frequency, time, and hybrid (rate window) photothermal measurements. Rev. Sci. Instrum. 1994;65:3309–3323. doi: 10.1063/1.1144568. DOI

Li H., Lopes N., Moser S., Sayler G., Ripp S. Silicon photomultiplier (SPM) detection of low-level bioluminescence for the development of deployable whole-cell biosensors: Possibilities and limitations. Biosens. Bioelectron. 2012;33:299–303. doi: 10.1016/j.bios.2012.01.008. PubMed DOI PMC

Marcuse D. Principles of Optical Fiber Measurements. Elsevier Science; Amsterdam, The Netherlands: 2012.

Wallace P.A., Elliott N., Uttamlal M., Holmes-Smith A.S., Campbell M. Development of a quasi-distributed optical fibre pH sensor using a covalently bound indicator. Meas. Sci. Technol. 2001;12:882–886. doi: 10.1088/0957-0233/12/7/323. DOI

Born M., Wolf E., Bhatia A.B., Gabor D., Stokes A.R., Taylor A.M., Wayman P.A., Wilcock W.L. Principles of optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Ligh. Cambridge University Press; Cambridge, UK: 2000.

Hecht E. Optics. Pearson Education; New York, NY, USA: 2008.

Barnoski M.K. Fundamentals of Optical Fiber Communications. Academic Press; Burlington, VT, USA: 1976.

Miller S. Optical Fiber Telecommunications. Elsevier Science; Amsterdam, The Netherlands: 2012.

Barnoski M. Fundamentals of Optical Fiber Communications. Elsevier Science; Amsterdam, The Netherlands: 2012.

Molecular Probes®. [(accessed on 17 September 2015)]. Available online: http://www.lifetechnologies.com/cz/en/home/brands/molecular-probes.html?icid=fr-probe-main.

Wencel D., MacCraith B.D., McDonagh C. High performance optical ratiometric sol-gel-based ph sensor. Sens. Actuators B Chem. 2009;139:208–213. doi: 10.1016/j.snb.2008.12.066. DOI

Narayanaswamy R., Wolfbeis O.S. Optical Sensors: Industrial, Environmental and Diagnostic Applications. Springer; Dodrecht, The Netherlands: 2004.

Vo-Dinh T., Kasili P. Fiber-optic nanosensors for single-cell monitoring. Anal. Bioanal. Chem. 2005;382:918–925. doi: 10.1007/s00216-005-3256-7. PubMed DOI

Vo-Dinh T., Zhang Y. Single-cell monitoring using fiberoptic nanosensors. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2011;3:79–85. doi: 10.1002/wnan.112. PubMed DOI

Zhang Y., Dhawan A., Vo-Dinh T. Design and fabrication of fiber-optic nanoprobes for optical sensing. Nanoscale Res. Lett. 2011 doi: 10.1007/s11671-010-9744-5. PubMed DOI PMC

Cherif K., Abdelghani A., Hleli S., Ponsonnet L., Jaffrezic-Renault N., Matejec V. Contact angle measurement on xerogel sensitive layer for optical fibre sensor. Mater. Sci. Eng. CBiomim. Supramol. Syst. 2003;23:571–577. doi: 10.1016/S0928-4931(03)00049-3. DOI

Kasik I., Pospisilova M., Matejec V., Chomat M., Rose K., Sasek L. Sensitivity of Silica Optical Fibers Coated with Ormocers to Gaseous CO2; Proceedings of 4th European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE IV; Munster, Germany. 29 March 1998; pp. 273–274.

Kasik I., Mrazek J., Martan T., Pospisilova M., Podrazky O., Matejec V., Hoyerova K., Kaminek M. Fiber-optic pH detection in small volumes of biosamples. Anal. Bioanal. Chem. 2010;398:1883–1889. doi: 10.1007/s00216-010-4130-9. PubMed DOI

Takeuchi Y., Noda J. Novel fiber coupled tapering process using a microheater. IEEE Photonics Technol. Lett. 1992;4:465–467. doi: 10.1109/68.136488. DOI

Yokota H., Sugai E., Sasaki Y. Optical irradiation method for fiber coupler fabrications. Opt. Rev. 1997;4:104–107. doi: 10.1007/BF02936004. DOI

Pospisilova M., Petrasek J., Matejec V., Kasik I. Characterization of Sensing Layer onto the Tip Tapered Fiber; Proceedings of the Conference on Optical Sensors; Prague, Czech Republic. 22 April 2009.

Valledor M., Campo J.C., Ferrero F., Sanchez-Barragan I., Costa-Fernandez J.M., Sanz-Medel A. A critical comparison between two different ratiometric techniques for optical luminescence sensing. Sens. Actuators B Chem. 2009;139:237–244. doi: 10.1016/j.snb.2009.02.024. DOI

Vrbova H., Kuncova G., Pospisilova M. Optical fiber element of sensor with bioluminescent cells; Proceedings of the Book of abstracts of 4th European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE X; Prague, Czech Republic. 2010. p. 85.

Kalabova H., Pospisilova M., Jirina M., Kuncova G. Whole-cell biosensor for detection of environmental pollution enhancement of detected bioluminescence. Curr. Opin. Biotechnol. 2013;24:S32–S32. doi: 10.1016/j.copbio.2013.05.056. DOI

Chen L.H., Ang X.M., Chan C.C., Shaillender M., Neu B., Wong W.C., Zu P., Leong K.C. Layer-by-layer (chitosan/polystyrene sulfonate) membrane-based fabry-perot interferometric fiber optic biosensor. IEEE J. Sel. Top. Quantum Electron. 2012;18:1457–1464. doi: 10.1109/JSTQE.2012.2185221. DOI

Pilla P., Malachovska V., Borriello A., Buosciolo A., Giordano M., Ambrosio L., Cutolo A., Cusano A. Transition mode long period grating biosensor with functional multilayer coatings. Opt. Express. 2011;19:512–526. doi: 10.1364/OE.19.000512. PubMed DOI

Anderson G.P., Taitt C.R., Ligler F.S. Chapter 2—Evanescent Wave Fiber Optic Biosensors. Elsevier; Amsterdam, The Netherlands: 2008. pp. 83–138.

Ko S.H., Grant S.A. A novel fret-based optical fiber biosensor for rapid detection of salmonella typhimurium. Biosens. Bioelectron. 2006;21:1283–1290. doi: 10.1016/j.bios.2005.05.017. PubMed DOI

Su L.C., Chang Y.F., Chou C., Ho J.A.A., Li Y.C., Chou L.D., Lee C.C. Binding kinetics of biomolecule interaction at ultralow concentrations based on gold nanoparticle enhancement. Anal. Chem. 2011;83:3290–3296. doi: 10.1021/ac1028616. PubMed DOI

Hu D.J.J., Lim J.L., Park M.K., Kao L.T.-H., Wang Y., Wei H., Tong W. Photonic crystal fiber-based interferometric biosensor for streptavidin and biotin detection. IEEE J. Sel. Top. Quantum Electron. 2012;18:1293–1297. doi: 10.1109/JSTQE.2011.2169492. DOI

Llobera A., Cadarso V.J., Darder M., Dominguez C., Fernandez-Sanchez C. Full-field photonic biosensors based on tunable bio-doped sol-gel glasses. Lab. Chip. 2008;8:1185–1190. doi: 10.1039/b801152d. PubMed DOI

Wong Y.M., Scully P.J., Bartlett R.J., Kuang K.S.C., Cantwell W.J. Plastic optical fibre sensors for environmental monitoring: Biofouling and strain applications. Strain. 2003;39:115–119. doi: 10.1046/j.1475-1305.2003.00069.x. DOI

Philip-Chandy R., Scully P.J., Eldridge P., Kadim H.J., Grapin M.G., Jonca M.G., D'Ambrosio M.G., Colin F. An optical fiber sensor for biofilm measurement using intensity modulation and image analysis. IEEE J. Sel. Top. Quantum Electron. 2000;6:764–772. doi: 10.1109/2944.892616. DOI

Cennamo N., Varriale A., Pennacchio A., Staiano M., Massarotti D., Zeni L., D’Auria S. An innovative plastic optical fiber-based biosensor for new bio/applications. The case of celiac disease. Sens. Actuators B Chem. 2013;176:1008–1014. doi: 10.1016/j.snb.2012.10.055. DOI

Walt D.R. Fibre optic microarrays. Chem. Soc. Rev. 2010;39:38–50. doi: 10.1039/B809339N. PubMed DOI

Brogan K.L., Walt D.R. Optical fiber-based sensors: Application to chemical biology. Curr. Opin. Chem. Biol. 2005;9:494–500. doi: 10.1016/j.cbpa.2005.08.009. PubMed DOI

Shepard J.R.E., Danin-Poleg Y., Kashi Y., Walt D.R. Array-based binary analysis for bacterial typing. Anal. Chem. 2005;77:319–326. doi: 10.1021/ac0488006. PubMed DOI

Zourob M., Elwary S., Turner A., Hayman R. Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems. Springer; New York, NY, USA: 2008. Fiber Optic Biosensors for Bacterial Detection; pp. 125–137.

Roda A., Cevenini L., Michelini E., Branchini B.R. A portable bioluminescence engineered cell-based biosensor for on-site applications. Biosens. Bioelectron. 2011;26:3647–3653. doi: 10.1016/j.bios.2011.02.022. PubMed DOI

Carter J.C., Alvis R.M., Brown S.B., Langry K.C., Wilson T.S., McBride M.T., Myrick M.L., Cox W.R., Grove M.E., Colston B.W. Fabricating optical fiber imaging sensors using inkjet printing technology: A pH sensor proof-of-concept. Biosens. Bioelectron. 2006;21:1359–1364. doi: 10.1016/j.bios.2005.06.006. PubMed DOI

Resch-Genger U. Standardization and Quality Assurance in Fluorescence Measurements I: Techniques. Springer; Berlin/Heidelberg, Germany: 2008.

Biran I., Yu X., Walt D.R., Ligler F.S., Taitt C.R. Chapter 1—Optrode-Based Fiber Optic Biosensors (Bio-Optrode) Elsevier; Amsterdam, The Netherlands: 2008.

Long F., Zhu A., Shi H. Recent advances in optical biosensors for environmental monitoring and early warning. Sensors. 2013;13:13928–13948. doi: 10.3390/s131013928. PubMed DOI PMC

Justino C.I.L., Rocha-Santos T.A., Duarte A.C. Review of analytical figures of merit of sensors and biosensors in clinical applications. TrAC Trends Anal. Chem. 2010;29:1172–1183. doi: 10.1016/j.trac.2010.07.008. DOI

Hesse H.C. Messonde zur Konzentrationsbestimmung von Stoffen. 106086. Berlin, East Germany: East German Patent. 1974 May 20;

McDonagh C., Burke C.S., MacCraith B.D. Optical chemical sensors. Chem. Rev. 2008;108:400–422. doi: 10.1021/cr068102g. PubMed DOI

Quaranta M., Borisov S.M., Klimant I. Indicators for optical oxygen sensors. Bioanal. Rev. 2012;4:115–157. doi: 10.1007/s12566-012-0032-y. PubMed DOI PMC

Dmitriev R.I., Papkovsky D.B. Optical probes and techniques for O2 measurement in live cells and tissue. Cell. Mol. Life Sci. 2012;69:2025–2039. doi: 10.1007/s00018-011-0914-0. PubMed DOI PMC

Voraberger H.S., Kreimaier H., Biebernik K., Kern W. Novel oxygen optrode withstanding autoclavation: Technical solutions and performance. Sens. Actuators B Chem. 2001;74:179–185. doi: 10.1016/S0925-4005(00)00730-9. DOI

Kuncova G., Fialova M. Optical oxygen sensor-based on metalloorganic compound immobilized by sol-gel technique. Biotechnol. Tech. 1995;9:175–178. doi: 10.1007/BF00157074. DOI

Heo J., Kim C. Easily Accessible Optoelectronic Devices Colorimetric Approach Focused on Oxygen Quantification. In: Iniewski K., editor. Smart Sensors for Industrial Applications. Taylor & Francis; London, UK: 2013. pp. 113–127.

Esposito R., Della Ventura B., de Nicola S., Altucci C., Velotta R., Mita D.G., Lepore M. Glucose sensing by time-resolved fluorescence of sol-gel immobilized glucose oxidase. Sensors. 2011;11:3483–3497. doi: 10.3390/s110403483. PubMed DOI PMC

Yamamura A., Kimura Y., Tamai A., Matsumoto K. Gamma-Aminobutyric Acid (GABA) Sensor Using Gaba Oxidase from penicillinum sp. Kait-m-117; Proceedings of the 214th ECS Meeting; Honolulu, HI, USA. 12 October 2008.

Amine A., Palleschi G. Phosphate, nitrate, and sulfate biosensors. Anal. Lett. 2004;37:1–19. doi: 10.1081/AL-120027770. DOI

Li Y., Zhang L., Li M., Pan Z., Li D. A disposable biosensor based on immobilization of laccase with silica spheres on the mwcnts-doped screen-printed electrode. Chem. Cent. J. 2012 doi: 10.1186/1752-153X-6-103. PubMed DOI PMC

Li J.Z., Zhang Z.J., Li L. A simplified enzyme-based fiber optic sensor for hydrogen-peroxide and oxidase substrates. Talanta. 1994;41:1999–2002. PubMed

Spohn U., Preuschoff F., Blankenstein G., Janasek D., Kula M.R., Hacker A. Chemiluminometric enzyme sensors for flow-injection analysis. Anal. Chim. Acta. 1995;303:109–120. doi: 10.1016/0003-2670(94)00462-U. DOI

Huang J., Fang H., Liu C., Gu E., Jiang D. A novel fiber optic biosensor for the determination of adrenaline based on immobilized laccase catalysis. Anal. Lett. 2008;41:1430–1442. doi: 10.1080/00032710802119525. DOI

Yue H., He J., Xiao D., Choi M.M.F. Biosensor for determination of hydrogen peroxide based on yucca filamentosa membrane. Anal. Methods. 2013;5:5437–5443. doi: 10.1039/c3ay40678d. DOI

House J.L., Anderson E.M., Ward W.K. Immobilization techniques to avoid enzyme loss from oxidase-based biosensors: A one-year study. J. Diabetes Sci. Technol. 2007;1:18–27. doi: 10.1177/193229680700100104. PubMed DOI PMC

Cao L.Q. Immobilised enzymes: Science or art? Curr. Opin. Chem. Biol. 2005;9:217–226. doi: 10.1016/j.cbpa.2005.02.014. PubMed DOI

Pasic A., Koehler H., Klimant I., Schaupp L. Miniaturized fiber-optic hybrid sensor for continuous glucose monitoring in subcutaneous tissue. Sens. Actuators B Chem. 2007;122:60–68. doi: 10.1016/j.snb.2006.05.010. DOI

Brown J.Q., McShane M.J. Modeling of spherical fluorescent glucose microsensor systems: Design of enzymatic smart tattoos. Biosens. Bioelectron. 2006;21:1760–1769. doi: 10.1016/j.bios.2005.08.013. PubMed DOI

Rose K., Dzyadevych S., Fernandez-Lafuente R., Jaffrezic N., Kuncova G., Matejec V., Scully P. Hybrid coatings as transducers in optical biosensors. J. Coat. Technol. Res. 2008;5:491–496. doi: 10.1007/s11998-008-9082-z. DOI

Vaclavikova E. Enzymatic Biosensors for Fermentation Processes. ICT; Prague, Czech Republic: 2008.

Spacil J. Optical Sensors in Brewing. ICT; Prague, Czech Republic: 2006.

Matinoes Video. [(accessed on 17 September 2015)]. Available online: http://www.icpf.cas.cz/cs/matinoes.

Pospiskova K., Safarik I., Sebela M., Kuncova G. Magnetic particles-based biosensor for biogenic amines using an optical oxygen sensor as a transducer. Microchim. Acta. 2013;180:311–318. doi: 10.1007/s00604-012-0932-0. DOI

Scully P.J., Betancor L., Bolyo J., Dzyadevych S., Guisan J.M., Fernandez-Lafuente R., Jaffrezic-Renault N., Kuncova G., Matejec V., O’Kennedy B., et al. Optical fibre biosensors using enzymatic transducers to monitor glucose. Meas. Sci. Technol. 2007;18:3177–3186. doi: 10.1088/0957-0233/18/10/S20. DOI

Kahyaoglu L.N., Madangopal R., Stensberg M., Rickus J.L. Light-Directed Functionalization Methods for High-Resolution Optical Fiber Based Biosensors. International Society for Optics and Photonics; Baltimore, USA: 2015. pp. 948605–948610. SPIE Sensing Technology+ Applications, 2015.

Trogl J., Chauhan A., Ripp S., Layton A.C., Kuncova G., Sayler G.S. Pseudomonas fluorescens HK44: Lessons learned from a model whole-cell bioreporter with a broad application history. Sensors. 2012;12:1544–1571. doi: 10.3390/s120201544. PubMed DOI PMC

Trogl J., Kuncova G., Kubicova L., Parik P., Halova J., Demnerova K., Ripp S., Sayler G.S. Response of the bioluminescent bioreporter pseudomonas fluorescens HK44 to analogs of naphthalene and salicylic acid. Folia Microbiol. 2007;52:3–14. doi: 10.1007/BF02932131. PubMed DOI

Kuncova G., Pazlarova J., Hlavata A., Ripp S., Sayler G.S. Bioluminescent bioreporter Pseudomonas putida TVA8 as a detector of water pollution. Operational conditions and selectivity of free cells sensor. Ecol. Indic. 2011;11:882–887. doi: 10.1016/j.ecolind.2010.12.001. DOI

Gavlasova P., Kuncova G., Kochankova L., Mackova M. Whole cell biosensor for polychlorinated biphenyl analysis based on optical detection. Int. Biodeterior. Biodegradation. 2008;62:304–312. doi: 10.1016/j.ibiod.2008.01.015. DOI

Kuncova G., Triska J., Vrchotova N., Podrazky O. The influence of immobilization of Pseudomonas sp2 on optical detection of polychlorinated biphenyls. Mater. Sci. Eng. C Biomim. Supramol. Syst. 2002;21:195–201. doi: 10.1016/S0928-4931(02)00086-3. DOI

Semple K.T., Doick K.J., Wick L.Y., Harms H. Microbial interactions with organic contaminants in soil: Definitions, processes and measurement. Environ. Pollut. 2007;150:166–176. doi: 10.1016/j.envpol.2007.07.023. PubMed DOI

Semple K.T., Doick K.J., Jones K.C., Burauel P., Craven A., Harms H. Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ. Sci. Technol. 2004;38:228A–231A. doi: 10.1021/es040548w. PubMed DOI

Xu T.T., Close D.M., Sayler G.S., Ripp S. Genetically modified whole-cell bioreporters for environmental assessment. Ecol. Indic. 2013;28:125–141. doi: 10.1016/j.ecolind.2012.01.020. PubMed DOI PMC

Megharaj M., Ramakrishnan B., Venkateswarlu K., Sethunathan N., Naidu R. Bioremediation approaches for organic pollutants: A critical perspective. Environ. Int. 2011;37:1362–1375. doi: 10.1016/j.envint.2011.06.003. PubMed DOI

Dai C., Choi S. Technology and applications of microbial biosensor. Open J. Appl. Biosens. 2013;2:11. doi: 10.4236/ojab.2013.23011. DOI

Michelini E., Cevenini L., Calabretta M.M., Spinozzi S., Camborata C., Roda A. Field-deployable whole-cell bioluminescent biosensors: So near and yet so far. Anal. Bioanal. Chem. 2013;405:6155–6163. doi: 10.1007/s00216-013-7043-6. PubMed DOI

Eltzov E., Marks R.S. Whole Cell Sensing Systems I. Springer; Berlin/Heidelberg, Germany: 2010. Fiber-optic based cell sensors; pp. 131–154. PubMed

Preininger C., Klimant I., Wolfbeis O.S. Optical-fiber sensor for biological oxygen-demand. Anal. Chem. 1994;66:1841–1846. doi: 10.1021/ac00083a011. DOI

Jiang Y., Xiao L.L., Zhao L., Chen X., Wang X., Wong K.Y. Optical biosensor for the determination of BOD in seawater. Talanta. 2006;70:97–103. doi: 10.1016/j.talanta.2005.11.046. PubMed DOI

Dai Y.-J., Lin L., Li P.-W., Chen X., Wang X.-R., Wong K.-Y. Comparison of bod optical fiber biosensors based on different microorganisms immobilized in Ormosil matrixes. Int. J. Environ. Anal. Chem. 2004;84:607–617. doi: 10.1080/03067310310001658302. DOI

Velling S., Orupõld K., Tenno T. Linnaeus ECO-TECH ’10. Linnaaeus University; Klamar, Sweeden: 2010. BOD Sensor for Wastewater Analysis-Design and Calibration Methods.

Titze J., Walter H., Jacob F., Friess A., Parlar H. Evaluation of a new optical sensor for measuring dissolved oxygen by comparison with standard analytical methods. Monatsschr. Brauwiss. 2008;61:66–80.

Rustum R., Adeloye A.J., Scholz M. Applying kohonen self-organizing map as a software sensor to predict biochemical oxygen demand. Water Environ. Res. 2008;80:32–40. doi: 10.2175/106143007X184500. PubMed DOI

Ponomareva O.N., Arlyapov V.A., Alferov V.A., Reshetilov A.N. Microbial biosensors for detection of biological oxygen demand (a review) Appl. Biochem. Microbiol. 2011;47:1–11. doi: 10.1134/S0003683811010108. PubMed DOI

Chong S.S., Abdul Aziz A.R., Harun S.W. Fibre optic sensors for selected wastewater characteristics. Sensors. 2013;13:8640–8668. doi: 10.3390/s130708640. PubMed DOI PMC

Kwok N.Y., Dong S.J., Lo W.H., Wong K.Y. An optical biosensor for multi-sample determination of biochemical oxygen demand (BOD) Sens. Actuators B Chem. 2005;110:289–298. doi: 10.1016/j.snb.2005.02.007. DOI

Koester M., Gliesche C.G., Wardenga R. Microbiosensors for measurement of microbially available dissolved organic carbon: Sensor characteristics and preliminary environmental application. Appl. Environ. Microbiol. 2006;72:7063–7073. doi: 10.1128/AEM.00641-06. PubMed DOI PMC

Bjerketorp J., Hakansson S., Belkin S., Jansson J.K. Advances in preservation methods: Keeping biosensor microorganisms alive and active. Curr. Opin. Biotechnol. 2006;17:43–49. doi: 10.1016/j.copbio.2005.12.005. PubMed DOI

Depagne C., Roux C., Coradin T. How to design cell-based biosensors using the sol-gel process. Anal. Bioanal. Chem. 2011;400:965–976. doi: 10.1007/s00216-010-4351-y. PubMed DOI

Wong L.S., Lee Y.H., Surif S. Whole cell biosensor using anabaena torulosa with optical transduction for environmental toxicity evaluation. J. Sens. 2013;2013:567272. doi: 10.1155/2013/567272. DOI

Verma N., Bansal M., Kumar S. Whole cell based miniaturized fiber optic biosensor to monitor l-asparagine. Adv. Appl. Sci. Res. 2012;3:809–814.

Pena-Vazquez E., Maneiro E., Perez-Conde C., Cruz Moreno-Bondi M., Costas E. Microalgae fiber optic biosensors for herbicide monitoring using sol-gel technology. Biosens. Bioelectron. 2009;24:3538–3543. doi: 10.1016/j.bios.2009.05.013. PubMed DOI

Pena-Vazquez E., Perez-Conde C., Costas E., Moreno-Bondi M.C. Development of a microalgal pam test method for Cu(II) in waters: Comparison of using spectrofluorometry. Ecotoxicology. 2010;19:1059–1065. doi: 10.1007/s10646-010-0487-y. PubMed DOI

Shelle B., Dress P., Franke H., Kuncova G., Pazlarova J., Burkhard J. Application of liquid core waveguide for early detection of PCBs; Proceedings of the 8th Vienna Opt(r)ode workshop, Prague, Czech Republic, Institute of Photonics and Electronics AS ČR; Prague, Czech Republic. 1998; pp. 71–72.

Lucas P., Solis M.A., le Coq D., Juncker C., Riley M.R., Collier J., Boesewetter D.E., Boussard-Pledel C., Bureau B. Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells. Sens. Actuators B Chem. 2006;119:355–362. doi: 10.1016/j.snb.2005.12.033. DOI

Banerjee P., Lenz D., Robinson J.P., Rickus J.L., Bhunia A.K. A novel and simple cell-based detection system with a collagen-encapsulated b-lymphocyte cell line as a biosensor for rapid detection of pathogens and toxins. Lab. Investig. 2008;88:196–206. doi: 10.1038/labinvest.3700703. PubMed DOI

Xu F., Moon S., Hefner E., Beyazoglu T., Emre A.E., Manzur T., Demirci U. A High-Throughput Label-Free Cell-Based Biosensor (CBB) System; Proceedings of the Conference on Unattended Ground, Sea, and Air Sensor Technologies and Applications XII; Orlando, FL, USA. 17 March 2010.

Ganzlin M., Marose S., Lu X., Hitzmann B., Scheper T., Rinas U. In situ multi-wavelength fluorescence spectroscopy as effective tool to simultaneously monitor spore germination, metabolic activity and quantitative protein production in recombinant Aspergillus niger fed-batch cultures. J. Biotechnol. 2007;132:461–468. doi: 10.1016/j.jbiotec.2007.08.032. PubMed DOI

Marose S., Lindemann C., Scheper T. Two-dimensional fluorescence spectroscopy: A new tool for on-line bioprocess monitoring. Biotechnol. Prog. 1998;14:63–74. doi: 10.1021/bp970124o. PubMed DOI

Podrazky O., Kuncova G. Determination of concentration of living immobilized yeast cells by fluorescence spectroscopy. Sens. Actuators B Chem. 2005;107:126–134. doi: 10.1016/j.snb.2004.08.031. DOI

Podrazky O., Kuncova G., Krasowska A., Sigler K. Monitoring the growth and stress responses of yeast cells by two-dimensional fluorescence spectroscopy: First results. Folia Microbiol. 2003;48:189–192. doi: 10.1007/BF02930954. PubMed DOI

Nienhaus K., Nienhaus G.U. Fluorescent proteins for live-cell imaging with super-resolution. Chem. Soc. Rev. 2014;43:1088–1106. doi: 10.1039/C3CS60171D. PubMed DOI

Close D.M., Ripp S., Sayler G.S. Reporter proteins in whole-cell optical bioreporter detection systems, biosensor integrations, and biosensing applications. Sensors. 2009;9:9147–9174. doi: 10.3390/s91109147. PubMed DOI PMC

Medvedeva S.E., Tyulkova N.A., Kuznetsov A.M., Rodicheva E.K. Bioluminescent bioassays based on luminous bacteria. J. Sib. Fed. Univ. Biol. 2009;2:418–452.

Tecon R., van der Meer J.R. Information from single-cell bacterial biosensors: What is it good for? Curr. Opin. Biotechnol. 2006;17:4–10. doi: 10.1016/j.copbio.2005.11.001. PubMed DOI

Shetty R.S., Ramanathan S., Badr I.H.A., Wolford J.L., Daunert S. Green fluorescent protein in the design of a living biosensing system for l-arabinose. Anal. Chem. 1999;71:763–768. doi: 10.1021/ac9811928. PubMed DOI

Knight A.W., Goddard N.J., Fielden P.R., Barker M.G., Billinton N., Walmsley R.M. Development of a flow-through detector for monitoring genotoxic compounds by quantifying the expression of green fluorescent protein in genetically modified yeast cells. Meas. Sci. Technol. 1999;10:211–217. doi: 10.1088/0957-0233/10/3/017. DOI

Knight A.W., Goddard N.J., Fielden P.R., Gregson A.L., Billinton N., Baker M.G., Walmsley R.M. The application of fluorescence polarisation for the enhanced detection of green fluorescent protein (GFP) in the presence of cellular auto-fluorescence and other green fluorescent compounds. Analyst. 2000;125:499–506. doi: 10.1039/a908415k. DOI

Lu C.H., Albano C.R., Bentley W.E., Rao G. Differential rates of gene expression monitored by green fluorescent protein. Biotechnol. Bioeng. 2002;79:429–437. doi: 10.1002/bit.10295. PubMed DOI

Sayler G., Martrubutham U., Menn F., Johnston W., Stapleton R. Molecular Probes and Biosensors in Bioremediation and Site Assesment. In: Sikdar S.K., Irvine R., editors. Bioremediation: Principles and Practice. Technomic; Lancaster, PA, USA: 1998. pp. 385–434.

Close D., Xu T., Smartt A., Rogers A., Crossley R., Price S., Ripp S., Sayler G. The evolution of the bacterial luciferase gene cassette (lux) as a real-time bioreporter. Sensors. 2012;12:732–752. doi: 10.3390/s120100732. PubMed DOI PMC

Woutersen M., Belkin S., Brouwer B., van Wezel A.P., Heringa M.B. Are luminescent bacteria suitable for online detection and monitoring of toxic compounds in drinking water and its sources? Anal. Bioanal. Chem. 2011;400:915–929. doi: 10.1007/s00216-010-4372-6. PubMed DOI PMC

Devos Y., Aguilera J., Diveki Z., Gomes A., Liu Y., Paoletti C., du Jardin P., Herman L., Perry J.N., Waigmann E. Efsa’s scientific activities and achievements on the risk assessment of genetically modified organisms (GMOS) during its first decade of existence: Looking back and ahead. Transgenic Res. 2014;23:1–25. doi: 10.1007/s11248-013-9741-4. PubMed DOI

EU . Directive 2009/41/EC of the European Parliament and of the Council of 6 May 2009 on the Contained Use of Genetically Modified Micro-Organisms. EU; Brussels, Belgium: 2009.

Paulsen I.T., Holmes A.J., Wang Y., Zhang D., Davison P., Huang W. Environmental Microbiology. Humana Press; New York, NY, USA: 2014. Bacterial Whole-Cell Biosensors for the Detection of Contaminants in Water and Soils; pp. 155–168. PubMed

Ripp S., Nivens D.E., Ahn Y., Werner C., Jarrell J., Easter J.P., Cox C.D., Burlage R.S., Sayler G.S. Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control. Environ. Sci. Technol. 2000;34:846–853. doi: 10.1021/es9908319. DOI

Ripp S., Nivens D.E., Sayler G.S. Field Release of Genetically Engineered Bioluminescent Bioreporters for Bioremediation Process Monitoring and Control. In: Magar V., Vogel T.M., Aelion C.M., Leeson A., editors. Innovative Methods in Support of Bioremediation. Battelle Press; San DIego, CA, USA: 2001. pp. 45–50.

Layton A., Smartt A., Chauhan A., Ripp S., Williams D., Burton W., Moser S., Phillips J., Palumbo A.V., Sayler G.S. Ameliorating risk: Culturable and metagenomic monitoring of the 14 year decline of a genetically engineered microorganism at a bioremediation field site. J. Bioremediat. Biodegrad. 2012 doi: 10.4172/2155-6199.S1-009. DOI

Dorn J.G., Mahal M.K., Brusseau M.L., Maier R.M. Employing a novel fiber optic detection system to monitor the dynamics of in situ lux bioreporter activity in porous media: System performance update. Anal. Chim. Acta. 2004;525:63–74. doi: 10.1016/j.aca.2004.07.060. DOI

Smartt A.E., Ripp S. Bacteriophage reporter technology for sensing and detecting microbial targets. Anal. Bioanal. Chem. 2011;400:991–1007. doi: 10.1007/s00216-010-4561-3. PubMed DOI

Polyak B., Bassis E., Novodvorets A., Belkin S., Marks R.S. Bioluminescent whole cell optical fiber sensor to genotoxicants: System optimization. Sens. Actuators B Chem. 2001;74:18–26. doi: 10.1016/S0925-4005(00)00707-3. DOI

Hakkila K., Green T., Leskinen P., Ivask A., Marks R., Virta M. Detection of bioavailable heavy metals in eilatox-oregon samples using whole-cell luminescent bacterial sensors in suspension or immobilized onto fibre-optic tips. J. Appl. Toxicol. 2004;24:333–342. doi: 10.1002/jat.1020. PubMed DOI

Kuncova G., Pospisilova M., Solovyev A. Optical Fiber Whole Cell Bioluminescent Sensor; Proceedings of the International Conference on Bioencapsulation, Book of Abstracts; Orillia, ON, Canada. 21 September 2012; pp. 96–97.

Polyak B., Geresh S., Marks R.S. Synthesis and characterization of a biotin-alginate conjugate and its application in a biosensor construction. Biomacromolecules. 2004;5:389–396. doi: 10.1021/bm034454a. PubMed DOI

Eltzov E., Pavluchkov V., Burstin M., Marks R.S. Creation of a fiber optic based biosensor for air toxicity monitoring. Sens. Actuators B Chem. 2011;155:859–867. doi: 10.1016/j.snb.2011.01.062. DOI

Ben-Yoav H., Melamed S., Freeman A., Shacham-Diamand Y., Belkin S. Whole-cell biochips for bio-sensing: Integration of live cells and inanimate surfaces. Crit. Rev. Biotechnol. 2011;31:337–353. doi: 10.3109/07388551.2010.532767. PubMed DOI

Premkumar J.R., Lev O., Marks R.S., Polyak B., Rosen R., Belkin S. Antibody-based immobilization of bioluminescent bacterial sensor cells. Talanta. 2001;55:1029–1038. doi: 10.1016/S0039-9140(01)00533-1. PubMed DOI

Flickinger M.C., Schottel J.L., Bond D.R., Aksan A., Scriven L.E. Painting and printing living bacteria: Engineering nanoporous biocatalytic coatings to preserve microbial viability and intensify reactivity. Biotechnol. Progr. 2007;23:2–17. doi: 10.1021/bp060347r. PubMed DOI

Balassundaram A. Master’s Thesis. University of Tennessee; Knoxville, TN, USA: May, 2006. Study of Hydrogel Properties and Immobilization of a Bioluminescent Bioreporter.

Gravel H. Master’s Thesis. McGill University; Montreal, QC, Canada: Jan 1, 2008. Comparing the Response of Suspended and Immobilized Whole-Cell Bioluminescent Biosensor ppf1g4.

Mitchell R.J., Gu M.B. Characterization and optimization of two methods in the immobilization of 12 bioluminescent strains. Biosens. Bioelectron. 2006;22:192–199. doi: 10.1016/j.bios.2005.12.019. PubMed DOI

Kuncova G., Trogl J. Physiology of Microorganisms Immobilized into Inorganic Polymers. In: Morrison D.A., editor. Handbook of Inorganic Chemistry Research. Nova Science Publishers, Inc; Hauppauge, NY, USA: 2010. pp. 53–101.

Kuncova G., Podrazky O., Ripp S., Trogl J., Sayler G.S., Demnerova K., Vankova R. Monitoring of the viability of cells immobilized by sol-gel process. J. Sol. Gel. Sci. Technol. 2004;31:335–342. doi: 10.1023/B:JSST.0000048013.64235.c8. DOI

Schipunov Y. Entrapment of Biopolymers into Sol-Gel-Derived Silica Nanonocomposites. In: Ruiz-Hitzky E., Ariga K., Lvo Y., editors. Bio-Inorganic Hybrid Nanomaterials: Strategies, Syntheses, Characterization and Applications. 1st ed. Wiley-VCH Verlag GmbH and Co. KGaA; Weinheim, Germany: 2008. pp. 75–112.

Perullini M., Amoura M., Roux C., Coradin T., Livage J., Laura Japas M., Jobbagy M., Bilmes S.A. Improving silica matrices for encapsulation of Escherichia coli using osmoprotectors. J. Mater. Chem. 2011;21:4546–4552. doi: 10.1039/c0jm03948a. DOI

Perullini M., Amoura M., Jobbagy M., Roux C., Livage J., Coradin T., Bilmes S.A. Improving bacteria viability in metal oxide hosts via an alginate-based hybrid approach. J. Mater. Chem. 2011;21:8026–8031. doi: 10.1039/c1jm10684h. DOI

Merhari L., Yip W., Zhou Y., Martyn T., Gillil J. Hybrid Nanocomposites for Nanotechnology. Springer US; New York, NY, USA: 2009. Silica Sol-Gel Biocomposite Materials for Sensor Development; pp. 795–825.

Blondeau M., Coradin T. Living materials from sol-gel chemistry: Current challenges and perspectives. J. Mater. Chem. 2012;22:22335–22343. doi: 10.1039/c2jm33647b. DOI

Moreira F.T.C., Moreira-Tavares A.P., Sales M.G.F. Sol-gel-based biosensing applied to medicinal science. Curr. Top. Med. Chem. 2015;15:245–255. doi: 10.2174/1568026614666141229113012. PubMed DOI

Levy D., Zayat M. The Sol-Gel Handbook: Synthesis, Characterization and Applications. Wiley; New York, NY, USA: 2015.

Kuncova G., Guglielmi M., Dubina P., Safar B. Lipase immobilized by sol-gel technique in layers. Collect. Czechoslov. Chem. Commun. 1995;60:1573–1577. doi: 10.1135/cccc19951573. DOI

Shchipunov Y.A. Bio-Inorganic Hybrid Nanomaterials. Wiley-VCH Verlag GmbH & Co. KGaA; New York, NY, USA: 2007. Entrapment of Biopolymers into sol—Gel-Derived Silica Nanocomposites; pp. 75–112.

Baca H.K., Carnes E., Singh S., Ashley C., Lopez D., Brinker C.J. Cell-directed assembly of bio/nano interfaces—A new scheme for cell immobilization. Account. Chem. Res. 2007;40:836–845. doi: 10.1021/ar600027u. PubMed DOI

Baca H.K., Ashley C., Carnes E., Lopez D., Flemming J., Dunphy D., Singh S., Chen Z., Liu N.G., Fan H.Y., et al. Cell-directed assembly of lipid-silica nanostructures providing extended cell viability. Science. 2006;313:337–341. doi: 10.1126/science.1126590. PubMed DOI

Mueller W.E.G., Schroeder H.C., Burghard Z., Pisignano D., Wang X. Silicateins-a novel paradigm in bioinorganic chemistry: Enzymatic synthesis of inorganic polymeric silica. Chem. Eur. J. 2013;19:5790–5804. doi: 10.1002/chem.201204412. PubMed DOI

Adanyi N., Bori Z., Szendro I., Erdelyi K., Wang X., Schroeder H.C., Mueller W.E.G. Biosilica-based immobilization strategy for label-free owls sensors. Sens. Actuators B Chem. 2013;177:1–7. doi: 10.1016/j.snb.2012.10.116. PubMed DOI

Polini A., Pagliara S., Camposeo A., Cingolani R., Wang X., Schroeder H.C., Mueller W.E.G., Pisignano D. Optical properties of in vitro biomineralised silica. Sci. Report. 2012 doi: 10.1038/srep00607. PubMed DOI PMC

Jun C., Jeon B.W., Joo J.C., Le Q., Gu S.A., Byun S., Cho D.H., Kim D., Sang B.I., Kim Y.H. Thermostabilization of candida antarctica lipase B by double immobilization: Adsorption on a macroporous polyacrylate carrier and R1 silaffin-mediated biosilicification. Process. Biochem. 2013;48:1181–1187. doi: 10.1016/j.procbio.2013.06.010. DOI

Yang S.H., Hong D., Lee J., Ko E.H., Choi I.S. Artificial spores: Cytocompatible encapsulation of individual living cells within thin, tough artificial shells. Small. 2013;9:178–186. doi: 10.1002/smll.201202174. PubMed DOI

Korposh S., James S., Tatam R., Lee S. Fibre-Optic Chemical Sensor Approaches Based on Nanoassembled Thin Films: A Challenge to Future Sensor Technology. In: Harun S.W., Arof H., editors. Current Developments in Optical Fiber Technology. InTech; Rijeka, Croatia: 2013.

Chu C., Lo Y., Sung T. Review on recent developments of fluorescent oxygen and carbon dioxide optical fiber sensors. Photonic Sens. 2011;1:234–250. doi: 10.1007/s13320-011-0025-4. DOI

Lehner P., Larndorfer C., Garcia-Robledo E., Larsen M., Borisov S.M., Revsbech N.-P., Glud R.N., Canfield D.E., Klimant I. Lumos—A sensitive and reliable optode system for measuring dissolved oxygen in the nanomolar range. Plos One. 2015;10:e0128125. doi: 10.1371/journal.pone.0128125. PubMed DOI PMC

Lehner P., Staudinger C., Borisov S.M., Regensburger J., Klimant I. Intrinsic Artefacts in Optical Oxygen Sensors—How Reliable are our Measurements? Chem. Eur. J. 2015;21:1–10. doi: 10.1002/chem.201406037. PubMed DOI

Stahl H., Glud A., Schröder A.C., Klimant I., Tengberg A., Glud R.N. Time-resolved pH imaging in marine sediments with a luminescent planar optode. Limnol. Oceanogr. Methods. 2006;4:336–345. doi: 10.4319/lom.2006.4.336. DOI

Fiber Optic pH Meter, Use with Minisensors. [(accessed on 17 September 2015)]. Available online: http://www.wpiinc.com/products/physiology/ph-optica-mini-fiber-optic-ph-meter.

Schyrr B., Pasche S., Scolan E., Ischer R., Ferrario D., Porchet J.A., Voirin G. Development of a polymer optical fiber pH sensor for on-body monitoring application. Sens. Actuators B Chem. 2014;194:238–248. doi: 10.1016/j.snb.2013.12.032. DOI

Wencel D., Abel T., McDonagh C. Optical Chemical pH Sensors. Anal. Chem. 2014;86:15–29. doi: 10.1021/ac4035168. PubMed DOI

3510, 3510 and 3520 Bench pH Meters. [(accessed on 17 September 2015)]. Available online: http://www.jenway.com/product.asp?dsl=285.

PYROSCIENCE, Bare Fiber Oxygen Sensors. [(accessed on 17 September 2015)]. Available online: http://www.pyro-science.com/bare-fiber-optic-oxygen-sensors.html.

Dissolved Oxygen Probe. [(accessed on 17 September 2015)]. Available online: http://www.vernier.com/products/sensors/dissolved-oxygen-probes/do-bta/

Dissolved Oxygen. [(accessed on 17 September 2015)]. Available online: http://www.rbr-global.com/products/small-single-channel-loggers/149-dissolved-oxygen.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...