Different Expression of Vascularization and Inflammatory Regulators in Cells Derived from Oral Mucosa and Limbus

. 2025 Jun 24 ; 12 (7) : . [epub] 20250624

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40722380

Grantová podpora
KAPPA Project No. TO01000099 Norway Grants and Technology Agency of the Czech Republic
Cooperation: Medical Diagnostics and Basic Medical Sciences Charles University

Odkazy

PubMed 40722380
PubMed Central PMC12292335
DOI 10.3390/bioengineering12070688
PII: bioengineering12070688
Knihovny.cz E-zdroje

Bilateral limbal stem cell deficiency (LSCD) can be effectively treated with cultivated oral mucosa epithelial cell transplantation (COMET). However, COMET is associated with greater superficial neovascularization than limbal stem cell (LESC) transplantation, the gold standard for unilateral LSCD. To investigate the intrinsic molecular features of cells intended for grafting, we assessed the in vitro expression of genes involved in vascularization and inflammation using real-time quantitative PCR and multifactorial linear models. Oral mucosal epithelial cells (OMECs) and limbal epithelial cells (LECs) were cultured in either conventional (COM) or xenobiotic-free (XF) media on fibrin substrates. Gene expression profiling revealed distinct transcriptional signatures. The pro-angiogenic genes AGR2, ANGPTL2, CRYAB, EREG, JAM3, and S100A4 were significantly higher in LECs (adjusted p < 0.01), whereas FGF2 was higher in OMECs (adjusted p < 0.001). The anti-angiogenic genes TIMP3 and SERPINF1 were higher in LECs (adjusted p < 0.01), while COL18A1 was higher in OMECs (adjusted p < 0.01). OMECs also showed significantly greater expression of the immunoregulatory genes IL1B, IL6, TNF, CXCL10, and IL1RN (adjusted p < 0.01). Cultivation induced phenotypic changes in OMECs, with COM and XF media exerting comparable effects. These results highlight the contribution of inflammatory mediators to neovascularization following COMET.

Zobrazit více v PubMed

Bonnet C., Roberts J.S., Deng S.X. Limbal Stem Cell Diseases. Exp. Eye Res. 2021;205:108437. doi: 10.1016/j.exer.2021.108437. PubMed DOI PMC

Pellegrini G., Traverso C.E., Franzi A.T., Zingirian M., Cancedda R., De Luca M. Long-Term Restoration of Damaged Corneal Surfaces with Autologous Cultivated Corneal Epithelium. Lancet. 1997;349:990–993. doi: 10.1016/S0140-6736(96)11188-0. PubMed DOI

Nakamura T., Inatomi T., Sotozono C., Amemiya T., Kanamura N., Kinoshita S. Transplantation of Cultivated Autologous Oral Mucosal Epithelial Cells in Patients with Severe Ocular Surface Disorders. Br. J. Ophthalmol. 2004;88:1280–1284. doi: 10.1136/bjo.2003.038497. PubMed DOI PMC

Kohji N., Masayuki Y., Yasutaka H., Katsuhiko W., Kazuaki Y., Eijiro A., Shigeru N., Akihiko K., Naoyuki M., Hitoshi W., et al. Corneal Reconstruction with Tissue-Engineered Cell Sheets Composed of Autologous Oral Mucosal Epithelium. N. Engl. J. Med. 2004;351:1187–1196. doi: 10.1056/NEJMoa040455. PubMed DOI

Cabral J.V., Jackson C.J., Utheim T.P., Jirsova K. Ex Vivo Cultivated Oral Mucosal Epithelial Cell Transplantation for Limbal Stem Cell Deficiency: A Review. Stem Cell Res. Ther. 2020;11:301. doi: 10.1186/s13287-020-01783-8. PubMed DOI PMC

Inatomi T., Nakamura T., Kojyo M., Koizumi N., Sotozono C., Kinoshita S. Ocular Surface Reconstruction with Combination of Cultivated Autologous Oral Mucosal Epithelial Transplantation and Penetrating Keratoplasty. Am. J. Ophthalmol. 2006;142:757–764. doi: 10.1016/j.ajo.2006.06.004. PubMed DOI

Inatomi T., Nakamura T., Koizumi N., Sotozono C., Yokoi N., Kinoshita S. Midterm Results on Ocular Surface Reconstruction Using Cultivated Autologous Oral Mucosal Epithelial Transplantation. Am. J. Ophthalmol. 2006;141:267–275. doi: 10.1016/j.ajo.2005.09.003. PubMed DOI

O’Callaghan A.R., Daniels J.T. Concise Review: Limbal Epithelial Stem Cell Therapy: Controversies and Challenges. Stem Cells. 2011;29:1923–1932. doi: 10.1002/stem.756. PubMed DOI

Lim P., Fuchsluger T.A., Jurkunas U.V. Limbal Stem Cell Deficiency and Corneal Neovascularization. Semin. Ophthalmol. 2009;24:139–148. doi: 10.1080/08820530902801478. PubMed DOI

Chen H.-C.J., Yeh L.-K., Tsai Y.-J., Lai C.-H., Chen C.-C., Lai J.-Y., Sun C.-C., Chang G., Hwang T.-L., Chen J.-K., et al. Expression of Angiogenesis-Related Factors in Human Corneas after Cultivated Oral Mucosal Epithelial Transplantation. Investig. Ophthalmol. Vis. Sci. 2012;53:5615–5623. doi: 10.1167/iovs.11-9293. PubMed DOI

Kanayama S., Nishida K., Yamato M., Hayashi R., Sugiyama H., Soma T., Maeda N., Okano T., Tano Y. Analysis of Angiogenesis Induced by Cultured Corneal and Oral Mucosal Epithelial Cell Sheets in Vitro. Exp. Eye Res. 2007;85:772–781. doi: 10.1016/j.exer.2007.08.011. PubMed DOI

Kanayama S., Nishida K., Yamato M., Hayashi R., Maeda N., Okano T., Tano Y. Analysis of Soluble Vascular Endothelial Growth Factor Receptor-1 Secreted from Cultured Corneal and Oral Mucosal Epithelial Cell Sheets in Vitro. Br. J. Ophthalmol. 2009;93:263–267. doi: 10.1136/bjo.2008.141580. PubMed DOI

Attico E., Galaverni G., Torello A., Bianchi E., Bonacorsi S., Losi L., Manfredini R., Lambiase A., Rama P., Pellegrini G. Comparison between Cultivated Oral Mucosa and Ocular Surface Epithelia for COMET Patients Follow-Up. Int. J. Mol. Sci. 2023;24:11522. doi: 10.3390/ijms241411522. PubMed DOI PMC

Sekiyama E., Nakamura T., Kawasaki S., Sogabe H., Kinoshita S. Different Expression of Angiogenesis-Related Factors between Human Cultivated Corneal and Oral Epithelial Sheets. Exp. Eye Res. 2006;83:741–746. doi: 10.1016/j.exer.2006.02.015. PubMed DOI

Brejchova K., Trosan P., Studeny P., Skalicka P., Utheim T.P., Bednar J., Jirsova K. Characterization and Comparison of Human Limbal Explant Cultures Grown under Defined and Xeno-Free Conditions. Exp. Eye Res. 2018;176:20–28. doi: 10.1016/j.exer.2018.06.019. PubMed DOI

Zhao Y., Ma L. Systematic Review and Meta-Analysis on Transplantation of Ex Vivo Cultivated Limbal Epithelial Stem Cell on Amniotic Membrane in Limbal Stem Cell Deficiency. Cornea. 2015;34:592–600. doi: 10.1097/ICO.0000000000000398. PubMed DOI

Cabral J.V., Voukali E., Smorodinova N., Balogh L., Kolin V., Studeny P., Netukova M., Jirsova K. Cultivation and Characterization of Oral Mucosal Epithelial Cells on Fibrin Gel in a Xenobiotic-Free Medium for the Treatment of Limbal Stem Cell Deficiency. Exp. Eye Res. 2025;253:110300. doi: 10.1016/j.exer.2025.110300. PubMed DOI

Trousil J., Cabral J.V., Voukali E., Nováčková J., Pop-Georgievski O., Vacík T., Studený P., Studenovska H., Jirsova K. Electrospun Poly(l-Lactide-Co-Dl-Lactide) Nanofibrous Scaffold as Substrate for Ex Vivo Limbal Epithelial Cell Cultivation. Heliyon. 2024;10:e30970. doi: 10.1016/j.heliyon.2024.e30970. PubMed DOI PMC

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2025. [(accessed on 22 June 2025)]. Available online: https://www.R-project.org/

Ma D.H.-K., Chen J.-K., Zhang F., Lin K.-Y., Yao J.-Y., Yu J.-S. Regulation of Corneal Angiogenesis in Limbal Stem Cell Deficiency. Prog. Retin. Eye Res. 2006;25:563–590. doi: 10.1016/j.preteyeres.2006.09.001. PubMed DOI

Okada-Ban M., Thiery J.P., Jouanneau J. Fibroblast Growth Factor-2. Int. J. Biochem. Cell Biol. 2000;32:263–267. doi: 10.1016/S1357-2725(99)00133-8. PubMed DOI

Toyono T., Usui T., Yokoo S., Kimakura M., Nakagawa S., Yamagami S., Miyata K., Oike Y., Amano S. Angiopoietin-like Protein 2 Is a Potent Hemangiogenic and Lymphangiogenic Factor in Corneal Inflammation. Investig. Ophthalmol. Vis. Sci. 2013;54:4278–4285. doi: 10.1167/iovs.12-11497. PubMed DOI

Santulli G. Angiopoietin-Like Proteins: A Comprehensive Look. Front. Endocrinol. 2014;5:4. doi: 10.3389/fendo.2014.00004. PubMed DOI PMC

Ferrari G., Giacomini C., Bignami F., Moi D., Ranghetti A., Doglioni C., Naldini L., Rama P., Mazzieri R. Angiopoietin 2 Expression in the Cornea and Its Control of Corneal Neovascularisation. Br. J. Ophthalmol. 2016;100:1005–1010. doi: 10.1136/bjophthalmol-2015-307901. PubMed DOI

Suri C., Jones P.F., Patan S., Bartunkova S., Maisonpierre P.C., Davis S., Sato T.N., Yancopoulos G.D. Requisite Role of Angiopoietin-1, a Ligand for the TIE2 Receptor, during Embryonic Angiogenesis. Cell. 1996;87:1171–1180. doi: 10.1016/S0092-8674(00)81813-9. PubMed DOI

Guo H., Zhu Q., Yu X., Merugu S.B., Mangukiya H.B., Smith N., Li Z., Zhang B., Negi H., Rong R., et al. Tumor-Secreted Anterior Gradient-2 Binds to VEGF and FGF2 and Enhances Their Activities by Promoting Their Homodimerization. Oncogene. 2017;36:5098–5109. doi: 10.1038/onc.2017.132. PubMed DOI

Delom F., Mohtar M.A., Hupp T., Fessart D. The Anterior Gradient-2 Interactome. Am. J. Physiol. Cell Physiol. 2020;318:C40–C47. doi: 10.1152/ajpcell.00532.2018. PubMed DOI

Kase S., He S., Sonoda S., Kitamura M., Spee C., Wawrousek E., Ryan S.J., Kannan R., Hinton D.R. αB-Crystallin Regulation of Angiogenesis by Modulation of VEGF. Blood. 2010;115:3398–3406. doi: 10.1182/blood-2009-01-197095. PubMed DOI PMC

Boelens W.C. Cell Biological Roles of αB-Crystallin. Prog. Biophys. Mol. Biol. 2014;115:3–10. doi: 10.1016/j.pbiomolbio.2014.02.005. PubMed DOI

Morita S., Shirakata Y., Shiraishi A., Kadota Y., Hashimoto K., Higashiyama S., Ohashi Y. Human Corneal Epithelial Cell Proliferation by Epiregulin and Its Cross-Induction by Other EGF Family Members. Mol. Vis. 2007;13:2119–2128. PubMed

Zhang Y., Kobayashi T., Hayashi Y., Yoshioka R., Shiraishi A., Shirasawa S., Higashiyama S., Ohashi Y. Important Role of Epiregulin in Inflammatory Responses during Corneal Epithelial Wound Healing. Investig. Ophthalmol. Vis. Sci. 2012;53:2414–2423. doi: 10.1167/iovs.11-8869. PubMed DOI

Li C., Zhang F., Wang Y. S100A Proteins in the Pathogenesis of Experimental Corneal Neovascularization. Mol. Vis. 2010;16:2225–2235. PubMed PMC

Ambartsumian N., Klingelhöfer J., Grigorian M., Christensen C., Kriajevska M., Tulchinsky E., Georgiev G., Berezin V., Bock E., Rygaard J., et al. The Metastasis-Associated Mts1(S100A4) Protein Could Act as an Angiogenic Factor. Oncogene. 2001;20:4685–4695. doi: 10.1038/sj.onc.1204636. PubMed DOI

Polisetti N., Zenkel M., Menzel-Severing J., Kruse F.E., Schlötzer-Schrehardt U. Cell Adhesion Molecules and Stem Cell-Niche-Interactions in the Limbal Stem Cell Niche. Stem Cells. 2016;34:203–219. doi: 10.1002/stem.2191. PubMed DOI

Rabquer B.J., Amin M.A., Teegala N., Shaheen M.K., Tsou P.-S., Ruth J.H., Lesch C.A., Imhof B.A., Koch A.E. Junctional Adhesion Molecule-C Is a Soluble Mediator of Angiogenesis. J. Immunol. 2010;185:1777–1785. doi: 10.4049/jimmunol.1000556. PubMed DOI PMC

Dawson D.W., Volpert O.V., Gillis P., Crawford S.E., Xu H., Benedict W., Bouck N.P. Pigment Epithelium-Derived Factor: A Potent Inhibitor of Angiogenesis. Science. 1999;285:245–248. doi: 10.1126/science.285.5425.245. PubMed DOI

Matsui T., Nishino Y., Maeda S., Yamagishi S. PEDF-Derived Peptide Inhibits Corneal Angiogenesis by Suppressing VEGF Expression. Microvasc. Res. 2012;84:105–108. doi: 10.1016/j.mvr.2012.02.006. PubMed DOI

Ambati B.K., Nozaki M., Singh N., Takeda A., Jani P.D., Suthar T., Albuquerque R.J.C., Richter E., Sakurai E., Newcomb M.T., et al. Corneal Avascularity Is Due to Soluble VEGF Receptor-1. Nature. 2006;443:993–997. doi: 10.1038/nature05249. PubMed DOI PMC

Kenney M.C., Chwa M., Alba A., Saghizadeh M., Huang Z.-S., Brown D.J. Localization of TIMP-1, TIMP-2, TIMP-3, Gelatinase A and Gelatinase B in Pathological Human Corneas. Curr. Eye Res. 1998;17:238–246. doi: 10.1076/ceyr.17.3.238.5222. PubMed DOI

Ebrahem Q., Qi J.H., Sugimoto M., Ali M., Sears J.E., Cutler A., Khokha R., Vasanji A., Anand-Apte B. Increased Neovascularization in Mice Lacking Tissue Inhibitor of Metalloproteinases-3. Investig. Ophthalmol. Vis. Sci. 2011;52:6117–6123. doi: 10.1167/iovs.10-5899. PubMed DOI PMC

Cursiefen C., Masli S., Ng T.F., Dana M.R., Bornstein P., Lawler J., Streilein J.W. Roles of Thrombospondin-1 and -2 in Regulating Corneal and Iris Angiogenesis. Investig. Ophthalmol. Vis. Sci. 2004;45:1117–1124. doi: 10.1167/iovs.03-0940. PubMed DOI

O’Reilly M.S., Boehm T., Shing Y., Fukai N., Vasios G., Lane W.S., Flynn E., Birkhead J.R., Olsen B.R., Folkman J. Endostatin: An Endogenous Inhibitor of Angiogenesis and Tumor Growth. Cell. 1997;88:277–285. doi: 10.1016/S0092-8674(00)81848-6. PubMed DOI

Moore J.E., McMullen T.C.B., Campbell I.L., Rohan R., Kaji Y., Afshari N.A., Usui T., Archer D.B., Adamis A.P. The Inflammatory Milieu Associated with Conjunctivalized Cornea and Its Alteration with IL-1 RA Gene Therapy. Investig. Ophthalmol. Vis. Sci. 2002;43:2905–2915. PubMed

Gao N., Liu X., Wu J., Li J., Dong C., Wu X., Xiao X., Yu F.-S.X. CXCL10 Suppression of Hem- and Lymph-Angiogenesis in Inflamed Corneas through MMP13. Angiogenesis. 2017;20:505–518. doi: 10.1007/s10456-017-9561-x. PubMed DOI PMC

Romagnani P., Annunziato F., Lasagni L., Lazzeri E., Beltrame C., Francalanci M., Uguccioni M., Galli G., Cosmi L., Maurenzig L., et al. Cell Cycle–Dependent Expression of CXC Chemokine Receptor 3 by Endothelial Cells Mediates Angiostatic Activity. J. Clin. Investig. 2001;107:53–63. doi: 10.1172/JCI9775. PubMed DOI PMC

Pauklin M., Steuhl K.-P., Meller D. Characterization of the Corneal Surface in Limbal Stem Cell Deficiency and after Transplantation of Cultivated Limbal Epithelium. Ophthalmology. 2009;116:1048–1056. doi: 10.1016/j.ophtha.2009.01.005. PubMed DOI

Biswas P.S., Banerjee K., Kinchington P.R., Rouse B.T. Involvement of IL-6 in the Paracrine Production of VEGF in Ocular HSV-1 Infection. Exp. Eye Res. 2006;82:46–54. doi: 10.1016/j.exer.2005.05.001. PubMed DOI

Koch A.E., Polverini P.J., Kunkel S.L., Harlow L.A., DiPietro L.A., Elner V.M., Elner S.G., Strieter R.M. Interleukin-8 as a Macrophage-Derived Mediator of Angiogenesis. Science. 1992;258:1798–1801. doi: 10.1126/science.1281554. PubMed DOI

Strieter R.M., Kunkel S.L., Elner V.M., Martonyi C.L., Koch A.E., Polverini P.J., Elner S.G. Interleukin-8. A Corneal Factor That Induces Neovascularization. Am. J. Pathol. 1992;141:1279–1284. PubMed PMC

Yoshida S., Ono M., Shono T., Izumi H., Ishibashi T., Suzuki H., Kuwano M. Involvement of Interleukin-8, Vascular Endothelial Growth Factor, and Basic Fibroblast Growth Factor in Tumor Necrosis Factor Alpha-Dependent Angiogenesis. Mol. Cell. Biol. 1997;17:4015–4023. doi: 10.1128/MCB.17.7.4015. PubMed DOI PMC

Chi H., Wei C., Ma L., Yu Y., Zhang T., Shi W. The Ocular Immunological Alterations in the Process of High-Risk Corneal Transplantation Rejection. Exp. Eye Res. 2024;245:109971. doi: 10.1016/j.exer.2024.109971. PubMed DOI

Volpert O.V., Fong T., Koch A.E., Peterson J.D., Waltenbaugh C., Tepper R.I., Bouck N.P. Inhibition of Angiogenesis by Interleukin 4. J. Exp. Med. 1998;188:1039–1046. doi: 10.1084/jem.188.6.1039. PubMed DOI PMC

Samolov B., Kvanta A., van der Ploeg I. Delayed Neovascularization in Inflammation-Induced Corneal Neovascularization in Interleukin-10-Deficient Mice. Acta Ophthalmol. 2010;88:251–256. doi: 10.1111/j.1755-3768.2008.01393.x. PubMed DOI

Duan C.-Y., Xie H.-T., Zhao X.-Y., Xu W.-H., Zhang M.-C. Limbal Niche Cells Can Reduce the Angiogenic Potential of Cultivated Oral Mucosal Epithelial Cells. Cell. Mol. Biol. Lett. 2019;24:3. doi: 10.1186/s11658-018-0133-x. PubMed DOI PMC

Hermankova B., Javorkova E., Palacka K., Holan V. Perspectives and Limitations of Mesenchymal Stem Cell-Based Therapy for Corneal Injuries and Retinal Diseases. Cell Transplant. 2025;34:9636897241312798. doi: 10.1177/09636897241312798. PubMed DOI PMC

Xie Y., Su N., Yang J., Tan Q., Huang S., Jin M., Ni Z., Zhang B., Zhang D., Luo F., et al. FGF/FGFR Signaling in Health and Disease. Signal Transduct. Target. Ther. 2020;5:181. doi: 10.1038/s41392-020-00222-7. PubMed DOI PMC

Formanek M., Knerer B., Temmel A., Thurnher D., Millesi W., Kornfehl J. Oral Keratinocytes Derived from the Peritonsillar Mucosa Express the Proinflammatory Cytokine IL-6 without Prior Stimulation. J. Oral Pathol. Med. 1998;27:202–206. doi: 10.1111/j.1600-0714.1998.tb01942.x. PubMed DOI

Fung G., Wong J., Berhe F., Mohamud Y., Xue Y.C., Luo H. Phosphorylation and Degradation of αB-Crystallin during Enterovirus Infection Facilitates Viral Replication and Induces Viral Pathogenesis. Oncotarget. 2017;8:74767–74780. doi: 10.18632/oncotarget.20366. PubMed DOI PMC

Dvorak H.F., Harvey V.S., Estrella P., Brown L.F., McDonagh J., Dvorak A.M. Fibrin Containing Gels Induce Angiogenesis. Implications for Tumor Stroma Generation and Wound Healing. Lab. Investig. 1987;57:673–686. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...