Perspectives and Limitations of Mesenchymal Stem Cell-Based Therapy for Corneal Injuries and Retinal Diseases
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
39856809
PubMed Central
PMC11760125
DOI
10.1177/09636897241312798
Knihovny.cz E-zdroje
- Klíčová slova
- cell therapy, corneal damages, immunoregulation, mesenchymal stem cells, retinal diseases, tissue regeneration,
- MeSH
- lidé MeSH
- mezenchymální kmenové buňky * cytologie MeSH
- nemoci retiny * terapie MeSH
- poranění rohovky * terapie MeSH
- transplantace mezenchymálních kmenových buněk * metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The eye represents a highly specialized organ, with its main function being to convert light signals into electrical impulses. Any damage or disease of the eye induces a local inflammatory reaction that could be harmful for the specialized ocular cells. Therefore, the eye developed several immunoregulatory mechanisms which protect the ocular structures against deleterious immune reactions. This protection is ensured by the production of a variety of immunosuppressive molecules, which create the immune privilege of the eye. In addition, ocular cells are potent producers of numerous growth and trophic factors which support the survival and regeneration of diseased and damaged cells. If the immune privilege of the eye is interrupted and the regulatory mechanisms are not sufficiently effective, the eye disease can progress and result in worsening of vision or even blindness. In such cases, external immunotherapeutic interventions are needed. One perspective possibility of treatment is represented by mesenchymal stromal/stem cell (MSC) therapy. MSCs, which can be administered intraocularly or locally into diseased site, are potent producers of various immunoregulatory and regenerative molecules. The main advantages of MSC therapy include the safety of the treatment, the possibility to use autologous (patient's own) cells, and observations that the therapeutic properties of MSCs can be intentionally regulated by external factors during their preparation. In this review, we provide a survey of the immunoregulatory and regenerative mechanisms in the eye and describe the therapeutic potential of MSC application for corneal damages and retinal diseases.
Zobrazit více v PubMed
Streilein JW. Ocular immune privilege: the eye takes a dim but practical view of immunity and inflammation. J Leukoc Biol. 2003;74(2):179–85. PubMed
Benhar I, London A, Schwartz M. The privileged immunity of immune privileged organs: the case of the eye. Front Immunol. 2012;3:296. PubMed PMC
Niederkorn JY, Larkin DFP. Immune privilege of corneal allografts. Ocul Immunol Inflammat. 2010;18:162–71. PubMed PMC
Montesel A, Alió Del Barrio JL, Yébana Rubio P, Alió JL. Corneal graft surgery: a monocentric long-term analysis. Eur J Ophthalmol. 2021;31(4):1700–708. PubMed
Masli S, Vega JL. Ocular immune privilege sites. Methods Mol Biol. 2011;677:449–58. PubMed
Fukuoka Y, Strainic M, Medof ME. Differential cytokine expression of human retinal pigment epithelial cells in response to stimulation by C5a. Clin Exp Immunol. 2003;131(2):248–53. PubMed PMC
Keino H, Horie S, Sugita S. Immune privilege and eye-derived T-regulatory cells. J Immunol Res. 2018;2018:1679197. PubMed PMC
Xi H, Katschke KJ, Jr, Li Y, Truong T, Lee WP, Diehl L, Rangell L, Tao J, Arceo R, Eastham-Anderson J, Hackney JA, et al.. IL-33 amplifies an innate immune response in the degenerating retina. J Exp Med. 2016;213:189–207. PubMed PMC
Lee YS, Ahjoku Amadi -Obi A, Yu C-R, Egwuagu CE. Retinal cells suppress intraocular inflammation (uveitis) through production of interleukin-27 and interleukin-10. Immunology. 2021;132(4):492–502. PubMed PMC
Yu CR, Yadav MK, Kang M, Jittayasothorn Y, Dong L, Egwuagu CE. Photoreceptor cells constitutively express IL-35 and promote ocular immune privilege. Int J Molec Sci. 2022;23(15):8156. PubMed PMC
Holan V, Hermankova B, Krulova M, Zajicova A. Cytokine interplay among the diseased retina, inflammatory cells and mesenchymal stem cells—a clue to stem cell-based therapy. World J Stem Cells. 2019;11:957–67. PubMed PMC
Stein-Streilein J, Streilein JW. Anterior chamber associated immune deviation (ACAID): regulation, biological relevance, and implications for therapy. Int Rev Immunol. 2002;21(2–3):123–52. PubMed
Niederkorn JY. The induction of anterior chamber-associated immune deviation. Chem Immunol Allergy. 2007;92:27–35. PubMed
Biros D. Anterior chamber-associated immune deviation. Vet Clin North Amer Small Animal Pract. 2008;38(2):309–21. PubMed
Rashid K, Wolf A, Langmann T. Microglia activation and immunomodulatory therapies for retinal degenerations. Front Cell Neurosci. 2018;12:176. PubMed PMC
Shin S, Yoon S-G, Kim M, Cheon EJ, Jeon Y, Lee HJ, Chung S-H. The effect of mesenchymal stem cells on dry eye in Sjogren syndrome mouse model. Int J Molec Sci. 2023;24(2):1039. PubMed PMC
Wilson SE, Mohan RR, Mohan RR, Ambrósio R, Jr, Hong J, Lee J. The corneal wound healing response: cytokine-mediated interaction of the epithelium, stroma, and inflammatory cells. Prog Retin Eye Res. 2001;20(5):625–37. PubMed
Murakami Y, Ishikawa K, Nakao S, Sonoda KH. Innate immune response in retinal homeostasis and inflammatory disorders. Prog Retin Eye Res. 2020;74:100778. PubMed
Stepp MA, Menko AS. Immune responses to injury and their links to eye disease. Transl Res. 2021;236:52–71. PubMed PMC
Strecanska M, Sekelova T, Csobonyeiova M, Danisovic L, Cehakova M. Therapeutic applications of mesenchymal/medicinal stem/signalling cells preconditioned with external factors: are there more efficient approaches to utilize their regenerative potential? Life Sci. 2024;346:122647. PubMed
Holan V, Trosan P, Cejka C, Javorkova E, Zajicova A, Hermankova B, Chudickova M, Cejkova J. A comparative study of the therapeutic potential of mesenchymal stem cells and limbal epithelial stem cells for ocular surface reconstruction. Stem Cells Transl Med. 2015;4(9):1052–63. PubMed PMC
Liang W, Zhang Y, Zhou L, Lu X, Finn ME, Wang W, Shao H, Dean DC, Zhang L, Liu Y. Zeb1 regulation of wound-healing-induced inflammation in alkali-damaged corneas. iScience. 2022;25(4):104038. PubMed PMC
Zhu Y, Jin X, Fu N, Li J. Medrysone promotes corneal injury repair by promoting M2-like polarization of macrophages. BMC Ophthalmol. 2023;23(1):503. PubMed PMC
Hazlett L, Suvas S, McClellan S, Ekanayaka S. Challenges of corneal infections. Expert Rev Ophthalmol. 2016;11(4):285–97. PubMed PMC
Torres PF, De Vos AF, van der Gaag R, Martins B, Kijlstra A. Cytokine mRNA expression during experimental corneal allograft rejection. Exp Eye Res. 1996;63(4):453–61. PubMed
Pindjáková J, Vítová A, Krulová M, Zajícová A, Filipec M, Holán V. Corneal rat-to-mouse xenotransplantation and the effects of anti-CD4 or anti-CD8 treatment on cytokine and nitric oxide production. Transpl Int. 2005;18(7):854–62. PubMed
Massengill MT, Ahmed CM, Lewin AS, Ildefonso CJ. Neuroinflammation in retinitis pigmentosa, diabetic retinopathy, and age-related macular degeneration: a minireview. Adv Exp Med Biol. 2018;1074:185–91. PubMed
Wooff Y, Man SM, Aggio-Bruce R, Natoli R, Fernando N. IL-1 family members mediate cell death, inflammation and angiogenesis in retinal degenerative diseases. Front Immunol. 2019;10:1618. PubMed PMC
Grunnet LG, Aikin R, Tonnesen MF, Paraskevas S, Blaabjerg L, Størling J, Rosenberg L, Billestrup N, Maysinger D, Mandrup-Poulsen T. Proinflammatory cytokines activate the intrinsic apoptotic pathway in beta-cells. Diabetes. 2009;58(8):1807–15. PubMed PMC
Regmi S, Pathak S, Kim JO, Yong CS, Jeong JH. Mesenchymal stem cell therapy for the treatment of inflammatory diseases: challenges, opportunities, and future perspectives. Eur J Cell Biol. 2019;98(5–8):151041. PubMed
Kossl J, Bohacova P, Hermankova B, Javorkova E, Zajicova A, Holan V. Antiapoptotic properties of mesenchymal stem cells in a mouse model of corneal inflammation. Stem Cells Dev. 2021;30(8):418–27. PubMed
Hill T, Galatowicz G, Akerele T, Lau CH, Calder V, Lightman S. Intracellular T lymphocyte cytokine profiles in the aqueous humour of patients with uveitis and correlation with clinical phenotype. Clin Exp Immunol. 2005;139(1):132–37. PubMed PMC
Yu CR, Choi JK, Uche A, Egwuagu CE. Production of IL-35 by Bregs is mediated through binding of BATF-IRF-4-IRF-8 complex to il12a and ebi3 promoter elements. J Leukoc Biol. 2018;104(6):1147–57. PubMed PMC
Nikoopour E, Lin C-M, Sheskey S, Heckenlively JR, Lundy SK. Immune cell infiltration into the eye is controlled by IL-10 in recoverin-induced autoimmune retinopathy. J Immunol. 2009;202:1057–68. PubMed PMC
Khanh Vu TH, Chen H, Pan L, Cho KS, Doesburg D, Thee EF, Wu N, Arlotti E, Jager MJ, Chen DF. CD4+ T-cell responses mediate progressive neurodegeneration in experimental ischemic retinopathy. Am J Pathol. 2020;190(8):1723–34. PubMed PMC
Mohan KV, Mishra A, Muniyasamy A, Sinha P, Sahu P, Kesarwani A, Jain K, Nagarajan P, Scaria V, Agarwal M, Akhter NS, et al.. Immunological consequences of compromised ocular immune privilege accelerate retinal degeneration in retinitis pigmentosa. Orphanet J Rare Dis. 2022;17(1):378. PubMed PMC
Zhong H, Sun X. Contribution of interleukin-17A to retinal degenerative diseases. Front Immunol. 2022;13:847937. PubMed PMC
Du Y, Yan B. Ocular immune privilege and retinal pigment epithelial cells. J Leukoc Biol. 2023;113(3):288–304. PubMed
Palacka K, Hermankova B, Javorkova E, Zajicova A, Holan V. Impaired immunomodulatory properties of the retina from the inflammatory environment of the damaged eye. Inflammation. 2023;46(6):2320–31. PubMed
Wang Y, Han ZB, Ma J, Zuo C, Geng J, Gong W, Sun Y, Li H, Wang B, Zhang L, He Y, et al.. A toxicity study of multiple-administration human umbilical cord mesenchymal stem cells in cynomolgus monkeys. Stem Cells Dev. 2012;21(9):1401–408. PubMed
Lalu MM, McIntyre L, Pugliese C, Fergusson D, Winston BW, Marshall JC, Granton J, Stewart DJ, Canadian Critical Care Trials Group. Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS ONE. 2012;7(10):e47559. PubMed PMC
Le Blanc K, Ringdén O. Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med. 2007;262(5):509–25. PubMed
Abumaree M, Jumah M, Pace RA, Kalionis B. Immunosuppressive properties of mesenchymal stem cells. Stem Cell Rev Rep. 2012;8(2):375–92. PubMed
Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, Hardy W, Devine S, Ucker D, Deans R, Moseley A, et al.. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol. 2002;30(1):42–48. PubMed
Jia Z, Jiao C, Zhao S, Li X, Ren X, Zhang L, Han ZC, Zhang X. Immunomodulatory effects of mesenchymal stem cells in a rat corneal allograft rejection model. Exp Eye Res. 2012;102: 44–49. PubMed
Le Blanc K, Rasmusson I, Sundberg B, Götherström C, Hassan M, Uzunel M, Ringdén O. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 2004;363(9419):1439–41. PubMed
Zappia E, Casazza S, Pedemonte E, Benvenuto F, Bonanni I, Gerdoni E, Giunti D, Ceravolo A, Cazzanti F, Frassoni F, Mancardi G, et al.. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood. 2005;106(5):1755–61. PubMed
Augello A, Tasso R, Negrini SM, Cancedda R, Pennesi G. Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis Rheum. 2007;56(4):1175–86. PubMed
Meisel R, Zibert A, Laryea M, Göbel U, Däubener W, Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood. 2004;103(12):4619–21. PubMed
Akiyama K, Chen C, Wang D, Xu X, Qu C, Yamaza T, Cai T, Chen W, Sun L, Shi S. Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis. Cell Stem Cell. 2012;10(5):544–55. PubMed PMC
Svobodova E, Krulova M, Zajicova A, Pokorna K, Prochazkova J, Trosan P, Holan V. The role of mouse mesenchymal stem cells in differentiation of naive T-cells into anti-inflammatory regulatory T-cell or proinflammatory helper T-cell 17 population. Stem Cells Dev. 2012;21(6):901–10. PubMed PMC
Ghannam S, Pène J, Moquet-Torcy G, Jorgensen C, Yssel H. Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol. 2010;185(1):302–12. PubMed
Holan V, Hermankova B, Bohacova P, Kossl J, Chudickova M, Hajkova M, Krulova M, Zajicova A, Javorkova E. Distinct immunoregulatory mechanisms in mesenchymal stem cells: role of the cytokine environment. Stem Cell Rev Rep. 2016;12(6):654–63. PubMed
Woodward AM, Di Zazzo A, Bonini S, Argüeso P. Endoplasmic reticulum stress promotes inflammation-mediated proteolytic activity at the ocular surface. Sci Rep. 2020;10(1):2216. PubMed PMC
Meirelles Lda S, Fontes AM, Covas DT, Caplan AI. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009;20(5–6):419–27. PubMed
Merimi M, El-Majzoub R, Lagneaux L, Moussa Agha D, Bouhtit F, Meuleman N, Fahmi H, Lewalle P, Fayyad-Kazan M, Najar M. The therapeutic potential of mesenchymal stromal cells for regenerative medicine: current knowledge and future understandings. Front Cell Dev Biol. 2021;9:661532. PubMed PMC
Niu Y, Ji J, Yao K, Fu Q. Regenerative treatment of ophthalmic diseases with stem cells: principles, progress, and challenges. Adv Ophthalmol Pract Res. 2024;4(2):52–64. PubMed PMC
Hermankova B, Kossl J, Javorkova E, Bohacova P, Hajkova M, Zajicova A, Krulova M, Holan V. The identification of interferon-γ as a key supportive factor for retinal differentiation of murine mesenchymal stem cells. Stem Cells Dev. 2017;26(19):1399–1408. PubMed
Lencova A, Pokorna K, Zajicova A, Krulová M, Filipec M, Holáň V. Graft survival and cytokine production profile after limbal transplantation in the experimental mouse model. Transpl Immunol. 2011;24(3):189–94. PubMed
Venkatakrishnan J, Saeed Y, Kao WW. Trends in using mesenchymal stromal/stem cells (MSCs) in treating corneal diseases. Ocul Surf. 2022;26:255–67. PubMed
Mead B, Berry M, Logan A, Scott RA, Leadbeater W, Scheven BA. Stem cell treatment of degenerative eye disease. Stem Cell Res. 2015;14(3):243–57. PubMed PMC
Labrador-Velandia S, Alonso-Alonso ML, Alvarez-Sanchez S, González -Zamora J, Carretero -Barrio I, Pastor JC, Fernandez-Bueno I, Srivastava GK. Mesenchymal stem cell therapy in retinal and optic nerve diseases: an update of clinical trials. World J Stem Cells. 2016;8(11):376–83. PubMed PMC
Finocchio L, Zeppieri M, Gabai A, Spadea L, Salati C. Recent advances of adipose-tissue-derived mesenchymal stem cell-based therapy for retinal diseases. J Clin Med. 2023;12(22):7015. PubMed PMC
Hermankova B, Kossl J, Bohacova P, Javorkova E, Hajkova M, Krulova M, Zajicova A, Holan V. The immunomodulatory potential of mesenchymal stem cells in a retinal inflammatory environment. Stem Cell Rev Rep. 2019;15(6):880–91. PubMed
Gong L, Wu Q, Song B, Lu B, Zhang Y. Differentiation of rat mesenchymal stem cells transplanted into the subretinal space of sodium iodate-injected rats. Clin Exp Ophthalmol. 2008;36(7):666–71. PubMed
Barzelay A, Weisthal Algor S, Niztan A, Katz S, Benhamou M, Nakdimon I, Azmon N, Gozlan S, Mezad-Koursh D, Neudorfer M, Goldstein M, et al.. Adipose-derived mesenchymal stem cells migrate and rescue RPE in the setting of oxidative stress. Stem Cells Int. 2018;2018:9682856. PubMed PMC
Ezquer M, Urzua CA, Montecino S, Leal K, Conget P, Ezquer F. Intravitreal administration of multipotent mesenchymal stromal cells triggers a cytoprotective microenvironment in the retina of diabetic mice. Stem Cell Res Ther. 2016;7:42. PubMed PMC
Lejkowska R, Kawa MP, Pius-Sadowska E, Rogińska D, Łuczkowska K, Machaliński B, Machalińska A. Preclinical evaluation of long-term neuroprotective effects of BDNF-engineered mesenchymal stromal cells as intravitreal therapy for chronic retinal degeneration in Rd6 mutant mice. Int J Molec Sci. 2019;20(3):777. PubMed PMC
Johnson TV, Tomarev SI. Rodent models of glaucoma. Brain Res Bull. 2010;81(2–3):349–58. PubMed PMC
Mead B, Hill LJ, Blanch RJ, Ward K, Logan A, Berry M, Leadbeater W, Scheven BA. Mesenchymal stromal cell-mediated neuroprotection and functional preservation of retinal ganglion cells in a rodent model of glaucoma. Cytotherapy. 2016;18(4):487–96. PubMed
Emre E, Yüksel N, Duruksu G, Pirhan D, Subaşi C, Erman G, Karaöz E. Neuroprotective effects of intravitreally transplanted adipose tissue and bone marrow-derived mesenchymal stem cells in an experimental ocular hypertension model. Cytotherapy. 2015;17(5):543–59. PubMed
Mead B, Tomarev S. Bone marrow-derived mesenchymal stem cells-derived exosomes promote survival of retinal ganglion cells through miRNA-dependent mechanisms. Stem Cells Transl Med. 2017;6(4):1273–85. PubMed PMC
Chen M, Chen X, Li X, Wang J, Wu J, Wang Q, Huang Y, Li Z, Wang L. Subconjunctival administration of mesenchymal stem cells alleviates ocular inflammation in a murine model of corneal alkali burn. Stem Cells. 2023;41(6):592–602. PubMed
Jiang T-S, Cai L, Ji W-Y, Hui Y-N, Wang Y-S, Hu D, Zhu J. Reconstruction of the corneal epithelium with induced marrow mesenchymal stem cells in rats. Mol Vis. 2010;16:1304–16. PubMed PMC
Ma Y, Xu Y, Xiao Z, Yang W, Zhang C, Song E, Du Y, Li L. Reconstruction of chemically burned rat corneal surface by bone marrow-derived human mesenchymal stem cells. Stem Cells. 2006;24(2):315–21. PubMed
Oh JY, Kim MK, Shin MS, Lee HJ, Ko JH, Wee WR, Lee JH. The anti-inflammatory and anti-angiogenic role of mesenchymal stem cells in corneal wound healing following chemical injury. Stem Cells. 2008;26(4):1047–55. PubMed
Ye J, Yao K, Kim JC. Mesenchymal stem cell transplantation in a rabbit corneal alkali burn model: engraftment and involvement in wound healing. Eye. 2006;20(4):482–90. PubMed
Pereira AL, Bittencourt MKW, Barros MA, Malago R, Panattoni JFM, de Morais BP, Montiani-Ferreira F, Vasconcellos JPC. Subconjunctival use of allogeneic mesenchymal stem cells to treat chronic superficial keratitis in German shepherd dogs: pilot study. Open Vet J. 2022;12(5):744–53. PubMed PMC
Tsuruma K, Yamauchi M, Sugitani S, Otsuka T, Ohno Y, Nagahara Y, Ikegame Y, Shimazawa M, Yoshimura S, Iwama T, Hara H. Progranulin, a major secreted protein of mouse adipose-derived stem cells, inhibits light-induced retinal degeneration. Stem Cells Translat Med. 2014;3(1):42–53. PubMed PMC
Zhou Y, Xia X, Yang E, Wang Y, Marra KG, Ethier CR, Schuman JS, Du Y. Adipose-derived stem cells integrate into trabecular meshwork with glaucoma treatment potential. FASEB J. 2020;34(5):7160–77. PubMed PMC
Tzameret A, Sher I, Belkin M, Treves AJ, Meir A, Nagler A, Levkovitch-Verbin H, Rotenstreich Y, Solomon AS. Epiretinal transplantation of human bone marrow mesenchymal stem cells rescus retinal and vision function in a rat model of retinal degeneration. Stem Cell Res. 2015;15(2):387–94. PubMed
Çerman E, Akkoç T, Eraslan M, Şahin Özkara ÖS, Vardar Aker F, Subaşı C, Karaöz E, Akkoç T. Retinal electrophysiological effects of intravitreal bone marrow derived mesenchymal stem cells in Streptozotocin induced diabetic rats. PLoS ONE. 2016;11(6):e0156495. PubMed PMC
Yang Z, Li K, Yan X, Dong F, Zhao C. Amelioration of diabetic retinopathy by engrafted human adipose-derived mesenchymal stem cells in streptozotocin diabetic rats. Graefes Arch Clin Exp Ophthalmol. 2010;248(10):1415–22. PubMed
Holan V, Palacka K, Hermankova B. Mesenchymal stem cell-based therapy for retinal degenerative diseases: experimental models and clinical trials. Cells. 2021;10(3):588. PubMed PMC
Putra I, Shen X, Anwar KN, Rabiee B, Samaeekia R, Almazyad E, Giri P, Jabbehdari S, Hayat MR, Elhusseiny AM, Ghassemi M, et al.. Preclinical evaluation of the safety and efficacy of cryopreserved bone marrow mesenchymal stromal cells for corneal repair. Translat Vision Sci Technol. 2021;10(10):3. PubMed PMC
Chen X, Jiang Y, Duan Y, Zhang X, Li X. Mesenchymal-stem-cell-based strategies for retinal diseases. Genes. 2022;13(10):1901. PubMed PMC
Liu H, Lu S, Chen M, Gao N, Yang Y, Hu H, Ren Q, Liu X, Chen H, Zhu Q, Li S, et al.. Towards stem/progenitor cell-based therapies for retinal degeneration. Stem Cell Rev Rep. 2024;20(6):1459–79. PubMed
Calonge M, Nieto-Miguel T, de la Mata A, Galindo S, Herreras JM, López-Paniagua M. Goals and challenges of stem cell-based therapy for corneal blindness due to limbal deficiency. Pharmaceutics. 2021;13(9):1483. PubMed PMC
Boto de Los Bueis A, Vidal Arranz C, Del Hierro-Zarzuelo A, Díaz Valle D, Méndez Fernández R, Gabarrón Hermosilla MI, Benítez Del Castillo JM, García-Arranz M. Long-term effects of adipose-derived stem cells for the treatment of bilateral limbal stem cell deficiency. Curr Eye Res. 2024;49(4):345–53. PubMed
Liang L, Luo X, Zhang J, Su W, Zhu W, Xie Y, Zhang N, Peng Y, Chen X, Xiang AP, Liu Y, et al.. Safety and feasibility of subconjunctival injection of mesenchymal stem cells for acute severe ocular burns: a single-arm study. Ocul Surf. 2021;22:13–109. PubMed
Møller-Hansen M, Larsen AC, Toft PB, Lynggaard CD, Schwartz C, Bruunsgaard H, Haack-Sørensen M, Ekblond A, Kastrup J, Heegaard S. Safety and feasibility of mesenchymal stem cell therapy in patients with aqueous deficient dry eye disease. Ocul Surf. 2021;19:43–52. PubMed
El Zarif M, Alió JL, Alió Del Barrio JL, Abdul Jawad K, Palazón-Bru A, Abdul Jawad Z, De Miguel MP, Makdissy N. Corneal stromal regeneration therapy for advanced keratoconus: long-term outcomes at 3 years. Cornea. 2021;40(6):741–54. PubMed
Ramin S, Abbasi A, Ahadi M, Moallemi Rad L, Kobarfad F. Assessment of the effects of intrastromal injection of adipose-derived stem cells in keratoconus patients. Int J Ophthalmol. 2023;16(6):863–70. PubMed PMC
Weiss JN, Levy S. Stem Cell Ophthalmology Treatment Study: bone marrow derived stem cells in the treatment of retinitis pigmentosa. Stem Cell Investig. 2018;5:18. PubMed PMC
Gu X, Yu X, Zhao C, Duan P, Zhao T, Liu Y, Li S, Yang Z, Li Y, Qian C, Yin Z, et al.. Efficacy and safety of autologous bone marrow mesenchymal stem cell transplantation in patients with diabetic retinopathy. Cell Physiol Biochem. 2018;49(1):40–52. PubMed
Tuekprakhon A, Sangkitporn S, Trinavarat A, Pawestri AR, Vamvanij V, Ruangchainikom M, Luksanapruksa P, Pongpaksupasin P, Khorchai A, Dambua A, Boonchu P, et al.. Intravitreal autologous mesenchymal stem cell transplantation: a non-randomized phase I clinical trial in patients with retinitis pigmentosa. Stem Cell Res Ther. 2021;12(1):52. PubMed PMC
Weiss JN, Levy S. Stem Cell Ophthalmology Treatment Study (SCOTS): bone marrow-derived stem cells in the treatment of age-related macular degeneration. Medicines. 2020;7(4):16. PubMed PMC
Park SS, Bauer G, Fury B, Abedi M, Perotti N, Colead-Bergum D, Nolta JA. Phase I study of intravitreal injection of autologous CD34+ stem cells from bone marrow in eyes with vision loss from retinitis pigmentosa. Ophthalmol Sci. 2024;5:100589. PubMed PMC
Siqueira RC, Messias A, Messias K, Arcieri RS, Ruiz MA, Souza NF, Martins LC, Jorge R. Quality of life in patients with retinitis pigmentosa submitted to intravitreal use of bone marrow-derived stem cells (Reticell-clinical trial). Stem Cell Res Ther. 2015;6:29. PubMed PMC
Adak S, Magdalene D, Deshmukh S, Das D, Jaganathan BG. A review on mesenchymal stem cells for treatment of retinal diseases. Stem Cell Rev Rep. 2021;17(4):1154–73. PubMed PMC
Muñoz-Elias G, Marcus AJ, Coyne TM, Woodbury D, Black IB. Adult bone marrow stromal cells in the embryonic brain: engraftment, migration, differentiation, and long-term survival. J Neurosci. 2004;24(19):4585–95. PubMed PMC
Liu XB, Chen H, Chen HQ, Zhu MF, Hu XY, Wang YP, Jiang Z, Xu YC, Xiang MX, Wang JA. Angiopoietin-1 preconditioning enhances survival and functional recovery of mesenchymal stem cell transplantation. J Zhejiang Univ Sci B. 2012;13(8):616–23. PubMed PMC
Eggenhofer E, Benseler V, Kroemer A, Popp FC, Geissler EK, Schlitt HJ, Baan CC, Dahlke MH, Hoogduijn MJ. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Front Immunol. 2012;3:297. PubMed PMC
Holan V, Echalar B, Palacka K, Kossl J, Bohacova P, Porubská B, Krulova M, Javorkova E, Zajicova A. The inability of ex vivo expanded mesenchymal stem/stromal cells to survive in newborn mice and to induce transplantation tolerance. Stem Cell Rev Rep. 2012;18(7):2365–75. PubMed
Abdi R, Fiorina P, Adra CN, Atkinson M, Sayegh MH. Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes. 2008;57(7):1759–67. PubMed PMC
Weiss ARR, Dahlke MH. Immunomodulation by mesenchymal stem cells (MSCs): mechanisms of action of living, apoptotic, and dead MSCs. Front Immunol. 2019;10:1191. PubMed PMC
de Witte SFH, Luk F, Sierra Parraga JM, Gargesha M, Merino A, Korevaar SS, Shankar AS, O’Flynn L, Elliman SJ, Roy D, Betjes MGH, et al.. Immunomodulation by therapeutic mesenchymal stromal cells (MSC) is triggered through phagocytosis of MSC by monocytic cells. Stem Cells. 2018;36(4):602–15. PubMed
Preda MB, Neculachi CA, Fenyo IM, Vacaru AM, Publik MA, Simionescu M, Burlacu A. Short lifespan of syngeneic transplanted MSC is a consequence of in vivo apoptosis and immune cell recruitment in mice. Cell Death Dis. 2021;12(6):566. PubMed PMC
Lohan P, Treacy O, Morcos M, Donohoe E, O’donoghue Y, Ryan AE, Elliman SJ, Ritter T, Griffin MD. Interspecies incompatibilities limit the immunomodulatory effect of human mesenchymal stromal cells in the rat. Stem Cells. 2018;36(8):1210–15. PubMed
Norte-Muñoz M, Lucas-Ruiz F, Gallego-Ortega A, García-Bernal D, Valiente-Soriano FJ, de la Villa P, Vidal-Sanz M, Agudo-Barriuso M. Neuroprotection and axonal regeneration induced by bone marrow mesenchymal stromal cells depend on the type of transplant. Front Cell Dev Biol. 2021;9:772223. PubMed PMC
Norte-Muñoz M, Gallego -Ortega A, Lucas-Ruiz F, González-Riquelme MJ, Changa -Espinoza YI, Galindo-Romero C, Ponsaerts P, Vidal-Sanz M, García -Bernal D, Agudo-Barriuso M. Immune recognition of syngeneic, allogeneic and xenogeneic stromal cell transplants in healthy retinas. Stem Cell Res Ther. 2022;13(1):430. PubMed PMC
Yu B, Li XR, Zhang XM. Mesenchymal stem cell-derived extracellular vesicles as a new therapeutic strategy for ocular diseases. World J Stem Cells. 2020;12(3):178–87. PubMed PMC
Mead B, Tomarev S. Extracellular vesicle therapy for retinal diseases. Prog Retin Eye Res. 2020;79:100849. PubMed PMC
Kato Y, Ohno Y, Ito R, Taketani T, Matsuzaki Y, Miyagi S. Engraftment of human mesenchymal stem cells in a severely immunodeficient mouse. Inflamm Regen. 2024;44(1):40. PubMed PMC
Mehler VJ, Burns C, Moore ML. Concise review: exploring immunomodulatory features of mesenchymal stromal cells in humanized mouse models. Stem Cells. 2018;37(3):298–305. PubMed PMC