Impaired Immunomodulatory Properties of the Retina from the Inflammatory Environment of the Damaged Eye
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
309621
Grant Agency of the Charles University
PubMed
37581762
DOI
10.1007/s10753-023-01880-9
PII: 10.1007/s10753-023-01880-9
Knihovny.cz E-zdroje
- Klíčová slova
- cytokines, healthy retina, immunosuppression, inflammatory eye, pharmacologically damaged retina,
- MeSH
- cytokiny * metabolismus MeSH
- myši MeSH
- retina * MeSH
- zánět metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytokiny * MeSH
The retina represents a highly specialized structure with the primary function to capture a light signal and to convert it into electrical impulses. Any damage or disease of the retina can cause visual impairment. Since retinal degenerative diseases are generally associated with immune cell infiltration, a local inflammatory reaction, and cytokine burn, there is a need for mechanisms to prevent the retina from damage by a deleterious immune reaction. In this study, we show that mouse retinal explants co-cultivated with stimulated spleen cells, inhibit in a dose-dependent manner the activation of T cells, and suppress the production of cytokines interleukin-2, interleukin-10, and interferon-[Formula: see text]. The immunoregulatory properties of the retina were mainly mediated by a paracrine effect since retinal explants, separated by a semipermeable membrane, or supernatants obtained after the cultivation of retinal explants, inhibited the reactivity of immune cells. A model of retinal damage was established by the application of sodium iodate which selectively destroys photoreceptors, as it was demonstrated by a decrease in the number of rhodopsin-positive cells. This process was accompanied by increased infiltration of the retina with cells of the immune system and by a local inflammatory reaction. The pharmacologically damaged retina had significantly decreased the ability to inhibit T cell activation and production of cytokines by immune cells. Overall, the results showed that the retina possesses immunoregulatory properties and inhibits the activation and functions of T cells. However, the immunomodulatory properties of the retina are decreased if the retina is damaged.
Zobrazit více v PubMed
Masli, S., and J.L. Vega. 2011. Ocular immune privilege sites. Methods in Molecular Biology 677: 449–458. PubMed DOI
Benhar, I., A. London, and M. Schwartz. 2012. The privileged immunity of immune privileged organs: The case of the eye. Frontiers in Immunology 3: 296. PubMed DOI PMC
Fukuoka, Y., M. Strainic, and M.E. Medof. 2003. Differential cytokine expression of human retinal pigment epithelial cells in response to stimulation by C5a. Clinical and Experimental Immunology 131: 248–253. PubMed DOI PMC
Keino, H., S. Horie, and S. Sugita. 2018. Immune privilege and eye-derived T-regulatory cells. Journal of Immunology Research 2018: 1679197. PubMed DOI PMC
Xi, H., K. J. Jr. Katschke, Y. Li, T. Truong, W.P. Lee, L. Diehl, L. Rangell, J. Tao, R. Arceo, J. Eastham-Anderson, JA. Hackney, A. Iglesias, J. Cote-Sierra, J. Elstrott, R.M. Weimer, and M. van Lookeren Campagne. 2016. IL-33 amplifies an innate immune response in the degenerating retina. Journal of experimental Medicine 213: 189-207.
Lee, Y.S., A. Ahjoku Amadi-Obi, C.-R. Yu, and C.E. Egwuagu. 2011. Retinal cells suppress intraocular inflammation (uveitis) through production of interleukin-27 and interleukin-10. Immunology 132: 492–502. PubMed DOI PMC
Yu, C.-R., M.K. Yadav, M. Kang, Y. Jittayasothorn, L. Dong, and C.E. Egwuagu. 2022. Photoreceptor cells constitutively express IL-35 and promote ocular immune privilege. International Journal of Molecular Sciences 23 (15): 8156. PubMed DOI PMC
Holan, V., B. Hermankova, M. Krulova, and A. Zajicova. 2019. Cytokine interplay among the diseased retina, inflammatory cells and mesenchymal stem cells - a clue to stem cell-based therapy. World Journal of Stem Cells 11: 957–967. PubMed DOI PMC
Mohan, K.V., A. Mishra, A. Muniyasamy, P. Sinha, P. Sahu, A. Kesarwani, K. Jain, P. Nagarajan, V. Scaria, M. Agarwal, S. Naseem, S. Akhter, C. Gupta, and P. Upadhyay. 2022. Immunological consequences of compromised ocular immune privilege accelerate retinal degeneration in retinitis pigmentosa. Orphanet Journal of Rare Diseases 17: 378. PubMed DOI PMC
Nikoopour, E., C.-M. Lin, S. Sheskey, J.R. Heckenlively, and S.K. Lundy. 2019. Immune cell infiltration into the eye is controlled by IL-10 in recoverin-induced autoimmune retinopathy. Journal of Immunology 202: 1057–1068. DOI
Vu, T.H.K., H. Chen, L. Pan, K.-S. Cho, D. Doesburg, E.F. Thee, N. Wu, E. Arlotti, M.J. Jager, and D.F. Chen. 2020. CD4 DOI
Galvez, B.G., C. Martinez-Perez, C. Villa-Collar, C. Alvarez-Peregrina, and M.A. Sánchez-Tena. 2022. Influence of cytokines on inflammatory eye diseases: A citation network study. Journal f Clinical Medicine 11: 661. DOI
Tsai, T., S. Kuehn, N. Tsiampalis, M.-K. Vu, V. Kakkassery, G. Stute, H.B. Dick, and S.C. Joachim. 2018. Anti-inflammatory cytokine and angiogenic factors levels in vitreous samples of diabetic retinopathy patients. PLoS ONE 13 (3): e0194603. PubMed DOI PMC
Wu, F., A. Phone, R. Lamy, D. Ma, S. Laotaweerungsawat, and S., Y. Chen, T. Zhao, W. Ma, F. Zhang, C. Psaras, and J.M. Stewart. 2020. Correlation of aqueous, vitreous, and plasma cytokine levels in patients with proliferative diabetic retinopathy. Investigative Ophthalmology and Visual Sciences 61: 26. DOI
Zamiri, P., S. Sugita, and J.W. Streilein. 2007. Immunosuppressive properties of the pigmented epithelial cells and the subretinal space. Chemical Immunology and Allergy 92: 86–93. PubMed DOI
Takahashi, S., K. Adachi, Y. Suzuki, A. Maeno, and M. Nakazawa. 2016. Profiles of inflammatory cytokines in the vitreous fluid from patients with rhegmatogenous retinal detachment and their correlations with clinical features. BioMed Research International 2016: 4256183. PubMed DOI PMC
Hermankova, B., J. Kossl, P. Bohacova, E. Javorkova, M. Hajkova, M. Krulova, A. Zajicova, and V. Holan. 2019. The immunomodulatory potential of mesenchymal stem cells in a retinal inflammatory environment. Stem Cell Reviews and Reports 15: 880–891. PubMed DOI
Chowers, G., M. Cohen, D. Marks-Ohana, S. Stika, A. Eijzenberg, E. Banin, and A. Obolensky. 2017. Course of sodium iodate-induced retinal degeneration in albino and pigmented mice. Investigative Ophthalmology and Visual Sciences 58: 2239–2249. DOI
Zhang, X.-Y., T.K. Ng, M.E. Brelén, D. Wu, J.X. Wang, K.P. Chan, J.S.Y. Yung, D. Cao, Y. Wang, S. Zhang, S.O. Chan, and C.P. Pang. 2016. Continuous exposure to non-lethal doses of sodium iodate induces retinal pigment epithelial cell dysfunction. Scientific Reports 6: 37279. PubMed
Wenkel, H., and J.W. Streilein. 1998. Analysis of immune deviation elicited by antigens injected into the subretinal space. Investigative Ophthalmology and Visual Sciences 39: 1823–1834.
Müller, B. 2019. Organotypic culture of adult mouse retina. Methods in Molecular Biology 1940: 181–191. PubMed DOI
Valdes, J., L. Trachsel-Moncho, A. Sahaboglu, D. Trifunović, M. Miranda, M. Ueffing, F. Paquet-Durand, and O. Schmachtenberg. 2016. Organotypic retinal explant cultures as in vitro alternative for diabetic retinopathy studies. ALTEX (Alternatives to Animal Experimentation) 33: 459–464. PubMed
Taylor, A.W. 2009. Ocular immune privilege. Eye (London, England) 23: 1885–1889. PubMed DOI
Holan, V., Z. Haskova, and M. Filipec. 1996. Transplantation immunity and tolerance in the eye. Rejection and acceptance of orthotopic corneal allografts in mice. Transplantation 62: 1050–1054. PubMed DOI
Niederkorn, J.Y., and D.F.P. Larkin. 2010. Immune privilege of corneal allografts. Ocular Immunology and. Inflammation 18: 162–171. PubMed DOI PMC
Forrester, J.V., and L. Kuffova. 2004. Corneal transplantation. Imperial College Press. DOI
Montesel, A., J.L. Alió Del Barrio, P. Yébana Rubio, and J.L. Alió. 2021. Corneal graft surgery: A monocentric long-term analysis. European Journal of Ophthalmology 31: 1700–1708. PubMed DOI
Nagineni, C.N., V.K. Kommineni, N. Ganjbaksh, K.K. Nagineni, J.J. Hooks, and B. Detrick. 2015. Inflammatory cytokines induce expression of chemokines by human retinal cells: Role in chemokine receptor mediated age-related macular degeneration. Aging and Disease 6: 444–455. PubMed DOI PMC
Sivakumar, V., W.S. Foulds, C.D. Luu, E.A. Ling, and C. Kaur. 2011. Retinal ganglion cell death is induced by microglia derived pro-inflammatory cytokines in the hypoxic neonatal retina. Journal of Pathology 224: 245–260. PubMed DOI
Thangaraj, G., A. Greif, and P.G. Layer. 2011. Simple explant culture of the embryonic chicken retina with long-term preservation of photoreceptors. Experimental Eye Research 93: 556–564. PubMed DOI
Stutzki, H., C. Leibig, A. Andreadaki, D. Fischer, and G. Zeck. 2014. Inflammatory stimulation preserves physiological properties of retinal ganglion cells after optic nerve injury. Frontiers in Cellular Neuroscience 8: 38. PubMed DOI PMC
Zhang, M., B. Marshall, and S.S. Atherton. 2018. Murine cytomegalovirus infection and apoptosis in organotypic retinal cultures. Investigative Ophthalmology and Visual Sciences 49: 295–303. DOI
Cen, L.-P., T.K. Ng, J.-J.I. Liang, X. Zhuang, X. Yao, G.H.-F. Yam, H. Chen, H.S. Cheung, M. Zhang, and C.P. Pang. 2018. Human periodontal ligament-derived stem cells promote retinal ganglion cell survival and axon regeneration after optic nerve injury. Stem Cells 36: 844–855. PubMed DOI
Reboussin, E., J. Buffault, F. Brignole-Baudouin, A. Réaux-Le Goazigo, L. Riancho, C. Olmiere, J.-A. Sahel, S.M. Parsadaniantz, and C. Baudouin. 2022. Evaluation of neuroprotective and immunomodulatory properties of mesenchymal stem cells in an ex vivo retinal explant model. Journal of Neuroinflammation 19: 63. PubMed DOI PMC
Paquet-Durand, F., D. Sanges, J. McCall, J. Silva, T. van Veen, V. Marigo, and P. Ekström. 2010. Photoreceptor rescue and toxicity induced by different calpain inhibitors. Journal of Neurochemistry 115: 930–940. PubMed DOI
Alarautalahti, V., S. Ragauskas, J.J. Hakkarainen, H. Uusitalo-Järvinen, H. Uusitalo, J. Hyttinen, G. Kalesnykas, and S. Nymark. 2019. Viability of mouse retinal explant cultures assessed by preservation of functionality and morphology. Investigative Ophthalmology and Visual Sciences 60: 1914–1927. DOI
Shipkova, M., and E. Wieland. 2012. Surface markers of lymphocyte activation and markers of cell proliferation. Clinica Chimica Acta 413: 1338–1349. DOI