A New Method for Extraction and Analysis of Ricin Samples through MALDI-TOF-MS/MS
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30987210
PubMed Central
PMC6520692
DOI
10.3390/toxins11040201
PII: toxins11040201
Knihovny.cz E-zdroje
- Klíčová slova
- CBRN defense, MALDI-TOF MS, biological weapons, chemical weapons, ricin,
- MeSH
- aceton chemie MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- hexany chemie MeSH
- peptidy analýza chemie MeSH
- ricin analýza chemie MeSH
- rozpouštědla chemie MeSH
- sekvence aminokyselin MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- tandemová hmotnostní spektrometrie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aceton MeSH
- hexany MeSH
- n-hexane MeSH Prohlížeč
- peptidy MeSH
- ricin MeSH
- rozpouštědla MeSH
We report for the first time the efficient use of accelerated solvent extraction (ASE) for extraction of ricin to analytical purposes, followed by the combined use of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), and MALDI-TOF MS/MS method. That has provided a fast and unambiguous method of ricin identification for in real cases of forensic investigation of suspected samples. Additionally, MALDI-TOF MS was applied to characterize the presence and the toxic activity of ricin in irradiated samples. Samples containing ricin were subjected to ASE, irradiated with different dosages of gamma radiation, and analyzed by MALDI-TOF MS/MS for verification of the intact protein signal. For identification purposes, samples were previously subjected to SDS-PAGE, for purification and separation of the chains, followed by digestion with trypsin, and analysis by MALDI-TOF MS/MS. The results were confirmed by verification of the amino acid sequences of some selected peptides by MALDI-TOF MS/MS. The samples residual toxic activity was evaluated through incubation with a DNA substrate, to simulate the attack by ricin, followed by MALDI-TOF MS/MS analyses.
Army Institute of Biology Rua Francisco Manuel 102 Rio de Janeiro 20911 270 Brazil
Brazilian Army CBRN Defense Institute Avenida das Américas 28705 Rio de Janeiro 23020 470 Brazil
Zobrazit více v PubMed
Severino L.S., Auld D.L., Baldanzi M., Cândido M.J.D., Chen G., Crosby W., Tan D., He X., Lakshmamma P., Lavanya C., et al. A Review on the Challenges for Increased Production of Castor. Agron. J. 2012;104:853. doi: 10.2134/agronj2011.0210. DOI
Mutlu H., Meier M.A.R. Castor oil as a renewable resource for the chemical industry. Eur. J. Lipid Sci. Technol. 2010;112:10–30. doi: 10.1002/ejlt.200900138. DOI
Carvalho Melo W., Barreto da Silva Nei Pereira Jr D., Maria Melo Santa Anna L. Ethanol production from castor bean cake (Ricinus communis L.) and evaluation of the lethality of the cake for mice. Quim. Nova. 2008;31:1104–1106.
Silva B.A., Stephan M.P., Koblitz M.G.B., Ascheri J.L.R. Influência da concentração de NaCl e pH na extração de ricina em torta de mamona (Ricinus communis L.) e sua caracterização por eletroforese. Ciência Rural. 2012;42:1320–1326. doi: 10.1590/S0103-84782012005000042. DOI
De Oliveira A.S., Campos J.M.S., Oliveira M.R.C., Brito A.F., Filho S.C.V., Detmann E., Valadares R.F.D., de Souza S.M., Machado O.L.T. Nutrient digestibility, nitrogen metabolism and hepatic function of sheep fed diets containing solvent or expeller castorseed meal treated with calcium hydroxide. Anim. Feed Sci. Technol. 2010;158:15–28. doi: 10.1016/j.anifeedsci.2010.02.009. DOI
Anandan S., Kumar G.K.A., Ghosh J., Ramachandra K.S. Effect of different physical and chemical treatments on detoxification of ricin in castor cake. Anim. Feed Sci. Technol. 2005;120:159–168. doi: 10.1016/j.anifeedsci.2004.10.002. DOI
Godoy M.G., Fernandes K.V., Gutarra M.L.E., Melo E.J.T., Castro A.M., Machado O.L.T., Freire D.M.G. Use of Vero cell line to verify the biodetoxification efficiency of castor bean waste. Process Biochem. 2012;47:578–584. doi: 10.1016/j.procbio.2011.12.011. DOI
Check Hayden E. The quick facts about ricin. Nature. 2013 doi: 10.1038/nature.2013.12819. DOI
Chemical Weapons Convention|OPCW. [(accessed on 20 January 2019)]; Available online: https://www.opcw.org/chemical-weapons-convention.
Biological Weapons—UNODA. [(accessed on 24 January 2019)]; Available online: https://www.un.org/disarmament/wmd/bio/
Spivak L., Hendrickson R.G. Ricin. Crit. Care Clin. 2005;21:815–824. doi: 10.1016/j.ccc.2005.06.006. PubMed DOI
Musshoff F., Madea B. Ricin poisoning and forensic toxicology. Drug Test. Anal. 2009;1:184–191. doi: 10.1002/dta.27. PubMed DOI
Audi J., Belson M., Patel M., Schier J., Osterloh J. Ricin Poisoning. JAMA. 2005;294:2342. doi: 10.1001/jama.294.18.2342. PubMed DOI
Gupta R.C. Handbook of Toxicology of Chemical Warfare Agents. Academic Press; Cambridge, MA, USA: 2009.
Olsnes S. The history of ricin, abrin and related toxins. Toxicon. 2004;44:361–370. doi: 10.1016/j.toxicon.2004.05.003. PubMed DOI
Olsnes S., Kozlov J.V. Ricin. Toxicon. 2001;39:1723–1728. doi: 10.1016/S0041-0101(01)00158-1. PubMed DOI
Dai J., Zhao L., Yang H., Guo H., Fan K., Wang H., Qian W., Zhang D., Li B., Wang H., et al. Identification of a novel functional domain of ricin responsible for its potent toxicity. J. Biol. Chem. 2011;286:12166–12171. doi: 10.1074/jbc.M110.196584. PubMed DOI PMC
Stirpe F. Ribosome-inactivating proteins. Toxicon. 2004;44:371–383. doi: 10.1016/j.toxicon.2004.05.004. PubMed DOI
May K.L., Yan Q., Tumer N.E. Targeting ricin to the ribosome. Toxicon. 2013;69:143–151. doi: 10.1016/j.toxicon.2013.02.001. PubMed DOI PMC
Hartley M.R., Lord J.M. Cytotoxic ribosome-inactivating lectins from plants. Biochim. Biophys. Acta Proteins Proteomics. 2004;1701:1–14. doi: 10.1016/j.bbapap.2004.06.004. PubMed DOI
Doan L.G. Ricin: Mechanism of Toxicity, Clinical Manifestations, and Vaccine Development. A Review. J. Toxicol. Clin. Toxicol. 2004;42:201–208. doi: 10.1081/CLT-120030945. PubMed DOI
Marconescu P.S., Smallshaw J.E., Pop L.M., Ruback S.L., Vitetta E.S. Intradermal administration of RiVax protects mice from mucosal and systemic ricin intoxication. Vaccine. 2010;28:5315–5322. doi: 10.1016/j.vaccine.2010.05.045. PubMed DOI PMC
Yermakova A., Klokk T.I., O’Hara J.M., Cole R., Sandvig K., Mantis N.J. Neutralizing Monoclonal Antibodies against Disparate Epitopes on Ricin Toxin’s Enzymatic Subunit Interfere with Intracellular Toxin Transport. Sci. Rep. 2016;6:22721. doi: 10.1038/srep22721. PubMed DOI PMC
Pincus S.H., Smallshaw J.E., Song K., Berry J., Vitetta E.S., Pincus S.H., Smallshaw J.E., Song K., Berry J., Vitetta E.S. Passive and Active Vaccination Strategies to Prevent Ricin Poisoning. Toxins (Basel) 2011;3:1163–1184. doi: 10.3390/toxins3091163. PubMed DOI PMC
Vitetta E.S., Smallshaw J.E., Schindler J. Pilot phase IB clinical trial of an alhydrogel-adsorbed recombinant ricin vaccine. Clin. Vaccine Immunol. 2012;19:1697–1699. doi: 10.1128/CVI.00381-12. PubMed DOI PMC
Dubois J.-L., Piccirilli A., Magne J., He X. Detoxification of castor meal through reactive seed crushing. Ind. Crops Prod. 2013;43:194–199. doi: 10.1016/j.indcrop.2012.07.012. DOI
Sturm M.B., Schramm V.L. Detecting Ricin: Sensitive Luminescent Assay for Ricin A-Chain Ribosome Depurination Kinetics. Anal. Chem. 2009;81:2847–2853. doi: 10.1021/ac8026433. PubMed DOI PMC
Hines H.B., Brueggemann E.E., Hale M.L. High-performance liquid chromatography–mass selective detection assay for adenine released from a synthetic RNA substrate by ricin A chain. Anal. Biochem. 2004;330:119–122. doi: 10.1016/j.ab.2004.03.046. PubMed DOI
Shyu H.-F., Chiao D.-J., Liu H.-W., Tang S.-S. Monoclonal Antibody-Based Enzyme Immunoassay for Detection of Ricin. Hybrid. Hybridomics. 2002;21:69–73. doi: 10.1089/15368590252917665. PubMed DOI
Poli M.A., Rivera V.R., Hewetson J.F., Merrill G.A. Detection of ricin by colorimetric and chemiluminescence ELISA. Toxicon. 1994;32:1371–1377. doi: 10.1016/0041-0101(94)90409-X. PubMed DOI
Leith A.G., Griffiths G.D., Green M.A. Quantification of ricin toxin using a highly sensitive avidin/biotin enzyme-linked immunosorbent assay. J. Forensic Sci. Soc. 1988;28:227–236. doi: 10.1016/S0015-7368(88)72840-6. PubMed DOI
Sehgal P., Khan M., Kumar O., Vijayaraghavan R. Purification, characterization and toxicity profile of ricin isoforms from castor beans. Food. Chem. Toxicol. 2010;48:3171–3176. doi: 10.1016/j.fct.2010.08.015. PubMed DOI
Kim S.-K., Hancok D.K., Wang L., Cole K.D., Reddy P.T. Methods to Characterize Ricin for the Development of Reference Materials. J. Res. Natl. Inst. Stand. Technol. 2012;111:313. doi: 10.6028/jres.111.023. PubMed DOI PMC
Despeyroux D., Walker N., Pearce M., Fisher M., McDonnell M., Bailey S.C., Griffiths G.D., Watts P. Characterization of Ricin Heterogeneity by Electrospray Mass Spectrometry, Capillary Electrophoresis, and Resonant Mirror. Anal. Biochem. 2000;279:23–36. doi: 10.1006/abio.1999.4423. PubMed DOI
Fultonlb R.J., Blakeyb D.C., Knowled P.P., Uhrs J.W., Thorpeq P.E., Vitettas E.S. Article title. J. BIOL. CHEM. Purif. Ricin AI AZ B Chains Charact. Their Toxic. 1986;261
UniProtKB/Swiss-Prot. [(accessed on 25 January 2019)]; Available online: https://web.expasy.org/docs/swiss-prot_guideline.html.
National Center for Biotechnology Information. [(accessed on 25 January 2019)]; Available online: https://www.ncbi.nlm.nih.gov/
Tezotto-Uliana, Silva P.P.M., Kluge R.A., Spoto M.H.F. Gamma Radiation in Plant Foods. Rev. Virtual Quim. 2015;7:267–277. doi: 10.5935/1984-6835.20150013. DOI
Lee J.-W., Kim J.-H., Yook H.-S., Kang K.-O., Lee S.-Y., Hwang H.-J., Myung-Woo Byun A. Effects of Gamma Radiation on the Allergenic and Antigenic Properties of Milk Proteins. J. Food Prot. 2001;64:272–276. doi: 10.4315/0362-028X-64.2.272. PubMed DOI
Maity J.P., Chakraborty S., Kar S., Panja S., Jean J.-S., Samal A.C., Chakraborty A., Santra S.C. Effects of gamma irradiation on edible seed protein, amino acids and genomic DNA during sterilization. Food Chem. 2009;114:1237–1244. doi: 10.1016/j.foodchem.2008.11.001. DOI
Funatsu G., Kimura M., Funatsu M. Biochemical studies on ricin. XXVI. Primary structure of Ala chain of ricin D. Agric. Biol. Chem. 1979;43:2221–2224. doi: 10.1271/bbb1961.43.2221. DOI
Ma X., Tang J., Li C., Liu Q., Chen J., Li H., Guo L., Xie J. Identification and quantification of ricin in biomedical samples by magnetic immunocapture enrichment and liquid chromatography electrospray ionization tandem mass spectrometry. Anal. Bioanal. Chem. 2014;406:5147–5155. doi: 10.1007/s00216-014-7710-2. PubMed DOI
Lord J.M., Roberts L.M., Robertus J.D. Ricin: Structure, mode of action, and some current applications. FASEB J. 1994;8:201–208. doi: 10.1096/fasebj.8.2.8119491. PubMed DOI
Wunschel D.S., Melville A.M., Ehrhardt C.J., Colburn H.A., Victry K.D., Antolick K.C., Wahl J.H., Wahl K.L. Integration of gas chromatography mass spectrometry methods for differentiating ricin preparation methods. Analyst. 2012;137:2077. doi: 10.1039/c2an16186a. PubMed DOI
Cardozo M., De Souza S.P., Dos Santos Cople Lima K., Oliveira A.A., Rezende C.M., França T.C.C., Dos Santos Lima A.L. Degradation of phenylethylamine and tyramine by gamma radiation process and docking studies of its radiolytes. J. Braz. Chem. Soc. 2014;25 doi: 10.5935/0103-5053.20140100. DOI
Schieltz D.M., McWilliams L.G., Kuklenyik Z., Prezioso S.M., Carter A.J., Williamson Y.M., McGrath S.C., Morse S.A., Barr J.R. Quantification of ricin, RCA and comparison of enzymatic activity in 18 Ricinus communis cultivars by isotope dilution mass spectrometry. Toxicon. 2015;95:72–83. doi: 10.1016/j.toxicon.2015.01.003. PubMed DOI PMC