A New Method for Extraction and Analysis of Ricin Samples through MALDI-TOF-MS/MS

. 2019 Apr 03 ; 11 (4) : . [epub] 20190403

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30987210

We report for the first time the efficient use of accelerated solvent extraction (ASE) for extraction of ricin to analytical purposes, followed by the combined use of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), and MALDI-TOF MS/MS method. That has provided a fast and unambiguous method of ricin identification for in real cases of forensic investigation of suspected samples. Additionally, MALDI-TOF MS was applied to characterize the presence and the toxic activity of ricin in irradiated samples. Samples containing ricin were subjected to ASE, irradiated with different dosages of gamma radiation, and analyzed by MALDI-TOF MS/MS for verification of the intact protein signal. For identification purposes, samples were previously subjected to SDS-PAGE, for purification and separation of the chains, followed by digestion with trypsin, and analysis by MALDI-TOF MS/MS. The results were confirmed by verification of the amino acid sequences of some selected peptides by MALDI-TOF MS/MS. The samples residual toxic activity was evaluated through incubation with a DNA substrate, to simulate the attack by ricin, followed by MALDI-TOF MS/MS analyses.

Zobrazit více v PubMed

Severino L.S., Auld D.L., Baldanzi M., Cândido M.J.D., Chen G., Crosby W., Tan D., He X., Lakshmamma P., Lavanya C., et al. A Review on the Challenges for Increased Production of Castor. Agron. J. 2012;104:853. doi: 10.2134/agronj2011.0210. DOI

Mutlu H., Meier M.A.R. Castor oil as a renewable resource for the chemical industry. Eur. J. Lipid Sci. Technol. 2010;112:10–30. doi: 10.1002/ejlt.200900138. DOI

Carvalho Melo W., Barreto da Silva Nei Pereira Jr D., Maria Melo Santa Anna L. Ethanol production from castor bean cake (Ricinus communis L.) and evaluation of the lethality of the cake for mice. Quim. Nova. 2008;31:1104–1106.

Silva B.A., Stephan M.P., Koblitz M.G.B., Ascheri J.L.R. Influência da concentração de NaCl e pH na extração de ricina em torta de mamona (Ricinus communis L.) e sua caracterização por eletroforese. Ciência Rural. 2012;42:1320–1326. doi: 10.1590/S0103-84782012005000042. DOI

De Oliveira A.S., Campos J.M.S., Oliveira M.R.C., Brito A.F., Filho S.C.V., Detmann E., Valadares R.F.D., de Souza S.M., Machado O.L.T. Nutrient digestibility, nitrogen metabolism and hepatic function of sheep fed diets containing solvent or expeller castorseed meal treated with calcium hydroxide. Anim. Feed Sci. Technol. 2010;158:15–28. doi: 10.1016/j.anifeedsci.2010.02.009. DOI

Anandan S., Kumar G.K.A., Ghosh J., Ramachandra K.S. Effect of different physical and chemical treatments on detoxification of ricin in castor cake. Anim. Feed Sci. Technol. 2005;120:159–168. doi: 10.1016/j.anifeedsci.2004.10.002. DOI

Godoy M.G., Fernandes K.V., Gutarra M.L.E., Melo E.J.T., Castro A.M., Machado O.L.T., Freire D.M.G. Use of Vero cell line to verify the biodetoxification efficiency of castor bean waste. Process Biochem. 2012;47:578–584. doi: 10.1016/j.procbio.2011.12.011. DOI

Check Hayden E. The quick facts about ricin. Nature. 2013 doi: 10.1038/nature.2013.12819. DOI

Chemical Weapons Convention|OPCW. [(accessed on 20 January 2019)]; Available online: https://www.opcw.org/chemical-weapons-convention.

Biological Weapons—UNODA. [(accessed on 24 January 2019)]; Available online: https://www.un.org/disarmament/wmd/bio/

Spivak L., Hendrickson R.G. Ricin. Crit. Care Clin. 2005;21:815–824. doi: 10.1016/j.ccc.2005.06.006. PubMed DOI

Musshoff F., Madea B. Ricin poisoning and forensic toxicology. Drug Test. Anal. 2009;1:184–191. doi: 10.1002/dta.27. PubMed DOI

Audi J., Belson M., Patel M., Schier J., Osterloh J. Ricin Poisoning. JAMA. 2005;294:2342. doi: 10.1001/jama.294.18.2342. PubMed DOI

Gupta R.C. Handbook of Toxicology of Chemical Warfare Agents. Academic Press; Cambridge, MA, USA: 2009.

Olsnes S. The history of ricin, abrin and related toxins. Toxicon. 2004;44:361–370. doi: 10.1016/j.toxicon.2004.05.003. PubMed DOI

Olsnes S., Kozlov J.V. Ricin. Toxicon. 2001;39:1723–1728. doi: 10.1016/S0041-0101(01)00158-1. PubMed DOI

Dai J., Zhao L., Yang H., Guo H., Fan K., Wang H., Qian W., Zhang D., Li B., Wang H., et al. Identification of a novel functional domain of ricin responsible for its potent toxicity. J. Biol. Chem. 2011;286:12166–12171. doi: 10.1074/jbc.M110.196584. PubMed DOI PMC

Stirpe F. Ribosome-inactivating proteins. Toxicon. 2004;44:371–383. doi: 10.1016/j.toxicon.2004.05.004. PubMed DOI

May K.L., Yan Q., Tumer N.E. Targeting ricin to the ribosome. Toxicon. 2013;69:143–151. doi: 10.1016/j.toxicon.2013.02.001. PubMed DOI PMC

Hartley M.R., Lord J.M. Cytotoxic ribosome-inactivating lectins from plants. Biochim. Biophys. Acta Proteins Proteomics. 2004;1701:1–14. doi: 10.1016/j.bbapap.2004.06.004. PubMed DOI

Doan L.G. Ricin: Mechanism of Toxicity, Clinical Manifestations, and Vaccine Development. A Review. J. Toxicol. Clin. Toxicol. 2004;42:201–208. doi: 10.1081/CLT-120030945. PubMed DOI

Marconescu P.S., Smallshaw J.E., Pop L.M., Ruback S.L., Vitetta E.S. Intradermal administration of RiVax protects mice from mucosal and systemic ricin intoxication. Vaccine. 2010;28:5315–5322. doi: 10.1016/j.vaccine.2010.05.045. PubMed DOI PMC

Yermakova A., Klokk T.I., O’Hara J.M., Cole R., Sandvig K., Mantis N.J. Neutralizing Monoclonal Antibodies against Disparate Epitopes on Ricin Toxin’s Enzymatic Subunit Interfere with Intracellular Toxin Transport. Sci. Rep. 2016;6:22721. doi: 10.1038/srep22721. PubMed DOI PMC

Pincus S.H., Smallshaw J.E., Song K., Berry J., Vitetta E.S., Pincus S.H., Smallshaw J.E., Song K., Berry J., Vitetta E.S. Passive and Active Vaccination Strategies to Prevent Ricin Poisoning. Toxins (Basel) 2011;3:1163–1184. doi: 10.3390/toxins3091163. PubMed DOI PMC

Vitetta E.S., Smallshaw J.E., Schindler J. Pilot phase IB clinical trial of an alhydrogel-adsorbed recombinant ricin vaccine. Clin. Vaccine Immunol. 2012;19:1697–1699. doi: 10.1128/CVI.00381-12. PubMed DOI PMC

Dubois J.-L., Piccirilli A., Magne J., He X. Detoxification of castor meal through reactive seed crushing. Ind. Crops Prod. 2013;43:194–199. doi: 10.1016/j.indcrop.2012.07.012. DOI

Sturm M.B., Schramm V.L. Detecting Ricin: Sensitive Luminescent Assay for Ricin A-Chain Ribosome Depurination Kinetics. Anal. Chem. 2009;81:2847–2853. doi: 10.1021/ac8026433. PubMed DOI PMC

Hines H.B., Brueggemann E.E., Hale M.L. High-performance liquid chromatography–mass selective detection assay for adenine released from a synthetic RNA substrate by ricin A chain. Anal. Biochem. 2004;330:119–122. doi: 10.1016/j.ab.2004.03.046. PubMed DOI

Shyu H.-F., Chiao D.-J., Liu H.-W., Tang S.-S. Monoclonal Antibody-Based Enzyme Immunoassay for Detection of Ricin. Hybrid. Hybridomics. 2002;21:69–73. doi: 10.1089/15368590252917665. PubMed DOI

Poli M.A., Rivera V.R., Hewetson J.F., Merrill G.A. Detection of ricin by colorimetric and chemiluminescence ELISA. Toxicon. 1994;32:1371–1377. doi: 10.1016/0041-0101(94)90409-X. PubMed DOI

Leith A.G., Griffiths G.D., Green M.A. Quantification of ricin toxin using a highly sensitive avidin/biotin enzyme-linked immunosorbent assay. J. Forensic Sci. Soc. 1988;28:227–236. doi: 10.1016/S0015-7368(88)72840-6. PubMed DOI

Sehgal P., Khan M., Kumar O., Vijayaraghavan R. Purification, characterization and toxicity profile of ricin isoforms from castor beans. Food. Chem. Toxicol. 2010;48:3171–3176. doi: 10.1016/j.fct.2010.08.015. PubMed DOI

Kim S.-K., Hancok D.K., Wang L., Cole K.D., Reddy P.T. Methods to Characterize Ricin for the Development of Reference Materials. J. Res. Natl. Inst. Stand. Technol. 2012;111:313. doi: 10.6028/jres.111.023. PubMed DOI PMC

Despeyroux D., Walker N., Pearce M., Fisher M., McDonnell M., Bailey S.C., Griffiths G.D., Watts P. Characterization of Ricin Heterogeneity by Electrospray Mass Spectrometry, Capillary Electrophoresis, and Resonant Mirror. Anal. Biochem. 2000;279:23–36. doi: 10.1006/abio.1999.4423. PubMed DOI

Fultonlb R.J., Blakeyb D.C., Knowled P.P., Uhrs J.W., Thorpeq P.E., Vitettas E.S. Article title. J. BIOL. CHEM. Purif. Ricin AI AZ B Chains Charact. Their Toxic. 1986;261

UniProtKB/Swiss-Prot. [(accessed on 25 January 2019)]; Available online: https://web.expasy.org/docs/swiss-prot_guideline.html.

National Center for Biotechnology Information. [(accessed on 25 January 2019)]; Available online: https://www.ncbi.nlm.nih.gov/

Tezotto-Uliana, Silva P.P.M., Kluge R.A., Spoto M.H.F. Gamma Radiation in Plant Foods. Rev. Virtual Quim. 2015;7:267–277. doi: 10.5935/1984-6835.20150013. DOI

Lee J.-W., Kim J.-H., Yook H.-S., Kang K.-O., Lee S.-Y., Hwang H.-J., Myung-Woo Byun A. Effects of Gamma Radiation on the Allergenic and Antigenic Properties of Milk Proteins. J. Food Prot. 2001;64:272–276. doi: 10.4315/0362-028X-64.2.272. PubMed DOI

Maity J.P., Chakraborty S., Kar S., Panja S., Jean J.-S., Samal A.C., Chakraborty A., Santra S.C. Effects of gamma irradiation on edible seed protein, amino acids and genomic DNA during sterilization. Food Chem. 2009;114:1237–1244. doi: 10.1016/j.foodchem.2008.11.001. DOI

Funatsu G., Kimura M., Funatsu M. Biochemical studies on ricin. XXVI. Primary structure of Ala chain of ricin D. Agric. Biol. Chem. 1979;43:2221–2224. doi: 10.1271/bbb1961.43.2221. DOI

Ma X., Tang J., Li C., Liu Q., Chen J., Li H., Guo L., Xie J. Identification and quantification of ricin in biomedical samples by magnetic immunocapture enrichment and liquid chromatography electrospray ionization tandem mass spectrometry. Anal. Bioanal. Chem. 2014;406:5147–5155. doi: 10.1007/s00216-014-7710-2. PubMed DOI

Lord J.M., Roberts L.M., Robertus J.D. Ricin: Structure, mode of action, and some current applications. FASEB J. 1994;8:201–208. doi: 10.1096/fasebj.8.2.8119491. PubMed DOI

Wunschel D.S., Melville A.M., Ehrhardt C.J., Colburn H.A., Victry K.D., Antolick K.C., Wahl J.H., Wahl K.L. Integration of gas chromatography mass spectrometry methods for differentiating ricin preparation methods. Analyst. 2012;137:2077. doi: 10.1039/c2an16186a. PubMed DOI

Cardozo M., De Souza S.P., Dos Santos Cople Lima K., Oliveira A.A., Rezende C.M., França T.C.C., Dos Santos Lima A.L. Degradation of phenylethylamine and tyramine by gamma radiation process and docking studies of its radiolytes. J. Braz. Chem. Soc. 2014;25 doi: 10.5935/0103-5053.20140100. DOI

Schieltz D.M., McWilliams L.G., Kuklenyik Z., Prezioso S.M., Carter A.J., Williamson Y.M., McGrath S.C., Morse S.A., Barr J.R. Quantification of ricin, RCA and comparison of enzymatic activity in 18 Ricinus communis cultivars by isotope dilution mass spectrometry. Toxicon. 2015;95:72–83. doi: 10.1016/j.toxicon.2015.01.003. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...