Theoretical Investigation of Repurposed Drugs Potentially Capable of Binding to the Catalytic Site and the Secondary Binding Pocket of Subunit A of Ricin
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36120038
PubMed Central
PMC9476511
DOI
10.1021/acsomega.2c04819
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Recently, we reported a library of 82 compounds, selected from different databanks through virtual screening and docking studies, and pointed to 6 among them as potential repurposed dual binders to both the catalytic site and the secondary binding pockets of subunit A of ricin (RTA). Here, we report additional molecular modeling studies of an extended list of compounds from the original library. Rounds of flexible docking followed by molecular dynamics simulations and further rounds of MM-PBSA calculations using a more robust protocol, enabled a better investigation of the interactions of these compounds inside RTA, the elucidation of their dynamical behaviors, and updating the list of the most important residues for the ligand binding. Four compounds were pointed as potential repurposed ricin inhibitors that are worth being experimentally investigated.
Chemical Computing Group Montreal Quebec H3A 2R7 Canada
Université de Québec INRS Centre Armand Frappier Santé Biotechnologie Laval Quebec H7V 1B7 Canada
Zobrazit více v PubMed
Doan L. G. Ricin: Mechanism of toxicity, clinical manifestations, and vaccine development. A review. J. Toxicol., Clin. Toxicol. 2004, 42, 201–208. 10.1081/CLT-120030945. PubMed DOI
Sousa R. B.; Lima K. S. C.; Santos C. G. M.; França T. C. C.; Nepovimova E.; Kuca K.; Dornelas M. R.; Lima A. L. S. A New Method for Extraction and Analysis of Ricin Samples through MALDI-TOF-MS/MS. Toxins 2019, 11, 201.10.3390/toxins11040201. PubMed DOI PMC
Audi J.; Belson M.; Patel M.; Schier J.; Osterloh J. Ricin Poisoning - A comprehensive review. JAMA 2005, 294, 2342.10.1001/jama.294.18.2342. PubMed DOI
Janik E.; Ceremuga M.; Saluk-Bijak J.; Bijak M. Biological toxins as the potential tools for bioterrorism. Int. J. Mol. Sci. 2019, 20, 1181.10.3390/ijms20051181. PubMed DOI PMC
Knight B. Ricin - a potent homicidal poison. Br. Med. J. 1979, 1, 350–351. PubMed PMC
Pita R.; Romero A. Toxins as Weapons: A Historical Review. Forensic Sci. Rev. 2014, 26, 85–96. PubMed
Musshoff F.; Madea B. Ricin poisoning and forensic toxicology. Drug Test. Anal. 2009, 1, 184–191. 10.1002/dta.27. PubMed DOI
Zhou K.; Fu Z.; Chen M.; Lin Y.; Pan K. Structure of trichosanthin at 1.88 Å resolution. Proteins: Struct., Funct., Bioinf. 1994, 19, 4–13. 10.1002/prot.340190103. PubMed DOI
Funatsu G.; Islam M. R.; Minami Y.; Sung-Sil K.; Kimura M. Conserved amino acid residues in ribosome-inactivating proteins from plants. Biochimie 1991, 73, 1157–1161. 10.1016/0300-9084(91)90160-3. PubMed DOI
Endo Y.; Tsurugi K.; Yutsudo T.; Takeda Y.; Ogasawara T.; Igarashi K. Site of action of a Vero toxin (VT2) from Escherichia coli O157:H7 and of Shiga toxin on eukaryotic ribosomes. Eur. J. Biochem. 1988, 171, 45–50. 10.1111/j.1432-1033.1988.tb13756.x. PubMed DOI
May M. J.; Hartley M. R.; Roberts L. M.; Krieg P. A.; Osborn R. W.; Lord J. M. Ribosome inactivation by ricin A chain: a sensitive method to assess the activity of wild-type and mutant polypeptides. EMBO J. 1989, 8, 301–308. 10.1002/j.1460-2075.1989.tb03377.x. PubMed DOI PMC
Lord J. M.; Roberts L. M.; Robertus J. D. Ricin: structure, mode of action, and some current applications. FASEB J. 1994, 8, 201–208. 10.1096/fasebj.8.2.8119491. PubMed DOI
Olson M. A.; Carra J. H.; Roxas-Duncan V.; Wannemacher R. W.; Smith L. A.; Millard C. B. Finding a new vaccine in the ricin protein fold. Protein Eng., Des. Sel. 2004, 17, 391–397. 10.1093/protein/gzh043. PubMed DOI
Gal Y.; Alcalay R.; Sabo T.; Noy-Porat T.; Epstein E.; Kronman C.; Mazor O. Rapid assessment of antibody-induced ricin neutralization by employing a novel functional cell-based assay. J. Immunol. Methods 2015, 424, 136–139. 10.1016/j.jim.2015.05.005. PubMed DOI
Hu W.-g.; Yin J.; Chau D.; Hu C. C.; Lillico D.; Yu J.; Negrych L. M.; Cherwonogrodzky J. W. Conformation-Dependent High-Affinity Potent Ricin-Neutralizing Monoclonal Antibodies. BioMed Res. Int. 2013, 2013, 471346.10.1155/2013/471346. PubMed DOI PMC
Legler P. M.; Brey R. N.; Smallshaw J. E.; Vitetta E. S.; Millard C. B. Structure of RiVax: a recombinant ricin vaccine. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2011, 67, 826–830. 10.1107/s0907444911026771. PubMed DOI PMC
Roy C. J.; Brey R. N.; Mantis N. J.; Mapes K.; Pop I. V.; Pop L. M.; Ruback S.; Killeen S. Z.; Doyle-Meyers L.; Vinet-Oliphant H. S.; et al. Thermostable ricin vaccine protects rhesus macaques against aerosolized ricin: Epitope-specific neutralizing antibodies correlate with protection. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 3782.10.1073/pnas.1502585112. PubMed DOI PMC
Pruet J. M.; Saito R.; Manzano L. A.; Jasheway K. R.; Wiget P. A.; Kamat I.; Anslyn E. V.; Robertus J. D. Optimized 5-membered heterocycle-linked pterins for the inhibition of Ricin Toxin A. ACS Med. Chem. Lett. 2012, 3, 588–591. 10.1021/ml300099t. PubMed DOI PMC
Wiget P. A.; Manzano L. A.; Pruet J. M.; Gao G.; Saito R.; Monzingo A. F.; Jasheway K. R.; Robertus J. D.; Anslyn E. V. Sulfur incorporation generally improves Ricin inhibition in pterin-appended glycine-phenylalanine dipeptide mimics. Bioorg. Med. Chem. Lett. 2013, 23, 6799–6804. 10.1016/j.bmcl.2013.10.017. PubMed DOI
Saito R.; Pruet J. M.; Manzano L. A.; Jasheway K.; Monzingo A. F.; Wiget P. A.; Kamat I.; Anslyn E. V.; Robertus J. D. Peptide-Conjugated Pterins as Inhibitors of Ricin Toxin A. J. Med. Chem. 2013, 56, 320–329. 10.1021/jm3016393. PubMed DOI PMC
Ho M.-c.; Sturm M. B.; Almo S. C.; Schramm V. L. Transition state analogues in structures of ricin and saporin ribosome-inactivating proteins. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 20276–20281. 10.1073/pnas.0911606106. PubMed DOI PMC
Botelho F. D.; dos Santos M. C.; Gonçalves A. D.; Kuca K.; Valis M.; LaPlante S. R.; França T. C. C.; de Almeida J. S. F. D. Ligand-Based Virtual Screening, Molecular Docking, Molecular Dynamics, and MM-PBSA Calculations towards the Identification of Potential Novel Ricin Inhibitors. Toxins 2020, 12, 746.10.3390/toxins12120746. PubMed DOI PMC
Botelho F. D.; Santos M. C.; Gonçalves A. S.; França T. C.; LaPlante S. R.; de Almeida J. S. Identification of novel potential ricin inhibitors by virtual screening, molecular docking, molecular dynamics and MM-PBSA calculations: a drug repurposing approach. J. Biomol. Struct. Dyn. 2020, 40, 5309.10.1080/07391102.2020.1870154. PubMed DOI
Nelson M. T.; Humphrey W.; Gursoy A.; Dalke A.; Kalé L. V.; Skeel R. D.; Schulten K. NAMD: a parallel, object-oriented molecular dynamics program. Int. J. Supercomput. Appl. High Perform. Comput. 1996, 10, 251–268. 10.1177/109434209601000401. DOI
Case D. A.; Darden T.; Cheatham T.; Simmerling C. L.; Wang J.; Duke R. E.; Luo R.; Crowley M.; Walker R. C.; Zhang W.. Amber 10; University of California, 2008.
Lipparini F.; Mennucci B. Hybrid QM/classical models: Methodological advances and new applications. Chem. Phys. Rev. 2021, 2, 041303.10.1063/5.0064075. DOI
Gonçalves M. A.; Santos L. S.; Prata D. M.; Peixoto F. C.; da Cunha E. F.; Ramalho T. C. Optimal wavelet signal compression as an efficient alternative to investigate molecular dynamics simulations: application to thermal and solvent effects of MRI probes. Theor. Chem. Acc. 2017, 136, 15.10.1007/s00214-016-2037-z. DOI
Kumari R.; Kumar R.; Lynn O. S. D. D.; Lynn A. g _ mmpbsa - A GROMACS tool for MM-PBSA and its optimization for high-throughput binding energy calculations. J. Chem. Inf. Model. 2014, 54, 1951.10.1021/ci500020m. PubMed DOI
Homeyer N.; Gohlke H. Free energy calculations by the Molecular Mechanics Poisson-Boltzmann Surface Area method. Mol. Inf. 2012, 31, 114.10.1002/minf.201100135. PubMed DOI
Kontoyianni M.; McClellan L. M.; Sokol G. S. Evaluation of Docking Performance: Comparative Data on Docking Algorithms. J. Med. Chem. 2004, 47, 558.10.1021/jm0302997. PubMed DOI
da Cunha E. F. F.; Ramalho T. C.; Reynolds R. C. Binding Mode Analysis of 2,4-diamino-5-methyl-5-deaza-6-substituted Pteridines with Mycobacterium tuberculosis and Human Dihydrofolate Reductases. J. Biomol. Struct. Dyn. 2008, 25, 377–385. 10.1080/07391102.2008.10507186. PubMed DOI
Farahani M. D.; França T. C. C.; Alapour S.; Shahout F.; Boulon R.; Iddir M.; Maddalena M.; Ayotte Y.; LaPlante S. R. Jumping from Fragment to Drug via Smart Scaffolds. ChemMedChem 2022, 17, e20220009210.1002/cmdc.202200092. PubMed DOI
França T. C. C.; Pascutti P. G.; Ramalho T. C.; Figueroa-Villar J. D. A three-dimensional structure of Plasmodium falciparum serine hydroxymethyltransferase in complex with glycine and 5-formyl-tetrahydrofolate. Homology modeling and molecular dynamics. Biophys. Chem. 2005, 115, 1–10. 10.1016/j.bpc.2004.12.002. PubMed DOI
Santos M. C.; Botelho F. D.; Gonçalves A. S.; Kuca K.; Nepovimova E.; Cavalcante S. F. A.; Lima A. L. S.; França T. C. C. Theoretical assessment of the performances of commercial oximes on the reactivation of acetylcholinesterase inhibited by the nerve agent A-242 (novichok). Food Chem. Toxicol. 2022, 165, 113084.10.1016/j.fct.2022.113084. PubMed DOI
Guimarães A. P.; Oliveira A. A.; da Cunha E. F. F.; Ramalho T. C.; França T. C. C. Design of New Chemotherapeutics Against the Deadly Anthrax Disease. Docking and Molecular Dynamics Studies of Inhibitors Containing Pyrrolidine and Riboamidrazone Rings on Nucleoside Hydrolase from Bacillus anthracis. J. Biomol. Struct. Dyn. 2011, 28, 455–469. 10.1080/07391102.2011.10508588. PubMed DOI
França T. C. C.; Wilter A.; Ramalho T. C.; Pascutti P. G.; Figueroa-Villar J. D. Molecular dynamics of the interaction of Plasmodium falciparum and human Serine Hydroxymethyltransferase with 5-formyl-6-hydrofolic acid analogues: Design of new potential antimalarials. J. Braz. Chem. Soc. 2006, 17, 1383–1392. 10.1590/S0103-50532006000700028. DOI
The Search for Antidotes Against Ricin