Ligand-Based Virtual Screening, Molecular Docking, Molecular Dynamics, and MM-PBSA Calculations towards the Identification of Potential Novel Ricin Inhibitors

. 2020 Nov 26 ; 12 (12) : . [epub] 20201126

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33256167

Grantová podpora
VT2019-2021 UHK - International CEP - Centrální evidence projektů
308225/2018-0 Conselho Nacional de Pesquisa (CNPq) - International
E-02/202.961/2017 Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ) - International
FN HK 00179906 Ministry of Health of the Czech - International
PROGRES Q40 Charles University in Prague, Czech Republic - International

Ricin is a toxin found in the castor seeds and listed as a chemical weapon by the Chemical Weapons Convention (CWC) due to its high toxicity combined with the easiness of obtention and lack of available antidotes. The relatively frequent episodes of usage or attempting to use ricin in terrorist attacks reinforce the urge to develop an antidote for this toxin. In this sense, we selected in this work the current RTA (ricin catalytic subunit) inhibitor with the best experimental performance, as a reference molecule for virtual screening in the PubChem database. The selected molecules were then evaluated through docking studies, followed by drug-likeness investigation, molecular dynamics simulations and Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) calculations. In every step, the selection of molecules was mainly based on their ability to occupy both the active and secondary sites of RTA, which are located right next to each other, but are not simultaneously occupied by the current RTA inhibitors. Results show that the three PubChem compounds 18309602, 18498053, and 136023163 presented better overall results than the reference molecule itself, showing up as new hits for the RTA inhibition, and encouraging further experimental evaluation.

Zobrazit více v PubMed

Endo Y., Mitsui K., Motizuki M., Tsurugi K. The Mechanism of Action of Ricin and Related Toxic Lectins on Eukaryotic Ribosomes. J. Biol. Chem. 1987;262:5908–5912. PubMed

Endo Y., Tsurugi K. The RNA N-glycosidase activity of ricin A-chain. The characteristics of the enzymatic activity of ricin A-chain with ribosomes and with rRNA. J. Biol. Chem. 1988;263:8735–8739. PubMed

Audi J., Belson M. Ricin Poisoning—A comprehensive review. JAMA. 2005;294 doi: 10.1001/jama.294.18.2342. PubMed DOI

Argent R.H., Roberts L.M., Wales R., Robertus J.D., Lord J.M. Introduction of a disulfide bond into ricin A chain decreases the cytotoxicity of the ricin holotoxin. J. Biol. Chem. 1994;269:26705–26710. PubMed

Spooner R.A., Watson P.D., Marsden C.J., Smith D.C., Moore K.A.H., Cook J.P., Lord J.M., Roberts L.M. Protein disulphide-isomerase reduces ricin to its A and B chains in the endoplasmic reticulum. Biochem. J. 2004;383:285–293. doi: 10.1042/BJ20040742. PubMed DOI PMC

Olsnes S., Fernandez-Puentes C., Carrasco L., Vazquez D. Ribosome Inactivation by the Toxic Lectins Abrin and Ricin. Eur. J. Biochem. 1975;60:281–288. doi: 10.1111/j.1432-1033.1975.tb21001.x. PubMed DOI

Franke H., Scholl R., Aigner A. Ricin and Ricinus communis in pharmacology and toxicology-from ancient use and “Papyrus Ebers” to modern perspectives and “poisonous plant of the year 2018”. Naunyn Schmiedebergs Arch. Pharmacol. 2019;392:1181–1208. doi: 10.1007/s00210-019-01691-6. PubMed DOI

Chemical Weapons Convention | OPCW. [(accessed on 30 October 2020)]; Available online: https://www.opcw.org/chemical-weapons-convention.

Nehring C. Umbrella or pen? The murder of Georgi Markov. New facts and old questions. J. Intell. Hist. 2017;16:47–58. doi: 10.1080/16161262.2016.1258248. DOI

Benner K., Draper R. Arrest Is Made In Connection To Ricin Letter Sent to Trump. New York Times. Sep 21, 2020. p. 20.

Patel V.R., Dumancas G.G., Viswanath L.C.K., Maples R., Subong B.J.J. Castor Oil: Properties, Uses, and Optimization of Processing Parameters in Commercial Production. Lipid Insights. 2016;9:1–12. doi: 10.4137/LPI.S40233. PubMed DOI PMC

Lord J.M., Roberts L.M., Robertus J.D. Ricin: Structure, mode of action, and some current applications. FASEB J. 1994;8:201–208. doi: 10.1096/fasebj.8.2.8119491. PubMed DOI

Ho M., Sturm M.B., Almo S.C., Schramm V.L. Transition state analogues in structures of ricin and saporin ribosome-inactivating proteins. Proc. Natl. Acad. Sci. USA. 2009;106:20276–20281. doi: 10.1073/pnas.0911606106. PubMed DOI PMC

Wiget P.A., Manzano L.A., Pruet J.M., Gao G., Saito R., Monzingo A.F., Jasheway K.R., Robertus J.D., Anslyn E.V. Sulfur incorporation generally improves Ricin inhibition in pterin-appended glycine-phenylalanine dipeptide mimics. Bioorg. Med. Chem. Lett. 2013;23:6799–6804. doi: 10.1016/j.bmcl.2013.10.017. PubMed DOI

Saito R., Pruet J.M., Manzano L.A., Jasheway K., Monzingo A.F., Wiget P.A., Kamat I., Anslyn E.V., Robertus J.D. Peptide-conjugated pterins as inhibitors of ricin toxin A. J. Med. Chem. 2013;56:320–329. doi: 10.1021/jm3016393. PubMed DOI PMC

Pruet J.M., Saito R., Manzano L.A., Jasheway K.R., Wiget P.A., Kamat I., Anslyn E.V., Robertus J.D. Optimized 5-membered heterocycle-linked pterins for the inhibition of Ricin Toxin A. ACS Med. Chem. Lett. 2012;3:588–591. doi: 10.1021/ml300099t. PubMed DOI PMC

Kim S., Chen J., Cheng T., Gindulyte A., He J., He S., Li Q., Shoemaker B.A., Thiessen P.A., Yu B., et al. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res. 2019;47:D1102–D1109. doi: 10.1093/nar/gky1033. PubMed DOI PMC

Wang L., Chen L., Yu M., Xu L.H., Cheng B., Lin Y.S., Gu Q., He X.H., Xu J. Discovering new mTOR inhibitors for cancer treatment through virtual screening methods and in vitro assays. Sci. Rep. 2016;6:1–13. doi: 10.1038/srep18987. PubMed DOI PMC

Park H., Choe H., Hong S. Virtual screening and biochemical evaluation to identify new inhibitors of mammalian target of rapamycin (mTOR) Bioorg. Med. Chem. Lett. 2014;24:835–838. doi: 10.1016/j.bmcl.2013.12.081. PubMed DOI

Nagpal I., Raj I., Subbarao N., Gourinath S. Virtual Screening, Identification and In Vitro Testing of Novel Inhibitors of O-Acetyl-L-Serine Sulfhydrylase of Entamoeba histolytica. PLoS ONE. 2012;7 doi: 10.1371/journal.pone.0030305. PubMed DOI PMC

De Paula R.L., De Almeida J.S.F.D., Cavalcante S.F.A., Gonçalves A.S., Simas A.B.C., Franca T.C.C., Valis M., Kuca K., Nepovimova E., Granjeir J.M. Molecular Modeling and In Vitro Studies of a Neutral Oxime as a Potential Reactivator for Acetylcholinesterase Inhibited by Paraoxon. Molecules. 2018;23:2954. doi: 10.3390/molecules23112954. PubMed DOI PMC

Thomsen R., Christensen M.H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem. 2006;49:3315–3321. doi: 10.1021/jm051197e. PubMed DOI

Kontoyianni M., McClellan L.M., Sokol G.S. Evaluation of Docking Performance: Comparative Data on Docking Algorithms. J. Med. Chem. 2004;47:558–565. doi: 10.1021/jm0302997. PubMed DOI

Douguet D. e-LEA3D: A computational-aided drug design web server. Nucleic Acids Res. 2010;38:615–621. doi: 10.1093/nar/gkq322. PubMed DOI PMC

Korb O., Stützle T., Exner T.E. Empirical scoring functions for advanced Protein-Ligand docking with PLANTS. J. Chem. Inf. Model. 2009;49:84–96. doi: 10.1021/ci800298z. PubMed DOI

Schrödinger LigPrep . Schrödinger Release 2019-4. LLC; New York, NY, USA: 2019.

Abad-Zapatero C. A Sorcerer’s apprentice and The Rule of Five: From rule-of-thumb to commandment and beyond. Drug Discov. Today. 2007;12:995–997. doi: 10.1016/j.drudis.2007.10.022. PubMed DOI

Keller T.H., Pichota A., Yin Z. A practical view of ‘druggability’. Curr. Opin. Chem. Biol. 2006;10:357–361. doi: 10.1016/j.cbpa.2006.06.014. PubMed DOI

Homayun B., Lin X., Choi H.-J. Challenges and Recent Progress in Oral Drug Delivery Systems for Biopharmaceuticals. Pharmaceutics. 2019;11:129. doi: 10.3390/pharmaceutics11030129. PubMed DOI PMC

Yan X., Hollis T., Svinth M., Day P., Monzingo A.F., Milne G.W., Robertus J.D. Structure-based identification of a ricin inhibitor. J. Mol. Biol. 1997;266:1043–1049. doi: 10.1006/jmbi.1996.0865. PubMed DOI

Bai Y., Watt B., Wahome P.G., Mantis N.J., Robertus J.D. Identification of new classes of ricin toxin inhibitors by virtual screening. Toxicon. 2010;56:526–534. doi: 10.1016/j.toxicon.2010.05.009. PubMed DOI PMC

Jin Z., Du X., Xu Y., Deng Y., Liu M., Zhao Y., Zhang B., Li X., Zhang L., Peng C., et al. Structure of Mpro from COVID-19 virus and discovery of its inhibitors. Nature. 2020 doi: 10.1038/s41586-020-2223-y. PubMed DOI

Klemm T., Ebert G., Calleja D.J., Allison C.C., Richardson L.W., Bernardini J.P., Lu B.G., Kuchel N.W., Grohmann C., Shibata Y., et al. Mechanism and inhibition of the papain-like protease, PLpro, of SARS-CoV-2. EMBO J. 2020;39:1–17. doi: 10.15252/embj.2020106275. PubMed DOI PMC

Ferreira Neto D.C., Alencar Lima J., Sobreiro Francisco Diz de Almeida J., Costa França T.C., Jorge do Nascimento C., Figueroa Villar J.D. New semicarbazones as gorge-spanning ligands of acetylcholinesterase and potential new drugs against Alzheimer’s disease: Synthesis, molecular modeling, NMR, and biological evaluation. J. Biomol. Struct. Dyn. 2018;36:4099–4113. doi: 10.1080/07391102.2017.1407676. PubMed DOI

Chaves E.J.F., Padilha I.Q.M., Araújo D.A.M., Rocha G.B. Determining the Relative Binding Affinity of Ricin Toxin A Inhibitors by Using Molecular Docking and Nonequilibrium Work. J. Chem. Inf. Model. 2018;58:1205–1213. doi: 10.1021/acs.jcim.8b00036. PubMed DOI

Vass M., Kooistra A.J., Ritschel T., Leurs R., de Esch I.J., de Graaf C. Molecular interaction fingerprint approaches for GPCR drug discovery. Curr. Opin. Pharmacol. 2016;30:59–68. doi: 10.1016/j.coph.2016.07.007. PubMed DOI

Wildman S.A. Approaches to Virtual Screening and Screening Library Selection. Curr. Pharm. Des. 2013;19:4787–4796. doi: 10.2174/1381612811319260009. PubMed DOI

Jorgensen W.L., Maxwell D.S., Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996;118:11225–11236. doi: 10.1021/ja9621760. DOI

Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997;23:3–25. doi: 10.1016/S0169-409X(96)00423-1. PubMed DOI

Hess B., Kutzner C., Spoel D., van der Lindahl E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 2008;4:435–447. doi: 10.1021/ct700301q. PubMed DOI

Sousa Da Silva A.W., Vranken W.F. ACPYPE—AnteChamber PYthon Parser interfacE. BMC Res. Notes. 2012;5:1–8. doi: 10.1186/1756-0500-5-367. PubMed DOI PMC

Ribeiro A.A.S.T., Horta B.A.C., De Alencastro R.B. MKTOP: A program for automatic construction of molecular topologies. J. Braz. Chem. Soc. 2008;19:1433–1435. doi: 10.1590/S0103-50532008000700031. DOI

Abraham M.J., van der Spoel D., Lindahl E., Hess B. GROMACS User Manual version 2018.8. Royal Institue of Technology and Uppsala University; Uppsala, Sweden: 2019.

Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI

Bussi G., Donadio D., Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007;126 doi: 10.1063/1.2408420. PubMed DOI

Parrinello M., Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI

Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

Turner P.J. XMGRACE. Center for Coastal and Land-margin Research, Oregon Graduate Institute of Science and Technology; Beaverton, OR, USA: 2005. Version 5.1.25.

Gilson M.K., Honig B. Calculation of the total electrostatic energy of a macromolecular system: Solvation energies, binding energies, and conformational analysis. Proteins Struct. Funct. Bioinform. 1988;4:7–18. doi: 10.1002/prot.340040104. PubMed DOI

Rizzo R.C., Aynechi T., Case D.A., Kuntz I.D. Estimation of Absolute Free Energies of Hydration Using Continuum Methods: Accuracy of Partial Charge Models and Optimization of Nonpolar Contributions. J. Chem. Theory Comput. 2006;2:128–139. doi: 10.1021/ct050097l. PubMed DOI

Sitkoff D., Sharp K.A., Honig B. Accurate calculation of hydration free energies using macroscopic solvent models. J. Phys. Chem. 1994;98:1978–1988. doi: 10.1021/j100058a043. DOI

Still W.C., Tempczyk A., Hawley R.C., Hendrickson T. Semianalytical treatment of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc. 1990;112:6127–6129. doi: 10.1021/ja00172a038. DOI

Kumari R., Kumar R., Lynn A. g_mmpbsa: A GROMACS Tool for High- Throughput MM-PBSA Calculations. J. Chem. Inf. Model. 2014;54:1951–1962. doi: 10.1021/ci500020m. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...