Molecular Modeling and In Vitro Studies of a Neutral Oxime as a Potential Reactivator for Acetylcholinesterase Inhibited by Paraoxon

. 2018 Nov 12 ; 23 (11) : . [epub] 20181112

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30424582

The present work aimed to compare the small, neutral and monoaromatic oxime, isatin-3-oxime (isatin-O), to the commercial ones, pralidoxime (2-PAM) and obidoxime, in a search for a new potential reactivator for acetylcholinesterase (AChE) inhibited by the pesticide paraoxon (AChE/POX) as well as a novel potential scaffold for further synthetic modifications. The multicriteria decision methods (MCDM) allowed the identification of the best docking poses of those molecules inside AChE/POX for further molecular dynamic (MD) studies, while Ellman's modified method enabled in vitro inhibition and reactivation assays. In corroboration with the theoretical studies, our experimental results showed that isatin-O have a reactivation potential capable of overcoming 2-PAM at the initial moments of the assay. Despite not achieving better results than obidoxime, this molecule is promising for being an active neutral oxime with capacity of crossing the blood⁻brain barrier (BBB), to reactivate AChE/POX inside the central and peripheral nervous systems. Moreover, the fact that isatin-O can also act as anticonvulsant makes this molecule a possible multipotent reactivator. Besides, the MCDM method showed to be an accurate method for the selection of the best docking poses generated in the docking studies.

Zobrazit více v PubMed

Eddleston M., Buckley N.A., Eyer P., Dawson A.H. Management of acute organophosphorus pesticide poisoning. Lancet. 2008;371:597–607. doi: 10.1016/S0140-6736(07)61202-1. PubMed DOI PMC

Schecter W.P. Cholinergic symptoms due to nerve agent attack: A strategy for management. Clin. N. Am. 2004;22:579–590. doi: 10.1016/j.atc.2004.04.005. PubMed DOI

Cannard K. The acute treatment of nerve agent exposure. J. Neurol. Sci. 2006;249:86–94. doi: 10.1016/j.jns.2006.06.008. PubMed DOI

Van Helden H.P., Busker R.W., Melchers B.P.C., Bruijnzeel P.L.B. Pharmacological effects of oximes: How relevant are they. Arch. Toxicol. 1996;70:779–786. doi: 10.1007/s002040050340. PubMed DOI

Kassa J. Review of oximes in the antidotal treatment of poisoning by organophosphorus nerve. J. Toxicol. Clin. Toxicol. 2002;40:803–816. doi: 10.1081/CLT-120015840. PubMed DOI

Worek F., Thiermann H., Szinics L., Eyer P. Kinetic analysis of interactions between human acetylcholinesterase, structurally different organophosphorus compounds and oximes. Biochem. Pharmacol. 2004;68:2237–2248. doi: 10.1016/j.bcp.2004.07.038. PubMed DOI

Kim T.H., Kuča K., Jun D., Jung Y.S. Design and synthesis of new bis-pyridinium oxime reactivators for acetylcholinesterase inhibited by organophosphorus nerve agents. Bioorg. Med. Chem. Lett. 2005;15:2914–2917. doi: 10.1016/j.bmcl.2005.03.060. PubMed DOI

Brunton L.L., Lazo J.S., Parker K.L. The Pharmacological Basis of Therapeutics. 11th ed. McGraw-Hill, Medical Publishing Division; New York, NY, USA: 2006.

Milatović D., Jokanović M. Handbook of Toxicology of Chemical Warfare Agents. Elsevier Inc.; London, UK: 2009. Pyridinium Oximes as Cholinesterase Reactivators in the Treatment of OP Poisoning; pp. 985–996.

Kuča K., Musílek K., Jun D., Bajgar J., Kassa J. Handbook of Toxicology of Chemical Warfare Agents. Elsevier Inc.; London, UK: 2009. Novel Oximes; pp. 997–1021.

Koning M.C., Van Grol M., Noort D. Peripheral site ligand conjugation to a non-quaternary oxime enhances reactivation of nerve agent-inhibited human acetylcholinesterase. Toxicol. Lett. 2011;206:54–59. doi: 10.1016/j.toxlet.2011.04.004. PubMed DOI

Musílek K., Dolezal M., Gunn-Moore F., Kuča K. Design, evaluation and structure-Activity relationship studies of the AChE reactivators against organophosphorus pesticides. Med. Res. Rev. 2011;31:548–575. doi: 10.1002/med.20192. PubMed DOI

Saint-André G., Kilachyna M., Kodepely S., Louise-Leriche L., Gillon E., Renard P.Y., Nachon F., Baati R., Wagner A. Design, synthesis and evaluation of new α-nucleophiles for the hydrolysis of organophosphorus nerve agents: Application to the reactivation of phosphorylated acetylcholinesterase. Tetrahedron. 2011;67:6352–6361. doi: 10.1016/j.tet.2011.05.130. DOI

Chambers J.E., Meek E.C., Chambers H.W. Novel brain-penetrating oximes for reactivation of cholinesterase inhibited by sarin and VX surrogates. Ann. N. Y. Acad. Sci. 2016;1374:52–58. doi: 10.1111/nyas.13053. PubMed DOI PMC

Winter M., Wille T., Musílek K., Kuča K., Thiermann H., Worek F. Investigation of the reactivation kinetics of a large series of bipyridinium oximes with organophosphate-inhibited human acetylcholinesterase. Toxicol. Lett. 2016;244:136–142. doi: 10.1016/j.toxlet.2015.07.007. PubMed DOI

Matos K.S., Mancini D.T., Cunha E.F.F., Kuča K., França T.C.C., Ramalho T.C. Molecular Aspects of the Reactivation Process of Acetylcholinesterase Inhibited by Cyclosarin. J. Braz. Chem. Soc. 2011;10:1999–2004. doi: 10.1590/S0103-50532011001000023. DOI

Matos K.S., Cunha E.F.F., Gonçalves A.S., Wilter A., Kuča K., França T.C.C., Ramalho T.C. First principles calculations of thermodynamics and kinetic parameters and molecular dynamics simulations of acetylcholinesterase reactivators: Can mouse data provide new insights into humans? J. Biomol. Struct. Dyn. 2012;30:546–558. doi: 10.1080/07391102.2012.687521. PubMed DOI

Koning M.C., Joonsen M.J.A., Noort D., Van Zuylen A., Tromp M.C. Peripheral site ligand-oxime conjugates: A novel concept towards reactivation of nerve agent-inhibited human acetylcholinesterase. Bioorg. Med. Chem. 2011;19:588–594. doi: 10.1016/j.bmc.2010.10.059. PubMed DOI

Luo C., Tong M., Chilukuri N., Brecht K., Maxwell D.M., Saxena A. An in vitro comparative study on the reactivation of nerve agent-inhibited guinea pig and human acetylcholinesterases by oximes. Biochemistry. 2009;46:11771–11779. doi: 10.1021/bi701002f. PubMed DOI

Mercey G., Verdelet T., Renou J., Kliachyna M., Baati R., Nachon F., Jean L., Renard P.Y. Reactivators of Acetylcholinesterase Inhibited by Organophosphorus Nerve Agents. Acc. Chem. Res. 2012;45:756–766. doi: 10.1021/ar2002864. PubMed DOI

Renou J., Dias J., Mercey G., Vendelet T., Rousseau C., Gastellier A.J., Arboléas M., Loiodice M.T., Baati R., Jean L., et al. Synthesis and in vitro evaluation of donepezil-based reactivators and analogues for nerve agent-inhibited human acetylcholinesterase. RSC Adv. 2016;6:17929–17940. doi: 10.1039/C5RA25477A. DOI

Kliachyna M., Santoni G., Nussbaum V., Renou J., Sanson B., Colletier J.P., Baati R. Design, synthesis and biological evaluation of novel tetrahydroacridine pyridine aldoxime and amidoxime hybrids as efficient uncharged reactivators of nerve agent inhibited human acetylcholinesterase. Eur. J. Med. Chem. 2014;78:455–467. doi: 10.1016/j.ejmech.2014.03.044. PubMed DOI

Wei Z., Liu Y., Wang Y., Li W., Zhou X., Zhao J., Li S. Novel nonquaternary reactivators showing reactivation efficiency for soman-inhibited human acetylcholinesterase. Toxicol. Lett. 2016;246:1–6. doi: 10.1016/j.toxlet.2016.01.015. PubMed DOI

Almeida J.S.F.D., Cuya Guizado T.R., Guimarães A.P., Ramalho T.C., Gonçalves A.S., de Koning M.C., França T.C.C. Docking and molecular dynamics studies of peripheral site ligand–oximes as reactivators of sarin-inhibited human acetylcholinesterase. J. Biomol. Struct. Dyn. 2016;34:2632–2642. doi: 10.1080/07391102.2015.1124807. PubMed DOI

Silva J.A.V., Modesto-Costa L., Koning M.C., Borges I., Jr., França T.C.C. Theoretical NMR and conformational analysis of solvated oximes for organophosphates-inhibited acetylcholinesterase. J. Mol. Struct. 2018;1152:311–320. doi: 10.1016/j.molstruc.2017.09.058. DOI

Nassar M.Y., Attia A.S., Adawy S., El-Shahat M.F. Novel Isatinoxime Molybdenum and Chromium Complexes: Synthesis, Spectroscopic, and Thermal Characterization. J. Mol. Struct. 2012;1026:88–92. doi: 10.1016/j.molstruc.2012.05.013. DOI

Liang C., Xia J., Lei D., Li X., Yao Q., Gao J. Synthesis, in Vitro and in Vivo Antitumor Activity of Symmetrical Bis-Schiff Base Derivatives of Isatin. Eur. J. Med. Chem. 2014;74:742–750. doi: 10.1016/j.ejmech.2013.04.040. PubMed DOI

Sai Prathima P., Bikshapathi R., Rao V.J. Synthesis of Isatin Derivatives under Metal Free Conditions Using Hypervalent Iodine. Tetrahedron Lett. 2015;56:6385–6388. doi: 10.1016/j.tetlet.2015.09.124. DOI

Ozgun D.O., Yamali C., Gul H.I., Taslimi P., Gulcin I., Yanik T., Supuran C.T. Inhibitory Effects of Isatin Mannich Bases on Carbonic Anhydrases, Acetylcholinesterase, and Butyrylcholinesterase. J. Enzyme Inhib. Med. Chem. 2016;31:1498–1501. doi: 10.3109/14756366.2016.1149479. PubMed DOI

Melis C., Meleddu R., Angeli A., Distinto S., Bianco G., Capasso C., Cottiglia F., Angius R., Supuran C.T., Maccioni E. Isatin: A Privileged Scaffold for the Design of Carbonic Anhydrase Inhibitors. J. Enzyme Inhib. Med. Chem. 2017;32:68–73. doi: 10.1080/14756366.2016.1235042. PubMed DOI PMC

Bhattacharya S.K., Clow A., Przyborowska A., Halket J., Glover V., Sandler M. Effect of Aromatic Amino Acids, Pentylenetetrazole and Yohimbine on Isatin and Tribulin Activity in Rat Brain. Neurosci. Lett. 1991;132:44–46. doi: 10.1016/0304-3940(91)90429-W. PubMed DOI

Rane R., Karunanidhi S., Jain K., Shaikh M., Hampannavar G., Karpoormath R. A Recent Perspective on Discovery and Development of Diverse Therapeutic Agents Inspired from Isatin Alkaloids. Curr. Top. Med. Chem. 2016;16:1262–1289. doi: 10.2174/1568026615666150915112334. PubMed DOI

Pinto A.C., Lapis A.A.M., da Silva B.V., Bastos R.S., Dupont J., Neto B.A.D. Pronounced Ionic Liquid Effect in the Synthesis of Biologically Active Isatin-3-Oxime Derivatives under Acid Catalysis. Tetrahedron Lett. 2008;49:5639–5641. doi: 10.1016/j.tetlet.2008.07.067. DOI

Laxmi K. Theoretical Approach on Structural Aspects of Antiepileptic Agent Indoline-2, 3-Dione-3-Oxime by Arguslab 4 Software. J. Appl. Chem. 2014;2:92–101.

Jun D., Musilova L., Musílek K., Kuča K. In Vitro Ability of Currently Available Oximes to Reactivate Organophosphate Pesticide-Inhibited Human Acetylcholinesterase and Butyrylcholinesterase. Int. J. Mol. Sci. 2011;12:2077–2087. doi: 10.3390/ijms12032077. PubMed DOI PMC

Bharate S.B., Guo L., Reeves T.E., Cerasoli D.M., Thompson C.M. Bisquaternary Pyridinium Oximes: Comparison of in Vitro Reactivation Potency of Compounds Bearing Aliphatic Linkers and Heteroaromatic Linkers for Paraoxon-Inhibited Electric Eel and Recombinant Human Acetylcholinesterase. Bioorg. Med. Chem. 2010;18:787–794. doi: 10.1016/j.bmc.2009.11.052. PubMed DOI PMC

Costa M.D., Freitas M.L., Soares F.A.A., Carratu V.S., Brandão R. Potential of Two New Oximes in Reactivate Human Acetylcholinesterase and Butyrylcholinesterase Inhibited by Organophosphate Compounds: An in Vitro Study. Toxicol. In Vitro. 2011;25:2120–2123. doi: 10.1016/j.tiv.2011.09.018. PubMed DOI

Worek F., Thiermann H. The Value of Novel Oximes for Treatment of Poisoning by Organophosphorus Compounds. Pharmacol. Ther. 2013;139:249–259. doi: 10.1016/j.pharmthera.2013.04.009. PubMed DOI

Krishnan J.K.S., Arun P., Appu A.P., Vijayakumar N., Figueiredo T.H., Braga M.F.M., Baskota S., Olsen C.H., Farkas N., Dagata J., et al. Intranasal Delivery of Obidoxime to the Brain Prevents Mortality and CNS Damage from Organophosphate Poisoning. Neurotoxicology. 2016;53:64–73. doi: 10.1016/j.neuro.2015.12.020. PubMed DOI PMC

Ellman G.L., Courtney K.D., Andres V., Jr., Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI

Cavalcante S.F.A., Kitagawa D.A.S., Rodrigues R.B., Cardozo M., de Paula R.L., de Correa A.B.A., Simas B.C. Straightforward, economical procedures for microscale Ellman’s test for cholinesterase inhibition and reactivation. Quim. Nova. 2018;41:1192–1195. doi: 10.21577/0100-4042.20170278. DOI

Pohanka M., Hrabinova M., Kuca K., Simonato J.P. Assessment of Acetylcholinesterase Activity Using Indoxylacetate and Comparison with the Standard Ellman’s Method. Int. J. Mol. Sci. 2011;12:2631–2640. doi: 10.3390/ijms12042631. PubMed DOI PMC

Järvinen P.P., Fallarero A., Gupta S., Mohan G.C., Hatakka A.I., Vuorela P.M. Miniaturization and Validation of the Ellman’s Reaction Based Acetylcholinesterase Inhibitory Assay into 384-Well Plate Format and Screening of a Chemical Library. Comb. Chem. High Throughput Screen. 2010;13:278–284. doi: 10.2174/138620710790980559. PubMed DOI

Pohanka M., Jun D., Kuca K. Improvement of acetylcholinesterase-based assay for organophosphates in way of identification by reactivators. Talanta. 2008;77:451–454. doi: 10.1016/j.talanta.2008.06.007. PubMed DOI

Bajgar J. Organophosphates/nerve agent poisoning: Mechanism of action, diagnosis, prophylaxis, and treatment. Adv. Clin. Chem. 2004;38:151–216. PubMed

Musílek K., Lipka L., Račáková V., Kuča K., Jun D., Dohnal V., Doležal M. New methods in synthesis of acetylcholinesterase reactivators and evaluation of their potency to reactivate cyclosarin-inhibited AChE. Chem. Pap. 2006;60:1–4. doi: 10.2478/s11696-006-0008-x. DOI

Kuča K., Cabal J., Jun D., Musílek K. In vitro reactivation potency of acetylcholinesterase reactivators K074 and K075 to reactivate tabun-inhibited human brain cholinesterases. Neurotox. Res. 2007;11:101–106. doi: 10.1007/BF03033389. PubMed DOI

Kontoyanni M., McClellan L.M., Sokol G.S. Evaluation of Docking Performance: Comparative Data on Docking Algorithms. J. Med. Chem. 2004;47:558–565. doi: 10.1021/jm0302997. PubMed DOI

Lev B. Multi-Criteria Decision Analysis via Ratio and Difference Judgement. Interfaces. 2001;31:151–152. doi: 10.1287/inte.31.2.151. DOI

Wallenius J., Dyer J.S., Fishburn P.C., Steuer R.E., Zionts S., Deb K. Multiple Criteria Decision Making, Multiattribute Utility Theory: Recent Accomplishments and What Lies Ahead. Manag. Sci. 2008;54:1336–1349. doi: 10.1287/mnsc.1070.0838. DOI

Behzadian M., Otaghsara S.K., Yazdani M., Ignatius J. A state-of the-art survey of TOPSIS applications. Expert Syst. Appl. 2012;39:13051–13069. doi: 10.1016/j.eswa.2012.05.056. DOI

Hwang C., Yoon K. Multiple Attribute Decision Making: Methods and Applications, a State of the Art Survey. Springer; Berlin/Heidelberg, Germany: 1981.

Sánches-Lozano J.M., García-Cascales M.S., Lamata M.T. Comparative TOPSIS-ELECTRE TRI methods for optimal sites for photovoltaic solar farms. Case study in Spain. J. Clean. Prod. 2016;127:387–398. doi: 10.1016/j.jclepro.2016.04.005. DOI

Olson D.L. Comparison of weights in TOPSIS models. Math. Comput. Model. 2004;40:721–727. doi: 10.1016/j.mcm.2004.10.003. DOI

Saaty T.L. The Analytic Hierarchy Process. MacGraw-Hill; New York, NY, USA: 1980.

Saaty T.L. How to make a decision: The Analytic Hierarchy Process. Eur. J. Oper. Res. 1990;48:9–26. doi: 10.1016/0377-2217(90)90057-I. PubMed DOI

Saaty T.L. The Modern Science of Multicriteria Decision Making and Its Practical Applications: The AHP/ANP Approach. Oper. Res. 2013;61:1101–1118. doi: 10.1287/opre.2013.1197. DOI

Dong Q., Saaty T.L. An analytic hierarchy process model of group consensus. J. Syst. Sci. Syst. Eng. 2014;23:362–374. doi: 10.1007/s11518-014-5247-8. DOI

Altuzarra A., Moreno-Jiménez J.M., Salvador M. A Bayesian priorization procedure for AHP-group decision making. Eur. J. Oper. Res. 2007;182:367–382. doi: 10.1016/j.ejor.2006.07.025. DOI

Kuča K., Cabal J., Patocka J., Kassa J. Synthesis of Bisquaternary Symmetric—χ,δ-Bis(2-Hydroxyiminomethylpyridinium) Alkane Dibromides and Their Reactivation of Cyclosarin-Inhibited Acetylcholinesterase. Lett. Org. Chem. 2004;1:84–86. doi: 10.2174/1570178043488761. DOI

Guex N., Peitsch M.C. SWISS-MODEL and Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis. 1997;18:2714–2723. doi: 10.1002/elps.1150181505. PubMed DOI

Castro A.T., Figueroa-Villar J.D. Molecular Structure, Conformational Analysis and Charge Distribution of Pralidoxime: Ab Initio and DFT Studies. Int. J. Quantum Chem. 2002;89:135–146. doi: 10.1002/qua.10302. DOI

Kuča K., Jun D., Junova L., Musílek K., Hrabinova M., da Silva A.V.J., França T.C.C. Synthesis, Biological Evaluation, and Docking Studies of Novel Bisquaternary Aldoxime Reactivators on Acetylcholinesterase and Butyrylcholinesterase Inhibited by POX. Molecules. 2018;23:1103. doi: 10.3390/molecules23051103. PubMed DOI PMC

Deppmeier B.J., Driessen A.J., Hehre W.J., Johnson J.A., Klunzinger P.E., Watanabe M., Yu J. PC Spartan Pro, Version 1.0.5. Wavefunction Inc.; Irvine, CA, USA: 2000.

Roche G.B., Freire R.O., Simas A.M., Steward J.J. RM1: A reparameterization of AM1 for H, C, O, P, S, F, Cl, Br, and I. J. Comput. Chem. 2006;27:1101–1111. doi: 10.1002/jcc.20425. PubMed DOI

Thomsen R., Christensen M.H. MolDock: A New Technique for High-Accuracy Molecular Docking. J. Med. Chem. 2006;49:3315–3321. doi: 10.1021/jm051197e. PubMed DOI

Storn R., Price K. Differential Evolution—A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces. ICSI; Berkeley, CA, USA: 1995. Technical Report.

Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindah E. Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI

Da Silva A.W.S., Vranken W.F. ACPYPE—AnteChamber PYthon Parser Interface. BMC Res. Notes. 2012;5:367. doi: 10.1186/1756-0500-5-367. PubMed DOI PMC

Humphrey W., Dalke A., Schulten K. VMD-Visual Molecular Dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

Warren D. The PyMOL Molecular Graphics System. DeLano Scientific; San Carlos, CA, USA: 2002.

Aczél J., Saaty T.L. Procedures for synthesizing ratio judgements. J. Math. Psychol. 1983;27:93–102. doi: 10.1016/0022-2496(83)90028-7. DOI

Alonso J.A., Lamata M.T. Consistency in the Analytic Hierarchy Process: A new approach. Int. J. Uncertain. Fuzzy Knowl. Based Syst. 2006;14:445–459. doi: 10.1142/S0218488506004114. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...