Molecular Modeling and In Vitro Studies of a Neutral Oxime as a Potential Reactivator for Acetylcholinesterase Inhibited by Paraoxon
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
30424582
PubMed Central
PMC6278417
DOI
10.3390/molecules23112954
PII: molecules23112954
Knihovny.cz E-zdroje
- Klíčová slova
- Ellman’s method, TOPSIS-AHP, acetylcholinesterase, molecular modeling, multicriteria decision making, neutral oxime,
- MeSH
- cholinesterasové inhibitory farmakologie MeSH
- erytrocyty účinky léků enzymologie MeSH
- molekulární modely * MeSH
- molekulární struktura MeSH
- oximy chemie farmakologie MeSH
- paraoxon chemie farmakologie MeSH
- reaktivátory cholinesterázy chemie farmakologie MeSH
- simulace molekulární dynamiky MeSH
- simulace molekulového dockingu MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cholinesterasové inhibitory MeSH
- oximy MeSH
- paraoxon MeSH
- reaktivátory cholinesterázy MeSH
The present work aimed to compare the small, neutral and monoaromatic oxime, isatin-3-oxime (isatin-O), to the commercial ones, pralidoxime (2-PAM) and obidoxime, in a search for a new potential reactivator for acetylcholinesterase (AChE) inhibited by the pesticide paraoxon (AChE/POX) as well as a novel potential scaffold for further synthetic modifications. The multicriteria decision methods (MCDM) allowed the identification of the best docking poses of those molecules inside AChE/POX for further molecular dynamic (MD) studies, while Ellman's modified method enabled in vitro inhibition and reactivation assays. In corroboration with the theoretical studies, our experimental results showed that isatin-O have a reactivation potential capable of overcoming 2-PAM at the initial moments of the assay. Despite not achieving better results than obidoxime, this molecule is promising for being an active neutral oxime with capacity of crossing the blood⁻brain barrier (BBB), to reactivate AChE/POX inside the central and peripheral nervous systems. Moreover, the fact that isatin-O can also act as anticonvulsant makes this molecule a possible multipotent reactivator. Besides, the MCDM method showed to be an accurate method for the selection of the best docking poses generated in the docking studies.
Zobrazit více v PubMed
Eddleston M., Buckley N.A., Eyer P., Dawson A.H. Management of acute organophosphorus pesticide poisoning. Lancet. 2008;371:597–607. doi: 10.1016/S0140-6736(07)61202-1. PubMed DOI PMC
Schecter W.P. Cholinergic symptoms due to nerve agent attack: A strategy for management. Clin. N. Am. 2004;22:579–590. doi: 10.1016/j.atc.2004.04.005. PubMed DOI
Cannard K. The acute treatment of nerve agent exposure. J. Neurol. Sci. 2006;249:86–94. doi: 10.1016/j.jns.2006.06.008. PubMed DOI
Van Helden H.P., Busker R.W., Melchers B.P.C., Bruijnzeel P.L.B. Pharmacological effects of oximes: How relevant are they. Arch. Toxicol. 1996;70:779–786. doi: 10.1007/s002040050340. PubMed DOI
Kassa J. Review of oximes in the antidotal treatment of poisoning by organophosphorus nerve. J. Toxicol. Clin. Toxicol. 2002;40:803–816. doi: 10.1081/CLT-120015840. PubMed DOI
Worek F., Thiermann H., Szinics L., Eyer P. Kinetic analysis of interactions between human acetylcholinesterase, structurally different organophosphorus compounds and oximes. Biochem. Pharmacol. 2004;68:2237–2248. doi: 10.1016/j.bcp.2004.07.038. PubMed DOI
Kim T.H., Kuča K., Jun D., Jung Y.S. Design and synthesis of new bis-pyridinium oxime reactivators for acetylcholinesterase inhibited by organophosphorus nerve agents. Bioorg. Med. Chem. Lett. 2005;15:2914–2917. doi: 10.1016/j.bmcl.2005.03.060. PubMed DOI
Brunton L.L., Lazo J.S., Parker K.L. The Pharmacological Basis of Therapeutics. 11th ed. McGraw-Hill, Medical Publishing Division; New York, NY, USA: 2006.
Milatović D., Jokanović M. Handbook of Toxicology of Chemical Warfare Agents. Elsevier Inc.; London, UK: 2009. Pyridinium Oximes as Cholinesterase Reactivators in the Treatment of OP Poisoning; pp. 985–996.
Kuča K., Musílek K., Jun D., Bajgar J., Kassa J. Handbook of Toxicology of Chemical Warfare Agents. Elsevier Inc.; London, UK: 2009. Novel Oximes; pp. 997–1021.
Koning M.C., Van Grol M., Noort D. Peripheral site ligand conjugation to a non-quaternary oxime enhances reactivation of nerve agent-inhibited human acetylcholinesterase. Toxicol. Lett. 2011;206:54–59. doi: 10.1016/j.toxlet.2011.04.004. PubMed DOI
Musílek K., Dolezal M., Gunn-Moore F., Kuča K. Design, evaluation and structure-Activity relationship studies of the AChE reactivators against organophosphorus pesticides. Med. Res. Rev. 2011;31:548–575. doi: 10.1002/med.20192. PubMed DOI
Saint-André G., Kilachyna M., Kodepely S., Louise-Leriche L., Gillon E., Renard P.Y., Nachon F., Baati R., Wagner A. Design, synthesis and evaluation of new α-nucleophiles for the hydrolysis of organophosphorus nerve agents: Application to the reactivation of phosphorylated acetylcholinesterase. Tetrahedron. 2011;67:6352–6361. doi: 10.1016/j.tet.2011.05.130. DOI
Chambers J.E., Meek E.C., Chambers H.W. Novel brain-penetrating oximes for reactivation of cholinesterase inhibited by sarin and VX surrogates. Ann. N. Y. Acad. Sci. 2016;1374:52–58. doi: 10.1111/nyas.13053. PubMed DOI PMC
Winter M., Wille T., Musílek K., Kuča K., Thiermann H., Worek F. Investigation of the reactivation kinetics of a large series of bipyridinium oximes with organophosphate-inhibited human acetylcholinesterase. Toxicol. Lett. 2016;244:136–142. doi: 10.1016/j.toxlet.2015.07.007. PubMed DOI
Matos K.S., Mancini D.T., Cunha E.F.F., Kuča K., França T.C.C., Ramalho T.C. Molecular Aspects of the Reactivation Process of Acetylcholinesterase Inhibited by Cyclosarin. J. Braz. Chem. Soc. 2011;10:1999–2004. doi: 10.1590/S0103-50532011001000023. DOI
Matos K.S., Cunha E.F.F., Gonçalves A.S., Wilter A., Kuča K., França T.C.C., Ramalho T.C. First principles calculations of thermodynamics and kinetic parameters and molecular dynamics simulations of acetylcholinesterase reactivators: Can mouse data provide new insights into humans? J. Biomol. Struct. Dyn. 2012;30:546–558. doi: 10.1080/07391102.2012.687521. PubMed DOI
Koning M.C., Joonsen M.J.A., Noort D., Van Zuylen A., Tromp M.C. Peripheral site ligand-oxime conjugates: A novel concept towards reactivation of nerve agent-inhibited human acetylcholinesterase. Bioorg. Med. Chem. 2011;19:588–594. doi: 10.1016/j.bmc.2010.10.059. PubMed DOI
Luo C., Tong M., Chilukuri N., Brecht K., Maxwell D.M., Saxena A. An in vitro comparative study on the reactivation of nerve agent-inhibited guinea pig and human acetylcholinesterases by oximes. Biochemistry. 2009;46:11771–11779. doi: 10.1021/bi701002f. PubMed DOI
Mercey G., Verdelet T., Renou J., Kliachyna M., Baati R., Nachon F., Jean L., Renard P.Y. Reactivators of Acetylcholinesterase Inhibited by Organophosphorus Nerve Agents. Acc. Chem. Res. 2012;45:756–766. doi: 10.1021/ar2002864. PubMed DOI
Renou J., Dias J., Mercey G., Vendelet T., Rousseau C., Gastellier A.J., Arboléas M., Loiodice M.T., Baati R., Jean L., et al. Synthesis and in vitro evaluation of donepezil-based reactivators and analogues for nerve agent-inhibited human acetylcholinesterase. RSC Adv. 2016;6:17929–17940. doi: 10.1039/C5RA25477A. DOI
Kliachyna M., Santoni G., Nussbaum V., Renou J., Sanson B., Colletier J.P., Baati R. Design, synthesis and biological evaluation of novel tetrahydroacridine pyridine aldoxime and amidoxime hybrids as efficient uncharged reactivators of nerve agent inhibited human acetylcholinesterase. Eur. J. Med. Chem. 2014;78:455–467. doi: 10.1016/j.ejmech.2014.03.044. PubMed DOI
Wei Z., Liu Y., Wang Y., Li W., Zhou X., Zhao J., Li S. Novel nonquaternary reactivators showing reactivation efficiency for soman-inhibited human acetylcholinesterase. Toxicol. Lett. 2016;246:1–6. doi: 10.1016/j.toxlet.2016.01.015. PubMed DOI
Almeida J.S.F.D., Cuya Guizado T.R., Guimarães A.P., Ramalho T.C., Gonçalves A.S., de Koning M.C., França T.C.C. Docking and molecular dynamics studies of peripheral site ligand–oximes as reactivators of sarin-inhibited human acetylcholinesterase. J. Biomol. Struct. Dyn. 2016;34:2632–2642. doi: 10.1080/07391102.2015.1124807. PubMed DOI
Silva J.A.V., Modesto-Costa L., Koning M.C., Borges I., Jr., França T.C.C. Theoretical NMR and conformational analysis of solvated oximes for organophosphates-inhibited acetylcholinesterase. J. Mol. Struct. 2018;1152:311–320. doi: 10.1016/j.molstruc.2017.09.058. DOI
Nassar M.Y., Attia A.S., Adawy S., El-Shahat M.F. Novel Isatinoxime Molybdenum and Chromium Complexes: Synthesis, Spectroscopic, and Thermal Characterization. J. Mol. Struct. 2012;1026:88–92. doi: 10.1016/j.molstruc.2012.05.013. DOI
Liang C., Xia J., Lei D., Li X., Yao Q., Gao J. Synthesis, in Vitro and in Vivo Antitumor Activity of Symmetrical Bis-Schiff Base Derivatives of Isatin. Eur. J. Med. Chem. 2014;74:742–750. doi: 10.1016/j.ejmech.2013.04.040. PubMed DOI
Sai Prathima P., Bikshapathi R., Rao V.J. Synthesis of Isatin Derivatives under Metal Free Conditions Using Hypervalent Iodine. Tetrahedron Lett. 2015;56:6385–6388. doi: 10.1016/j.tetlet.2015.09.124. DOI
Ozgun D.O., Yamali C., Gul H.I., Taslimi P., Gulcin I., Yanik T., Supuran C.T. Inhibitory Effects of Isatin Mannich Bases on Carbonic Anhydrases, Acetylcholinesterase, and Butyrylcholinesterase. J. Enzyme Inhib. Med. Chem. 2016;31:1498–1501. doi: 10.3109/14756366.2016.1149479. PubMed DOI
Melis C., Meleddu R., Angeli A., Distinto S., Bianco G., Capasso C., Cottiglia F., Angius R., Supuran C.T., Maccioni E. Isatin: A Privileged Scaffold for the Design of Carbonic Anhydrase Inhibitors. J. Enzyme Inhib. Med. Chem. 2017;32:68–73. doi: 10.1080/14756366.2016.1235042. PubMed DOI PMC
Bhattacharya S.K., Clow A., Przyborowska A., Halket J., Glover V., Sandler M. Effect of Aromatic Amino Acids, Pentylenetetrazole and Yohimbine on Isatin and Tribulin Activity in Rat Brain. Neurosci. Lett. 1991;132:44–46. doi: 10.1016/0304-3940(91)90429-W. PubMed DOI
Rane R., Karunanidhi S., Jain K., Shaikh M., Hampannavar G., Karpoormath R. A Recent Perspective on Discovery and Development of Diverse Therapeutic Agents Inspired from Isatin Alkaloids. Curr. Top. Med. Chem. 2016;16:1262–1289. doi: 10.2174/1568026615666150915112334. PubMed DOI
Pinto A.C., Lapis A.A.M., da Silva B.V., Bastos R.S., Dupont J., Neto B.A.D. Pronounced Ionic Liquid Effect in the Synthesis of Biologically Active Isatin-3-Oxime Derivatives under Acid Catalysis. Tetrahedron Lett. 2008;49:5639–5641. doi: 10.1016/j.tetlet.2008.07.067. DOI
Laxmi K. Theoretical Approach on Structural Aspects of Antiepileptic Agent Indoline-2, 3-Dione-3-Oxime by Arguslab 4 Software. J. Appl. Chem. 2014;2:92–101.
Jun D., Musilova L., Musílek K., Kuča K. In Vitro Ability of Currently Available Oximes to Reactivate Organophosphate Pesticide-Inhibited Human Acetylcholinesterase and Butyrylcholinesterase. Int. J. Mol. Sci. 2011;12:2077–2087. doi: 10.3390/ijms12032077. PubMed DOI PMC
Bharate S.B., Guo L., Reeves T.E., Cerasoli D.M., Thompson C.M. Bisquaternary Pyridinium Oximes: Comparison of in Vitro Reactivation Potency of Compounds Bearing Aliphatic Linkers and Heteroaromatic Linkers for Paraoxon-Inhibited Electric Eel and Recombinant Human Acetylcholinesterase. Bioorg. Med. Chem. 2010;18:787–794. doi: 10.1016/j.bmc.2009.11.052. PubMed DOI PMC
Costa M.D., Freitas M.L., Soares F.A.A., Carratu V.S., Brandão R. Potential of Two New Oximes in Reactivate Human Acetylcholinesterase and Butyrylcholinesterase Inhibited by Organophosphate Compounds: An in Vitro Study. Toxicol. In Vitro. 2011;25:2120–2123. doi: 10.1016/j.tiv.2011.09.018. PubMed DOI
Worek F., Thiermann H. The Value of Novel Oximes for Treatment of Poisoning by Organophosphorus Compounds. Pharmacol. Ther. 2013;139:249–259. doi: 10.1016/j.pharmthera.2013.04.009. PubMed DOI
Krishnan J.K.S., Arun P., Appu A.P., Vijayakumar N., Figueiredo T.H., Braga M.F.M., Baskota S., Olsen C.H., Farkas N., Dagata J., et al. Intranasal Delivery of Obidoxime to the Brain Prevents Mortality and CNS Damage from Organophosphate Poisoning. Neurotoxicology. 2016;53:64–73. doi: 10.1016/j.neuro.2015.12.020. PubMed DOI PMC
Ellman G.L., Courtney K.D., Andres V., Jr., Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI
Cavalcante S.F.A., Kitagawa D.A.S., Rodrigues R.B., Cardozo M., de Paula R.L., de Correa A.B.A., Simas B.C. Straightforward, economical procedures for microscale Ellman’s test for cholinesterase inhibition and reactivation. Quim. Nova. 2018;41:1192–1195. doi: 10.21577/0100-4042.20170278. DOI
Pohanka M., Hrabinova M., Kuca K., Simonato J.P. Assessment of Acetylcholinesterase Activity Using Indoxylacetate and Comparison with the Standard Ellman’s Method. Int. J. Mol. Sci. 2011;12:2631–2640. doi: 10.3390/ijms12042631. PubMed DOI PMC
Järvinen P.P., Fallarero A., Gupta S., Mohan G.C., Hatakka A.I., Vuorela P.M. Miniaturization and Validation of the Ellman’s Reaction Based Acetylcholinesterase Inhibitory Assay into 384-Well Plate Format and Screening of a Chemical Library. Comb. Chem. High Throughput Screen. 2010;13:278–284. doi: 10.2174/138620710790980559. PubMed DOI
Pohanka M., Jun D., Kuca K. Improvement of acetylcholinesterase-based assay for organophosphates in way of identification by reactivators. Talanta. 2008;77:451–454. doi: 10.1016/j.talanta.2008.06.007. PubMed DOI
Bajgar J. Organophosphates/nerve agent poisoning: Mechanism of action, diagnosis, prophylaxis, and treatment. Adv. Clin. Chem. 2004;38:151–216. PubMed
Musílek K., Lipka L., Račáková V., Kuča K., Jun D., Dohnal V., Doležal M. New methods in synthesis of acetylcholinesterase reactivators and evaluation of their potency to reactivate cyclosarin-inhibited AChE. Chem. Pap. 2006;60:1–4. doi: 10.2478/s11696-006-0008-x. DOI
Kuča K., Cabal J., Jun D., Musílek K. In vitro reactivation potency of acetylcholinesterase reactivators K074 and K075 to reactivate tabun-inhibited human brain cholinesterases. Neurotox. Res. 2007;11:101–106. doi: 10.1007/BF03033389. PubMed DOI
Kontoyanni M., McClellan L.M., Sokol G.S. Evaluation of Docking Performance: Comparative Data on Docking Algorithms. J. Med. Chem. 2004;47:558–565. doi: 10.1021/jm0302997. PubMed DOI
Lev B. Multi-Criteria Decision Analysis via Ratio and Difference Judgement. Interfaces. 2001;31:151–152. doi: 10.1287/inte.31.2.151. DOI
Wallenius J., Dyer J.S., Fishburn P.C., Steuer R.E., Zionts S., Deb K. Multiple Criteria Decision Making, Multiattribute Utility Theory: Recent Accomplishments and What Lies Ahead. Manag. Sci. 2008;54:1336–1349. doi: 10.1287/mnsc.1070.0838. DOI
Behzadian M., Otaghsara S.K., Yazdani M., Ignatius J. A state-of the-art survey of TOPSIS applications. Expert Syst. Appl. 2012;39:13051–13069. doi: 10.1016/j.eswa.2012.05.056. DOI
Hwang C., Yoon K. Multiple Attribute Decision Making: Methods and Applications, a State of the Art Survey. Springer; Berlin/Heidelberg, Germany: 1981.
Sánches-Lozano J.M., García-Cascales M.S., Lamata M.T. Comparative TOPSIS-ELECTRE TRI methods for optimal sites for photovoltaic solar farms. Case study in Spain. J. Clean. Prod. 2016;127:387–398. doi: 10.1016/j.jclepro.2016.04.005. DOI
Olson D.L. Comparison of weights in TOPSIS models. Math. Comput. Model. 2004;40:721–727. doi: 10.1016/j.mcm.2004.10.003. DOI
Saaty T.L. The Analytic Hierarchy Process. MacGraw-Hill; New York, NY, USA: 1980.
Saaty T.L. How to make a decision: The Analytic Hierarchy Process. Eur. J. Oper. Res. 1990;48:9–26. doi: 10.1016/0377-2217(90)90057-I. PubMed DOI
Saaty T.L. The Modern Science of Multicriteria Decision Making and Its Practical Applications: The AHP/ANP Approach. Oper. Res. 2013;61:1101–1118. doi: 10.1287/opre.2013.1197. DOI
Dong Q., Saaty T.L. An analytic hierarchy process model of group consensus. J. Syst. Sci. Syst. Eng. 2014;23:362–374. doi: 10.1007/s11518-014-5247-8. DOI
Altuzarra A., Moreno-Jiménez J.M., Salvador M. A Bayesian priorization procedure for AHP-group decision making. Eur. J. Oper. Res. 2007;182:367–382. doi: 10.1016/j.ejor.2006.07.025. DOI
Kuča K., Cabal J., Patocka J., Kassa J. Synthesis of Bisquaternary Symmetric—χ,δ-Bis(2-Hydroxyiminomethylpyridinium) Alkane Dibromides and Their Reactivation of Cyclosarin-Inhibited Acetylcholinesterase. Lett. Org. Chem. 2004;1:84–86. doi: 10.2174/1570178043488761. DOI
Guex N., Peitsch M.C. SWISS-MODEL and Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis. 1997;18:2714–2723. doi: 10.1002/elps.1150181505. PubMed DOI
Castro A.T., Figueroa-Villar J.D. Molecular Structure, Conformational Analysis and Charge Distribution of Pralidoxime: Ab Initio and DFT Studies. Int. J. Quantum Chem. 2002;89:135–146. doi: 10.1002/qua.10302. DOI
Kuča K., Jun D., Junova L., Musílek K., Hrabinova M., da Silva A.V.J., França T.C.C. Synthesis, Biological Evaluation, and Docking Studies of Novel Bisquaternary Aldoxime Reactivators on Acetylcholinesterase and Butyrylcholinesterase Inhibited by POX. Molecules. 2018;23:1103. doi: 10.3390/molecules23051103. PubMed DOI PMC
Deppmeier B.J., Driessen A.J., Hehre W.J., Johnson J.A., Klunzinger P.E., Watanabe M., Yu J. PC Spartan Pro, Version 1.0.5. Wavefunction Inc.; Irvine, CA, USA: 2000.
Roche G.B., Freire R.O., Simas A.M., Steward J.J. RM1: A reparameterization of AM1 for H, C, O, P, S, F, Cl, Br, and I. J. Comput. Chem. 2006;27:1101–1111. doi: 10.1002/jcc.20425. PubMed DOI
Thomsen R., Christensen M.H. MolDock: A New Technique for High-Accuracy Molecular Docking. J. Med. Chem. 2006;49:3315–3321. doi: 10.1021/jm051197e. PubMed DOI
Storn R., Price K. Differential Evolution—A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces. ICSI; Berkeley, CA, USA: 1995. Technical Report.
Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindah E. Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI
Da Silva A.W.S., Vranken W.F. ACPYPE—AnteChamber PYthon Parser Interface. BMC Res. Notes. 2012;5:367. doi: 10.1186/1756-0500-5-367. PubMed DOI PMC
Humphrey W., Dalke A., Schulten K. VMD-Visual Molecular Dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
Warren D. The PyMOL Molecular Graphics System. DeLano Scientific; San Carlos, CA, USA: 2002.
Aczél J., Saaty T.L. Procedures for synthesizing ratio judgements. J. Math. Psychol. 1983;27:93–102. doi: 10.1016/0022-2496(83)90028-7. DOI
Alonso J.A., Lamata M.T. Consistency in the Analytic Hierarchy Process: A new approach. Int. J. Uncertain. Fuzzy Knowl. Based Syst. 2006;14:445–459. doi: 10.1142/S0218488506004114. DOI