Biodegradation of Organophosphorus Compounds Predicted by Enzymatic Process Using Molecular Modelling and Observed in Soil Samples Through Analytical Techniques and Microbiological Analysis: A Comparison
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Military Institute of Engineering and Chemical, Biological, Nuclear and Radiological Defense Institute
Brazilian Army
Grants No. 304557/2012-9 and 308225/2018-0
CNPq
Grants No. E-26/102.993/2012 and E-02/202.961/2017
FAPERJ
Grant No. PD 1782/2008
CAPES
L/ICA/ICB/201062/15
OPCW "Research Projects Supports Programme"
Excelence project PřF UHK 2212/2019
UHK
CEP - Centrální evidence projektů
PubMed
31878010
PubMed Central
PMC6982719
DOI
10.3390/molecules25010058
PII: molecules25010058
Knihovny.cz E-zdroje
- Klíčová slova
- bioremediation, molecular modeling, organophosphorus compounds, phosphotriesterase,
- MeSH
- biodegradace * MeSH
- chemická válka MeSH
- hydrolýza MeSH
- insekticidy chemie metabolismus MeSH
- lidé MeSH
- organofosforové sloučeniny chemie metabolismus MeSH
- paraoxon analogy a deriváty chemie MeSH
- pesticidy chemie toxicita MeSH
- půda chemie MeSH
- pyrrolidiny chemie MeSH
- veřejné zdravotnictví MeSH
- zemědělství MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ethylparaoxon MeSH Prohlížeč
- insekticidy MeSH
- N-ethylmercapto-3-4-dihydroxy-2-hydroxymethylpyrrolidine MeSH Prohlížeč
- organofosforové sloučeniny MeSH
- paraoxon MeSH
- pesticidy MeSH
- půda MeSH
- pyrrolidiny MeSH
Organophosphorus compounds (OP) are chemicals widely used as pesticides in different applications such as agriculture and public health (vector control), and some of the highly toxic forms have been used as chemical weapons. After application of OPs in an environment, they persist for a period, suffering a degradation process where the biotic factors are considered the most relevant forms. However, to date, the biodegradation of OP compounds is not well understood. There are a plenty of structure-based biodegradation estimation methods, but none of them consider enzymatic interaction in predicting and better comprehending the differences in the fate of OPs in the environment. It is well known that enzymatic processes are the most relevant processes in biodegradation, and that hydrolysis is the main pathway in the natural elimination of OPs in soil samples. Due to this, we carried out theoretical studies in order to investigate the interactions of these OPs with a chosen enzyme-the phosphotriesterase. This one is characteristic of some soils' microorganisms, and has been identified as a key player in many biodegradation processes, thanks to its capability for fast hydrolyzing of different OPs. In parallel, we conducted an experiment using native soil in two conditions, sterilized and not sterilized, spiked with specific amounts of two OPs with similar structure-paraoxon-ethyl (PXN) and O-(4-nitrophenyl) O-ethyl methylphosphonate (NEMP). The amount of OP present in the samples and the appearance of characteristic hydrolysis products were periodically monitored for 40 days using analytical techniques. Moreover, the number of microorganisms present was obtained with plate cell count. Our theoretical results were similar to what was achieved in experimental analysis. Parameters calculated by enzymatic hydrolysis were better for PXN than for NEMP. In soil, PXN suffered a faster hydrolysis than NEMP, and the cell count for PXN was higher than for NEMP, highlighting the higher microbiological toxicity of the latter. All these results pointed out that theoretical study can offer a better comprehension of the possible mechanisms involved in real biodegradation processes, showing potential in exploring how biodegradation of OPs relates with enzymatic interactions.
Federal University of Espirito Santo Unit Goiabeiras Vitória 29075 910 Espírito Santo Brazil
Institute of CBRN Defense Avenida das Américas 28705 Rio de Janeiro 23020 470 Brazil
Natural Products Research Institute CCS Bloco H Cidade Universitária Rio de Janeiro 21941 902 Brazil
Zobrazit více v PubMed
Singh B.K., Walker A. Microbial degradation of organophosphorus compounds. FEMS Microbiol. Rev. 2006;30:428–471. doi: 10.1111/j.1574-6976.2006.00018.x. PubMed DOI
Sogorb M.A., Vilanova E. Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicol. Lett. 2002;128:215–228. doi: 10.1016/S0378-4274(01)00543-4. PubMed DOI
De Paula R.L., De Almeida J.S.F.D., Cavalcante S.F.A., Gonçalves A.S., Simas A.B.C., Franca T.C.C., Valis M., Kuca K., Nepovimova E., Granjeiro J.M. Molecular Modeling and In Vitro Studies of a Neutral Oxime as a Potential Reactivator for Acetylcholinesterase Inhibited by Paraoxon. Molecules. 2018;23:2954. doi: 10.3390/molecules23112954. PubMed DOI PMC
Schecter W.P. Cholinergic symptoms due to nerve agent attack: A strategy for management. Anesthesiol. Clin. N. Am. 2004;22:579–590. doi: 10.1016/j.atc.2004.04.005. PubMed DOI
Deng S., Chen Y., Wang D., Shi T., Wu X., Ma X., Li X., Hua R., Tang X., Li Q.X. Rapid biodegradation of organophosphorus pesticides by Stenotrophomonas sp: G1. J. Hazard. Mater. 2015;297:17–24. doi: 10.1016/j.jhazmat.2015.04.052. PubMed DOI
Arias-Estévez M., López-Periago E., Martínez-Carballo E., Simal-Gándara J., Mejuto J.C., García-Río L. The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric. Ecosyst. Environ. 2008;123:247–260. doi: 10.1016/j.agee.2007.07.011. DOI
Da Rocha Voris D.G., dos Santos Dias L., Lima J.A., Lima K.D., Lima J.B., dos Santos Lima A.L. Evaluation of larvicidal, adulticidal, and anticholinesterase activities of essential oils of Illicium verum Hook. f., Pimenta dioica (L.) Merr., and Myristica fragrans Houtt. against Zika virus vectors. Environ. Sci. Pollut. Res. 2018;25:22541–22551. doi: 10.1007/s11356-018-2362-y. PubMed DOI
Kitagawa D.A.S., de Cavalcante S.F., de Paula R.L., Rodrigues R.B., Bernardo L.B., da Silva M.C.J., da Silva T.N., dos Santos W.V., Granjeiro J.M., de Almeida J.S.F.D., et al. In Vitro Evaluation of Neutral Aryloximes as Reactivators for Electrophorus eel Acetylcholinesterase Inhibited by Paraoxon. Biomolecules. 2019;9:583. doi: 10.3390/biom9100583. PubMed DOI PMC
Ramalho T.C., de Castro A.C., Silva D.R., Silva M.C., Franca T.C.C., Bennion B.J., Kuca K. Computational Enzymology and Organophosphorus Degrading Enzymes: Promising Approaches Toward Remediation Technologies of Warfare Agents and Pesticides. Curr. Med. Chem. 2016;23:1041–1061. doi: 10.2174/0929867323666160222113504. PubMed DOI
OPCW Preventing the Re-Emergence of Chemical Weapons. [(accessed on 10 September 2019)]; Available online: https://www.opcw.org/our-work/preventing-re-emergence-chemical-weapons.
Bryce D. CBRN: Latest Incidents around the world. Def. IQ. [(accessed on 27 September 2019)];2019 Available online: http://www.defenceiq.com/events-cbrn-conference/downloads/cbrn-threats-latest-incidents-around-the-globe.
OPCW OPCW by the Numbers. [(accessed on 9 September 2019)]; Available online: https://www.opcw.org/media-centre/opcw-numbers.
OPCW Eliminating Chemical Weapons Committed to Complete and Verifiable Destruction. [(accessed on 9 September 2019)]; Available online: https://www.opcw.org/our-work/eliminating-chemical-weapons.
Karigar C.S., Rao S.S. Role of microbial enzymes in the bioremediation of pollutants: A review. Enzyme Res. 2011;2011 doi: 10.4061/2011/805187. PubMed DOI PMC
Copley S.D. Evolution of Efficient Pathways for Degradation of Anthropogenic Chemicals. Nat. Chem. Biol. 2009;5:559–566. doi: 10.1038/nchembio.197. PubMed DOI PMC
Souza R.C., Cantão M.E., Nogueira M.A., Vasconcelos A.T.R., Hungria M. Outstanding impact of soil tillage on the abundance of soil hydrolases revealed by a metagenomic approach. Braz. J. Microbiol. 2018;49:723–730. doi: 10.1016/j.bjm.2018.03.001. PubMed DOI PMC
Benning M.M., Kuo J.M., Raushel F.M., Holden H.M. Three-Dimensional Structure of the Binuclear Metal Center of Phosphotriesterase. Biochemistry. 1995;34:7973–7978. doi: 10.1021/bi00025a002. PubMed DOI
Iyer R., Iken B., Damania A. A comparison of organophosphate degradation genes and bioremediation applications. Environ. Microbiol. Rep. 2013;5:787–798. doi: 10.1111/1758-2229.12095. PubMed DOI
Sikora L.J., Kaufman D.D., Horng L.C. Enzyme activity in soils showing enhanced degradation of organophosphate insecticides. Biol. Fertil. Soils. 1990;9:14–18. doi: 10.1007/BF00335855. DOI
Zheng Y., Long L., Fan Y., Gan J., Fang J., Jin W. A review on the detoxification of organophosphorus compounds by microorganisms. Afr. J. Microbiol. Res. 2013;7:2127–2134.
Theriot C.M., Grunden A.M. Hydrolysis of organophosphorus compounds by microbial enzymes. Appl. Microbiol. Biotechnol. 2011;89:35–43. doi: 10.1007/s00253-010-2807-9. PubMed DOI
Firozjaei S.A.A., Latifi A.M., Khodi S., Abolmaali S., Choopani A. A review on biodegradation of toxic organophosphate compounds. J. Appl. Biotechnol. Rep. 2015;2:215–224.
De Castro A.A., Assis L.C., Silva D.R., Corrêa S., Assis T.M., Gajo G.C., Soares F.V., Ramalho T.C. Computational enzymology for degradation of chemical warfare agents: Promising technologies for remediation processes. AIMS Microbiol. 2017;3:108–135. doi: 10.3934/microbiol.2017.1.108. PubMed DOI PMC
Omburo G.A., Mullins L.S., Raushel F.M. Structural Characterization of the Divalent Cation Sites of Bacterial Phosphotriesterase by 113Cd NMR Spectroscopy. Biochemistry. 1993;32:9148–9155. doi: 10.1021/bi00086a021. PubMed DOI
Omburo G.A., Kuo J.M., Mullins L.S., Raushels F.M. Characterization of the Zinc Binding Site of Bacterial Phosphotriesterase. J. Biol. Chem. 1992;267:13278–13283. PubMed
Zhang X., Wu R., Song L., Lin Y., Lin M., Cao Z., Wu W., Mo Y. Molecular Dynamics Simulations of the Detoxification of Paraoxon Catalyzed by Phosphotriesterase (PTE) J. Comput. Chem. 2009;30:2388–2401. doi: 10.1002/jcc.21238. PubMed DOI PMC
Raymond J.W., Rogers T.N., Shonnard D.R., Kline A.A. A review of structure-based biodegradation estimation methods. J. Hazard. Mater. 2001;84:189–215. doi: 10.1016/S0304-3894(01)00207-2. PubMed DOI
Loos M., Krauss M., Fenner K. Pesticide nonextractable residue formation in soil: Insights from inverse modeling of degradation time series. Environ. Sci. Technol. 2012;46:9830–9837. doi: 10.1021/es300505r. PubMed DOI
OECD . Revised Introduction to the OECD Guidelines for Testing of Chemicals, Section 3. OECD Publishing; Paris, France: 2006. OECD Guidelines for the Testing of Chemicals, Section 3.
Kontoyianni M., Mcclellan L.M., Sokol G.S. Evaluation of Docking Performance: Comparative Data on Docking Algorithms. J. Med. Chem. 2004;47:558–565. doi: 10.1021/jm0302997. PubMed DOI
Pal R., Chakrabarti K., Chakraborty A., Chowdhury A. Degradation and Effects of Pesticides on Soil Microbiological Parameters-a Review. Int. J. Agric. Res. 2006;1:240–258.
EPA Predictive Models and Tools for Assessing Chemicals under the Toxic Substances Control Act (TSCA) [(accessed on 17 September 2019)]; Available online: https://www.epa.gov/tsca-screening-tools.
Gianfreda L., Rao M.A. Interactions Between Xenobiotics and Microbial and Enzymatic Soil Activity. Crit. Rev. Environ. Sci. Technol. 2008;38:269–310. doi: 10.1080/10643380701413526. DOI
Thomsen R., Christensen M.H. MolDock: A New Technique for High-Accuracy Molecular Docking. J. Med. Chem. 2006;49:3315–3321. doi: 10.1021/jm051197e. PubMed DOI
Hehre W., Ohlinger S., Klunzinger P., Deppmeier B., Driessen A., Johnson J., Ohsan P. Spartan’08 Tutorial and User’s Guide. Q-CHEM, INC.; Irvine, CA, USA: 2006.
Jorgensen W.L., Maxwell D.S., Tirado-Rives J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996;7863:11225–11236. doi: 10.1021/ja9621760. DOI
Sousa A.W., Vranken W.F. Open Access ACPYPE—AnteChamber PYthon Parser interface. BMC Res. Notes. 2012;5:367. PubMed PMC
James M., Murtola T., Schulz R., Smith J.C., Hess B., Lindahl E. ScienceDirect GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1:19–25.
Humphrey W., Dalke A., Schulten K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
Cavalcante S.F.A., Kitagawa D.A.S., Rodrigues R.B., Silva T.C., Bernardo L.B., Correa A.B.A., Simas A.B.C. One-Pot Synthesis of NEMP, a VX Surrogate, and Reactivation of NEMP-Inhibited Electrophorus Eel Acetylcholinesterase by Current Antidotes. J. Braz. Chem. Soc. 2019;30:1095–1102. doi: 10.21577/0103-5053.20180246. DOI
Salgado J.R.S. Sistematização, avaliação e teste de protocolo para detecção de esporos de Bacillus anthracis em solo, Universidade Federal do Rio de Janeiro. [(accessed on 28 August 2019)];2018 Available online: http://www.sibi.ufrj.br.
Paixão M.S.G. Analyses of Accuracy of Estimates of Water Table Positioning and of Soil Water Contents by Using Shallow Seismic Refraction and Georadar from a Study at USP’s Campus, São Paulo/SP, Universidade de São Paulo. [(accessed on 22 August 2019)];2005 Available online: http://www.teses.usp.br/teses/disponiveis/14/ 14132/tde-31032006-192248/pt-br.php.
García-Gaines R.A., Frankenstein S. USCS and the USDA Soil Classification System, ERDC/CRREL TR-15-4. ERDC/CRREL; Vicksburg, MS, USA: 2015.
ANVISA Farmacopeia Brasileira, Quinta Edição. [(accessed on 24 September 2018)]; Available online: http://portal.anvisa.gov.br/documents/33832/260079/5a+edição+-+Volume+1/4c530f86-fe83-4c4a-b907-6a96b5c2d2fc.
Vieira F.C.S., Nahas E. Quantificação de bactérias totais e esporuladas no solo. Sci. Agric. 2000;57:539–545. doi: 10.1590/S0103-90162000000300026. DOI
Gravett M.R., Hopkins F.B., Main M.J., Self A.J., Timperley C.M., Webba A.J., Baker M.J. Detection of the organophosphorus nerve agent VX and its hydrolysis products in white mustard plants grown in contaminated soil. Anal. Methods. 2013;5:50–53. doi: 10.1039/C2AY25883H. DOI
Gravett M.R., Hopkins F.B., Self A.J., Webb A.J., Timperley C.M., Baker M.J. Evidence of VX nerve agent use from contaminated white mustard plants. Proc. R. Soc. A. 2014;470:1–14. doi: 10.1098/rspa.2014.0076. PubMed DOI PMC
Ribani M., Beatriz C., Bottoli G., Collins C.H., Jardim I.C.S.F. Validação em Métodos Cromatográficos e Eletroforéticos. Quim. Nova. 2004;27:771–780. doi: 10.1590/S0100-40422004000500017. DOI
Witkiewicz Z., Sliwka E., Neffe S. Chromatographic analysis of chemical compounds related to the Chemical Weapons Convention. Trends Anal. Chem. 2016;85:21–33. doi: 10.1016/j.trac.2016.05.006. DOI