Structural and quantum chemical basis for OCP-mediated quenching of phycobilisomes
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, N.I.H., Extramural
Grant support
R35 GM127018
NIGMS NIH HHS - United States
PubMed
38578996
PubMed Central
PMC10997198
DOI
10.1126/sciadv.adk7535
Knihovny.cz E-resources
- MeSH
- Bacterial Proteins metabolism MeSH
- Cryoelectron Microscopy MeSH
- Phycobilisomes * chemistry metabolism MeSH
- Canthaxanthin metabolism MeSH
- Cyanobacteria * metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Bacterial Proteins MeSH
- Phycobilisomes * MeSH
- Canthaxanthin MeSH
Cyanobacteria use large antenna complexes called phycobilisomes (PBSs) for light harvesting. However, intense light triggers non-photochemical quenching, where the orange carotenoid protein (OCP) binds to PBS, dissipating excess energy as heat. The mechanism of efficiently transferring energy from phycocyanobilins in PBS to canthaxanthin in OCP remains insufficiently understood. Using cryo-electron microscopy, we unveiled the OCP-PBS complex structure at 1.6- to 2.1-angstrom resolution, showcasing its inherent flexibility. Using multiscale quantum chemistry, we disclosed the quenching mechanism. Identifying key protein residues, we clarified how canthaxanthin's transition dipole moment in its lowest-energy dark state becomes large enough for efficient energy transfer from phycocyanobilins. Our energy transfer model offers a detailed understanding of the atomic determinants of light harvesting regulation and antenna architecture in cyanobacteria.
Biology Centre of the Czech Academy of Sciences Ceske Budejovice Czech Republic
California Institute for Quantitative Biosciences University of California Berkeley CA 94720 USA
Department of Biochemistry and Molecular Biology Michigan State University East Lansing MI 48824 USA
Department of Molecular and Cellular Biology University of California Berkeley CA 94720 USA
Dipartimento di Chimica e Chimica Industriale Università di Pisa Via G Moruzzi 13 1 56124 Pisa Italy
Division of Structural Biology The Institute of Cancer Research London SW7 3RP UK
Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
Howard Hughes Medical Institute University of California Berkeley CA 94720 USA
MSU DOE Plant Research Laboratory Michigan State University East Lansing MI 48824 USA
See more in PubMed
Niyogi K. K., Truong T. B., Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr. Opin. Plant Biol. 16, 307–314 (2013). PubMed
Kirilovsky D., Kerfeld C. A., Cyanobacterial photoprotection by the orange carotenoid protein. Nat. Plants 2, 16180 (2016). PubMed
Kerfeld C. A., Melnicki M. R., Sutter M., Dominguez-Martin M. A., Structure, function and evolution of the cyanobacterial orange carotenoid protein and its homologs. New Phytol. 215, 937–951 (2017). PubMed
Domínguez-Martín M. A., Sauer P. V., Kirst H., Sutter M., Bína D., Greber B. J., Nogales E., Polívka T., Kerfeld C. A., Structures of a phycobilisome in light-harvesting and photoprotected states. Nature 609, 835–845 (2022). PubMed
Cupellini L., Corbella M., Mennucci B., Curutchet C., Electronic energy transfer in biomacromolecules. WIREs Comput. Mol. Sci. 9, e1392 (2019).
Nakane T., Kotecha A., Sente A., McMullan G., Masiulis S., Brown P. M. G. E., Grigoras I. T., Malinauskaite L., Malinauskas T., Miehling J., Uchański T., Yu L., Karia D., Pechnikova E. V., de Jong E., Keizer J., Bischoff M., McCormack J., Tiemeijer P., Hardwick S. W., Chirgadze D. Y., Murshudov G., Aricescu A. R., Scheres S. H. W., Single-particle cryo-EM at atomic resolution. Nature 587, 152–156 (2020). PubMed PMC
Lyumkis D., Challenges and opportunities in cryo-EM single-particle analysis. J. Biol. Chem. 294, 5181–5197 (2019). PubMed PMC
Sproviero E. M., Gascón J. A., McEvoy J. P., Brudvig G. W., Batista V. S., QM/MM models of the O2-evolving complex of photosystem II. J. Chem. Theory Comput. 2, 1119–1134 (2006). PubMed
Cupellini L., Calvani D., Jacquemin D., Mennucci B., Charge transfer from the carotenoid can quench chlorophyll excitation in antenna complexes of plants. Nat. Commun. 11, 662 (2020). PubMed PMC
Han B.-G., Walton R. W., Song A., Hwu P., Stubbs M. T., Yannone S. M., Arbeláez P., Dong M., Glaeser R. M., Electron microscopy of biotinylated protein complexes bound to streptavidin monolayer crystals. J. Struct. Biol. 180, 249–253 (2012). PubMed
Han B.-G., Watson Z., Kang H., Pulk A., Downing K. H., Cate J., Glaeser R. M., Long shelf-life streptavidin support-films suitable for electron microscopy of biological macromolecules. J. Struct. Biol. 195, 238–244 (2016). PubMed PMC
Yip K. M., Fischer N., Paknia E., Chari A., Stark H., Atomic-resolution protein structure determination by cryo-EM. Nature 587, 157–161 (2020). PubMed
Punjani A., Fleet D. J., 3D variability analysis: Resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. J. Struct. Biol. 213, 107702 (2021). PubMed
Punjani A., Fleet D. J., 3DFlex: Determining structure and motion of flexible proteins from cryo-EM. Nat. Methods 20, 860–870 (2023). PubMed PMC
Stec B., Troxler R. F., Teeter M. M., Crystal structure of c-phycocyanin from cyanidium caldarium provides a new perspective on phycobilisome assembly. Biophys. J. 76, 2912–2921 (1999). PubMed PMC
Klotz A. V., Glazer A. N., Gamma-N-methylasparagine in phycobiliproteins. occurrence, location, and biosynthesis. J. Biol. Chem. 262, 17350–17355 (1987). PubMed
Stagg S. M., Noble A. J., Spilman M., Chapman M. S., ResLog plots as an empirical metric of the quality of cryo-EM reconstructions. J. Struct. Biol. 185, 418–426 (2014). PubMed PMC
Tian L., Gwizdala M., van Stokkum I. H. M., Koehorst R. B. M., Kirilovsky D., van Amerongen H., Picosecond kinetics of light harvesting and photoprotective quenching in wild-type and mutant phycobilisomes isolated from the cyanobacterium synechocystis PCC 6803. Biophys. J. 102, 1692–1700 (2012). PubMed PMC
Krüger T. P., van Grondelle R., Gwizdala M., The role of far-red spectral states in the energy regulation of phycobilisomes. Biochim. Biophys. Acta Bioenerg. 1860, 341–349 (2019). PubMed
Bondanza M., Cupellini L., Lipparini F., Mennucci B., The multiple roles of the protein in the photoactivation of orange carotenoid protein. Chem 6, 187–203 (2020).
Accomasso D., Arslancan S., Cupellini L., Granucci G., Mennucci B., Ultrafast excited-state dynamics of carotenoids and the role of the SX state. J. Phys. Chem. Lett. 13, 6762–6769 (2022). PubMed PMC
Wei T., Balevičius V., Polívka T., Ruban A. V., Duffy C. D. P., How carotenoid distortions may determine optical properties: Lessons from the orange carotenoid protein. Phys. Chem. Chem. Phys. 21, 23187–23197 (2019). PubMed
Wilson A., Kinney J. N., Zwart P. H., Punginelli C., D'Haene S., Perreau F., Klein M. G., Kirilovsky D., Kerfeld C. A., Structural determinants underlying photoprotection in the photoactive orange carotenoid protein of cyanobacteria. J. Biol. Chem. 285, 18364–18375 (2010). PubMed PMC
Wilson A., Punginelli C., Gall A., Bonetti C., Alexandre M., Routaboul J. M., Kerfeld C. A., van Grondelle R., Robert B., Kennis J. T. M., Kirilovsky D., A photoactive carotenoid protein acting as light intensity sensor. Proc. Natl. Acad. Sci. U.S.A. 105, 12075–12080 (2008). PubMed PMC
Madjet M. E., Abdurahman A., Renger T., Intermolecular coulomb couplings from ab initio electrostatic potentials: Application to optical transitions of strongly coupled pigments in photosynthetic antennae and reaction centers. J. Phys. Chem. B. 110, 17268–17281 (2006). PubMed
Batista P. R., Pandey G., Pascutti P. G., Bisch P. M., Perahia D., Robert C. H., Free energy profiles along consensus normal modes provide insight into HIV-1 protease flap opening. J. Chem. Theory Comput. 7, 2348–2352 (2011). PubMed
Badaya A., Sasidhar Y. U., Inhibition of the activity of HIV-1 protease through antibody binding and mutations probed by molecular dynamics simulations. Sci. Rep. 10, 5501 (2020). PubMed PMC
Cansu S., Doruker P., Dimerization affects collective dynamics of triosephosphate isomerase. Biochemistry 47, 1358–1368 (2008). PubMed
Kaynak B. T., Krieger J. M., Dudas B., Dahmani Z. L., Costa M. G. S., Balog E., Scott A. L., Doruker P., Perahia D., Bahar I., Sampling of protein conformational space using hybrid simulations: A critical assessment of recent methods. Front. Mol. Biosci. 9, 832847 (2022). PubMed PMC
Qin B., Lauer S. M., Balke A., Vieira-Vieira C. H., Bürger J., Mielke T., Selbach M., Scheerer P., Spahn C. M. T., Nikolay R., Cryo-EM captures early ribosome assembly in action. Nat. Commun. 14, 898 (2023). PubMed PMC
Fromm S. A., O’Connor K. M., Purdy M., Bhatt P. R., Loughran G., Atkins J. F., Jomaa A., Mattei S., The translating bacterial ribosome at 1.55 Å resolution generated by cryo-EM imaging services. Nat. Commun. 14, 1095 (2023). PubMed PMC
Zhong E. D., Bepler T., Berger B., Davis J. H., CryoDRGN: Reconstruction of heterogeneous cryo-EM structures using neural networks. Nat. Methods 18, 176–185 (2021). PubMed PMC
Squires A. H., Dahlberg P. D., Liu H., Magdaong N. C. M., Blankenship R. E., Moerner W. E., Single-molecule trapping and spectroscopy reveals photophysical heterogeneity of phycobilisomes quenched by orange carotenoid protein. Nat. Commun. 10, 1172 (2019). PubMed PMC
N. Liguori, I. van Stokkum, F. Muzzopappa, J. Kennis, D. Kirilovsky, R. Croce, The molecular origin of the OCP-dependent non-photochemical quenching mechanism in cyanobacteria. ChemRxiv (2022); DOI: 10.26434/chemrxiv-2022-nkdw6.
Polívka T., Sundström V., Dark excited states of carotenoids: Consensus and controversy. Chem. Phys. Lett. 477, 1–11 (2009).
Balevičius V., Abramavicius D., Polívka T., Galestian Pour A., Hauer J., A unified picture of S* in carotenoids. J. Phys. Chem. Lett. 7, 3347–3352 (2016). PubMed PMC
Gindt Y. M., Zhou J., Bryant D. A., Sauer K., Spectroscopic studies of phycobilisome subcore preparations lacking key core chromophores: Assignment of excited state energies to the Lcm, β18 and αAP-B chromophores. Biochim. Biophys. Acta Bioenerg. 1186, 153–162 (1994). PubMed
Tang K., Ding W. L., Höppner A., Zhao C., Zhang L., Hontani Y., Kennis J. T. M., Gärtner W., Scheer H., Zhou M., Zhao K. H., The terminal phycobilisome emitter, LCM: A light-harvesting pigment with a phytochrome chromophore. Proc. Natl. Acad. Sci. U.S.A. 112, 15880–15885 (2015). PubMed PMC
Tian L., van Stokkum I. H. M., Koehorst R. B. M., Jongerius A., Kirilovsky D., van Amerongen H., Site, rate, and mechanism of photoprotective quenching in cyanobacteria. J. Am. Chem. Soc. 133, 18304–18311 (2011). PubMed
van Stokkum I. H. M., Gwizdala M., Tian L., Snellenburg J. J., van Grondelle R., van Amerongen H., Berera R., A functional compartmental model of the synechocystis PCC 6803 phycobilisome. Photosynth. Res. 135, 87–102 (2018). PubMed PMC
Guo H., Franken E., Deng Y., Benlekbir S., Singla Lezcano G., Janssen B., Yu L., Ripstein Z. A., Tan Y. Z., Rubinstein J. L., Electron-event representation data enable efficient cryoEM file storage with full preservation of spatial and temporal resolution. IUCrJ 7, 860–869 (2020). PubMed PMC
Zheng S. Q., Palovcak E., Armache J. P., Verba K. A., Cheng Y., Agard D. A., MotionCor2: Anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017). PubMed PMC
Punjani A., Rubinstein J. L., Fleet D. J., Brubaker M. A., cryoSPARC: Algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017). PubMed
Rosenthal P. B., Henderson R., Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003). PubMed
Pettersen E. F., Goddard T. D., Huang C. C., Meng E. C., Couch G. S., Croll T. I., Morris J. H., Ferrin T. E., UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2020). PubMed PMC
Liebschner D., Afonine P. V., Baker M. L., Bunkóczi G., Chen V. B., Croll T. I., Hintze B., Hung L. W., Jain S., McCoy A. J., Moriarty N. W., Oeffner R. D., Poon B. K., Prisant M. G., Read R. J., Richardson J. S., Richardson D. C., Sammito M. D., Sobolev O. V., Stockwell D. H., Terwilliger T. C., Urzhumtsev A. G., Videau L. L., Williams C. J., Adams P. D., Macromolecular structure determination using x-rays, neutrons and electrons: Recent developments in phenix. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019). PubMed PMC
Emsley P., Lohkamp B., Scott W. G., Cowtan K., Features and development of coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010). PubMed PMC
Yamashita K., Palmer C. M., Burnley T., Murshudov G. N., Cryo-EM single-particle structure refinement and map calculation using servalcat. Acta Crystallogr. D Struct. Biol. 77, 1282–1291 (2021). PubMed PMC
D. A. Case, I. Y. Ben-Shalom, S. R. Brozell, D. S. Cerutti, T. E. Cheatham III, V. W. D. Cruzeiro, T. A. Darden, R. E. Duke, D. Ghoreishi, M. K. Gilson, H. Gohlke, A. W. Goetz, D. Greene, R. Harris, N. Homeyer, S. Izadi, A. Kovalenko, T. Kurtzman, T. S. Lee, S. LeGrand, P. Li, C. Lin, J. Lui, T. Luchko, R. Luo, D. J. Mermelstein, K. M. Merz, Y. Miao, G. Monard, C. Nguyen, H.Nguyen, I. Omelyan, A. Onufriev, F. Pan, R. Qi, D. R. Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo, J. Shen, C. L. Simmerling, J. Smith, R. Salomon-Ferrer, J. Swails, R. C. Walker, J. Wang, H. Wei, R. M. Wolf, X. Wu, L. Xiao, D. M. York, P. A. Kollman, Amber 2018 (University of California, San Francisco, 2018).
Maier J. A., Martinez C., Kasavajhala K., Wickstrom L., Hauser K. E., Simmerling C., ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 11, 3696–3713 (2015). PubMed PMC
Wang J., Wolf R. M., Caldwell J. W., Kollman P. A., Case D. A., Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004). PubMed
Pullerits T., Hess S., Herek J. L., Sundström V., Temperature dependence of excitation transfer in LH2 of Rhodobacter sphaeroides. J. Phys. Chem. B. 101, 10560–10567 (1997).
Zigmantas D., Polívka T., Hiller R. G., Yartsev A., Sundström V., Spectroscopic and dynamic properties of the peridinin lowest singlet excited states. Chem. A Eur. J. 105, 10296–10306 (2001).
Laible P. D., Knox R. S., Owens T. G., Detailed balance in förster-dexter excitation transfer and its application to photosynthesis. J. Phys. Chem. B. 102, 1641–1648 (1998).
Gillespie D. T., Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977).
Zhao J., Zhu J., Jiang L., Study on the energy transfer processes in phycobilisomes from blue-green algae by the use of stochastic simulation approach. Biochim. Biophys. Acta Bioenerg. 1229, 39–48 (1995).
Retinal to Retinal Energy Transfer in a Bistable Microbial Rhodopsin Dimer