Structures of a phycobilisome in light-harvesting and photoprotected states
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 GM129325
NIGMS NIH HHS - United States
Howard Hughes Medical Institute - United States
PubMed
36045294
DOI
10.1038/s41586-022-05156-4
PII: 10.1038/s41586-022-05156-4
Knihovny.cz E-zdroje
- MeSH
- bakteriální proteiny chemie metabolismus MeSH
- fotosyntéza účinky záření MeSH
- fykobilizomy * chemie metabolismus účinky záření MeSH
- přenos energie účinky záření MeSH
- sluneční záření * MeSH
- Synechocystis metabolismus účinky záření MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- fykobilizomy * MeSH
- orange carotenoid protein, Synechocystis MeSH Prohlížeč
Phycobilisome (PBS) structures are elaborate antennae in cyanobacteria and red algae1,2. These large protein complexes capture incident sunlight and transfer the energy through a network of embedded pigment molecules called bilins to the photosynthetic reaction centres. However, light harvesting must also be balanced against the risks of photodamage. A known mode of photoprotection is mediated by orange carotenoid protein (OCP), which binds to PBS when light intensities are high to mediate photoprotective, non-photochemical quenching3-6. Here we use cryogenic electron microscopy to solve four structures of the 6.2 MDa PBS, with and without OCP bound, from the model cyanobacterium Synechocystis sp. PCC 6803. The structures contain a previously undescribed linker protein that binds to the membrane-facing side of PBS. For the unquenched PBS, the structures also reveal three different conformational states of the antenna, two previously unknown. The conformational states result from positional switching of two of the rods and may constitute a new mode of regulation of light harvesting. Only one of the three PBS conformations can bind to OCP, which suggests that not every PBS is equally susceptible to non-photochemical quenching. In the OCP-PBS complex, quenching is achieved through the binding of four 34 kDa OCPs organized as two dimers. The complex reveals the structure of the active form of OCP, in which an approximately 60 Å displacement of its regulatory carboxy terminal domain occurs. Finally, by combining our structure with spectroscopic properties7, we elucidate energy transfer pathways within PBS in both the quenched and light-harvesting states. Collectively, our results provide detailed insights into the biophysical underpinnings of the control of cyanobacterial light harvesting. The data also have implications for bioengineering PBS regulation in natural and artificial light-harvesting systems.
Biology Centre of the Czech Academy of Sciences Ceske Budejovice Czech Republic
California Institute for Quantitative Biosciences University of California Berkeley Berkeley CA USA
Department of Biochemistry and Molecular Biology Michigan State University East Lansing MI USA
Department of Molecular and Cell Biology University of California Berkeley Berkeley CA USA
Division of Structural Biology Institute of Cancer Research London UK
Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
Howard Hughes Medical Institute University of California Berkeley Berkeley CA USA
MSU DOE Plant Research Laboratory Michigan State University East Lansing MI USA
Zobrazit více v PubMed
Tandeau de Marsac, N. Phycobiliproteins and phycobilisomes: the early observations. Photosynth. Res. 76, 193–205 (2003). PubMed DOI
Adir, N., Bar-Zvi, S. & Harris, D. The amazing phycobilisome. Biochim. Biophys. Acta Bioenerg. 1861, 148047 (2020). PubMed DOI
Wilson, A. et al. A photoactive carotenoid protein acting as light intensity sensor. Proc. Natl Acad. Sci. USA 105, 12075–12080 (2008). PubMed DOI PMC
Kerfeld, C. A., Melnicki, M. R., Sutter, M. & Dominguez-Martin, M. A. Structure, function and evolution of the cyanobacterial orange carotenoid protein and its homologs. New Phytol. 215, 937–951 (2017). PubMed DOI
Kerfeld, C. A. et al. The crystal structure of a cyanobacterial water-soluble carotenoid binding protein. Structure 11, 55–65 (2003). PubMed DOI
Kirilovsky, D. & Kerfeld, C. A. Cyanobacterial photoprotection by the orange carotenoid protein. Nat. Plants 2, 16180 (2016). PubMed DOI
Tian, L. et al. Picosecond kinetics of light harvesting and photoprotective quenching in wild-type and mutant phycobilisomes isolated from the cyanobacterium Synechocystis PCC 6803. Biophys. J. 102, 1692–1700 (2012). PubMed DOI PMC
Sanchez-Baracaldo, P., Bianchini, G., Wilson, J. D. & Knoll, A. H. Cyanobacteria and biogeochemical cycles through Earth history. Trends Microbiol. 30, 143–157 (2021). PubMed DOI
Kumar, J., Singh, D., Tyagi, M. B. & Kumar, A. in Cyanobacteria: From Basic Science to Applications (eds A.K. Mishra, A. K. et al.) 327–346 (Academic Press, 2019).
Grossman, A. R., Schaefer, M. R., Chiang, G. G. & Collier, J. L. The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol. Rev. 57, 725–749 (1993). PubMed DOI PMC
Zhang, J. et al. Structure of phycobilisome from the red alga Griffithsia pacifica. Nature 551, 57–63 (2017). PubMed DOI
Ma, J. et al. Structural basis of energy transfer in Porphyridium purpureum phycobilisome. Nature 579, 146–151 (2020). PubMed DOI
Zheng, L. et al. Structural insight into the mechanism of energy transfer in cyanobacterial phycobilisomes. Nat. Commun. 12, 5497 (2021). PubMed DOI PMC
MacColl, R. Cyanobacterial phycobilisomes. J. Struct. Biol. 124, 311–334 (1998). PubMed DOI
Glazer, A. N. Light guides. Directional energy transfer in a photosynthetic antenna. J. Biol. Chem. 264, 1–4 (1989). PubMed DOI
Niyogi, K. K. & Truong, T. B. Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr. Opin. Plant Biol. 16, 307–314 (2013). PubMed DOI
Melis, A. Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci. 177, 272–280 (2009). DOI
Wilson, A. et al. A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell 18, 992–1007 (2006). PubMed DOI PMC
Gwizdala, M., Wilson, A. & Kirilovsky, D. In vitro reconstitution of the cyanobacterial photoprotective mechanism mediated by the orange carotenoid protein in Synechocystis PCC 6803. Plant Cell 23, 2631–2643 (2011). PubMed DOI PMC
Leverenz, R. L. et al. A 12 Å carotenoid translocation in a photoswitch associated with cyanobacterial photoprotection. Science 348, 1463–1466 (2015). PubMed DOI
Leverenz, R. L. et al. Structural and functional modularity of the orange carotenoid protein: distinct roles for the N- and C-terminal domains in cyanobacterial photoprotection. Plant Cell 26, 426–437 (2014). PubMed DOI PMC
Squires, A. H. et al. Single-molecule trapping and spectroscopy reveals photophysical heterogeneity of phycobilisomes quenched by orange carotenoid protein. Nat. Commun. 10, 1172 (2019). PubMed DOI PMC
Han, B. G. et al. Long shelf-life streptavidin support-films suitable for electron microscopy of biological macromolecules. J. Struct. Biol. 195, 238–244 (2016). PubMed DOI PMC
Arteni, A. A., Ajlani, G. & Boekema, E. J. Structural organisation of phycobilisomes from Synechocystis sp. strain PCC6803 and their interaction with the membrane. Biochim. Biophys. Acta 1787, 272–279 (2009). PubMed DOI
Rast, A. et al. Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane. Nat. Plants 5, 436–446 (2019). PubMed DOI
Mullineaux, C. W. Phycobilisome-reaction centre interaction in cyanobacteria. Photosynth. Res. 95, 175–182 (2008). PubMed DOI
Calzadilla, P. I., Muzzopappa, F., Setif, P. & Kirilovsky, D. Different roles for ApcD and ApcF in Synechococcus elongatus and Synechocystis sp. PCC 6803 phycobilisomes. Biochim. Biophys. Acta Bioenerg. 1860, 488–498 (2019). PubMed DOI
Dong, C. et al. ApcD is necessary for efficient energy transfer from phycobilisomes to photosystem I and helps to prevent photoinhibition in the cyanobacterium Synechococcus sp. PCC 7002. Biochim. Biophys. Acta 1787, 1122–1128 (2009). PubMed DOI
Soulier, N. & Bryant, D. A. The structural basis of far-red light absorbance by allophycocyanins. Photosynth. Res. 147, 11–26 (2021). PubMed DOI
Chang, L. et al. Structural organization of an intact phycobilisome and its association with photosystem II. Cell Res. 25, 726–737 (2015). PubMed DOI PMC
Gupta, S. et al. Local and global structural drivers for the photoactivation of the orange carotenoid protein. Proc. Natl Acad. Sci. USA 112, E5567–E5574 (2015). PubMed DOI PMC
Bao, H. et al. Additional families of orange carotenoid proteins in the photoprotective system of cyanobacteria. Nat. Plants 3, 17089 (2017). PubMed DOI
Sutter, M. et al. Crystal structure of the FRP and identification of the active site for modulation of OCP-mediated photoprotection in cyanobacteria. Proc. Natl Acad. Sci. USA 110, 10022–10027 (2013). PubMed DOI PMC
Sluchanko, N. N. et al. OCP–FRP protein complex topologies suggest a mechanism for controlling high light tolerance in cyanobacteria. Nat. Commun. 9, 3869 (2018). PubMed DOI PMC
Gupta, S. et al. X-ray radiolytic labeling reveals the molecular basis of orange carotenoid protein photoprotection and its interactions with fluorescence recovery protein. J. Biol. Chem. 294, 8848–8860 (2019). PubMed DOI PMC
Zhang, H. et al. Molecular mechanism of photoactivation and structural location of the cyanobacterial orange carotenoid protein. Biochemistry 53, 13–19 (2014). PubMed DOI
Harris, D. et al. Orange carotenoid protein burrows into the phycobilisome to provide photoprotection. Proc. Natl Acad. Sci. USA 113, E1655–E1662 (2016). PubMed DOI PMC
Jallet, D., Gwizdala, M. & Kirilovsky, D. ApcD, ApcF and ApcE are not required for the orange carotenoid protein related phycobilisome fluorescence quenching in the cyanobacterium Synechocystis PCC 6803. Biochim. Biophys. Acta 1817, 1418–1427 (2012). PubMed DOI
Stadnichuk, I. N. et al. Site of non-photochemical quenching of the phycobilisome by orange carotenoid protein in the cyanobacterium Synechocystis sp. PCC 6803. Biochim. Biophys. Acta 1817, 1436–1445 (2012). PubMed DOI
Kuzminov, F. I. et al. Investigation of OCP-triggered dissipation of excitation energy in PSI/PSII-less Synechocystis sp. PCC 6803 mutant using non-linear laser fluorimetry. Biochim. Biophys. Acta 1817, 1012–1021 (2012). PubMed DOI
Xie, M. et al. Difference in light use strategy in red alga between Griffithsia pacifica and Porphyridium purpureum. Sci. Rep. 11, 14367 (2021). PubMed DOI PMC
Glazer, A. N., Lundell, D. J., Yamanaka, G. & Williams, R. C. The structure of a "simple" phycobilisome. Ann. Microbiol. 134B, 159–180 (1983).
Liu, H. et al. Structure of cyanobacterial phycobilisome core revealed by structural modeling and chemical cross-linking. Sci. Adv. 7, eaba5743 (2021). PubMed DOI PMC
Liu, H. et al. Phycobilisomes supply excitations to both photosystems in a megacomplex in cyanobacteria. Science 342, 1104–1107 (2013). PubMed DOI PMC
Xie, Y. R., Chen, L., Sun, T. & Zhang, W. W. Deciphering and engineering high-light tolerant cyanobacteria for efficient photosynthetic cell factories. Chin. J. Chem. Eng. 30, 82–91 (2021). DOI
Kirst, H., Formighieri, C. & Melis, A. Maximizing photosynthetic efficiency and culture productivity in cyanobacteria upon minimizing the phycobilisome light-harvesting antenna size. Biochim. Biophys. Acta 1837, 1653–1664 (2014). PubMed DOI
Kromdijk, J. et al. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354, 857–861 (2016). PubMed DOI
Araoz, R. & Hader, D. P. Ultraviolet radiation induces both degradation and synthesis of phycobilisomes in Nostoc sp.: a spectroscopic and biochemical approach. FEMS Microbiol. Ecol. 23, 301–313 (1997). DOI
Gantt, E., Lipschultz, C. A., Grabowski, J. & Zimmerman, B. K. Phycobilisomes from blue-green and red algae: isolation criteria and dissociation characteristics. Plant Physiol. 63, 615–620 (1979). PubMed DOI PMC
Tivol, W. F., Briegel, A. & Jensen, G. J. An improved cryogen for plunge freezing. Microsc. Microanal. 14, 375–379 (2008). PubMed DOI PMC
Schorb, M., Haberbosch, I., Hagen, W. J. H., Schwab, Y. & Mastronarde, D. N. Software tools for automated transmission electron microscopy. Nat. Methods 16, 471–477 (2019). PubMed DOI PMC
Sun, M. et al. Practical considerations for using K3 cameras in CDS mode for high-resolution and high-throughput single particle cryo-EM. J. Struct. Biol. 213, 107745 (2021). PubMed DOI
Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012). PubMed DOI PMC
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017). PubMed DOI
Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003). PubMed DOI
Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021). PubMed DOI PMC
Marx, A. & Adir, N. Allophycocyanin and phycocyanin crystal structures reveal facets of phycobilisome assembly. Biochim. Biophys. Acta 1827, 311–318 (2013). PubMed DOI
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010). PubMed DOI PMC
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019). PubMed DOI PMC
Kovalevskiy, O., Nicholls, R. A., Long, F., Carlon, A. & Murshudov, G. N. Overview of refinement procedures within REFMAC5: utilizing data from different sources. Acta Crystallogr. D Struct. Biol. 74, 215–227 (2018). PubMed DOI PMC
Pullerits, T., Hess, S., Herek, J. L. & Sundstrom, V. Temperature dependence of excitation transfer in LH2 of Rhodobacter sphaeroides. J. Phys. Chem. B 101, 10560–10567 (1997). DOI
Sauer, K. & Scheer, H. Excitation transfer in C-phycocyanin. Förster transfer rate and exciton calculations based on new crystal-structure data for C-phycocyanins from Agmenellum quadruplicatum and Mastigocladus laminosus. Biochim. Biophys. Acta 936, 157–170 (1988). DOI
Ren, Y. et al. Understanding the electronic energy transfer pathways in the trimeric and hexameric aggregation state of cyanobacteria phycocyanin within the framework of Förster theory. J. Comput. Chem. 34, 1005–1012 (2013). PubMed DOI
Demidov, A. A. & Mimuro, M. Deconvolution of C-phycocyanin β-84 and β-155 chromophore absorption and fluorescence spectra of cyanobacterium Mastigocladus laminosus. Biophys. J. 68, 1500–1506 (1995). PubMed DOI PMC
Fuente, D., Lazar, D., Oliver-Villanueva, J. V. & Urchueguia, J. F. Reconstruction of the absorption spectrum of Synechocystis sp. PCC 6803 optical mutants from the in vivo signature of individual pigments. Photosynth. Res. 147, 75–90 (2021). PubMed DOI
Laible, P., Knox, R. & Owens, T. Detailed balance in Förster–Dexter excitation transfer and its application to photosynthesis. J. Phys. Chem. B 102, 1641–1648 (1998). DOI
Squires, A. H. & Moerner, W. E. Direct single-molecule measurements of phycocyanobilin photophysics in monomeric C-phycocyanin. Proc. Natl Acad. Sci. USA 114, 9779–9784 (2017). PubMed DOI PMC
Wei, T. J., Balevicius, V., Polivka, T., Ruban, A. V. & Duffy, C. D. P. How carotenoid distortions may determine optical properties: lessons from the orange carotenoid protein. Phys. Chem. Chem. Phys. 21, 23187–23197 (2019). PubMed DOI
Kuznetsova, V. et al. Comparative ultrafast spectroscopy and structural analysis of OCP1 and OCP2 from Tolypothrix. Biochim. Biophys. Acta Bioenerg. 1861, 148120 (2020). PubMed DOI
Zigmantas, D., Polivka, T., Hiller, R. G., Yartsev, A. & Sundstrom, V. Spectroscopic and dynamic properties of the peridinin lowest singlet excited states. J. Phys. Chem. A 105, 10296–10306 (2001). DOI
Polivka, T., Chabera, P. & Kerfeld, C. A. Carotenoid–protein interaction alters the S PubMed DOI
Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858 (1996). PubMed DOI
Larkin, M. A. et al. Clustal W and clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007). PubMed DOI
Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019). PubMed DOI PMC
Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009). PubMed DOI PMC
Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004). PubMed DOI PMC
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). PubMed DOI
Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018). PubMed DOI
Schrödinger, L. & Delano, W. PyMOL v2.5.2. http://www.pymol.org/pymol (2020).
Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007). PubMed DOI
Laskowski, R. A., Watson, J. D. & Thornton, J. M. ProFunc: a server for predicting protein function from 3D structure. Nucleic Acids Res. 33, W89–W93 (2005). PubMed DOI PMC
Jurrus, E. et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 27, 112–128 (2018). PubMed DOI
van Stokkum, I. H. M. et al. A functional compartmental model of the Synechocystis PCC 6803 phycobilisome. Photosynth. Res. 135, 87–102 (2018). PubMed DOI