Phycobilisome protein ApcG interacts with PSII and regulates energy transfer in Synechocystis

. 2024 Feb 29 ; 194 (3) : 1383-1396.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37972281

Grantová podpora
Howard Hughes Medical Institute - United States

Photosynthetic organisms harvest light using pigment-protein complexes. In cyanobacteria, these are water-soluble antennae known as phycobilisomes (PBSs). The light absorbed by PBS is transferred to the photosystems in the thylakoid membrane to drive photosynthesis. The energy transfer between these complexes implies that protein-protein interactions allow the association of PBS with the photosystems. However, the specific proteins involved in the interaction of PBS with the photosystems are not fully characterized. Here, we show in Synechocystis sp. PCC 6803 that the recently discovered PBS linker protein ApcG (sll1873) interacts specifically with PSII through its N-terminal region. Growth of cyanobacteria is impaired in apcG deletion strains under light-limiting conditions. Furthermore, complementation of these strains using a phospho-mimicking version of ApcG causes reduced growth under normal growth conditions. Interestingly, the interaction of ApcG with PSII is affected when a phospho-mimicking version of ApcG is used, targeting the positively charged residues interacting with the thylakoid membrane, suggesting a regulatory role mediated by phosphorylation of ApcG. Low-temperature fluorescence measurements showed decreased PSI fluorescence in apcG deletion and complementation strains. The PSI fluorescence was the lowest in the phospho-mimicking complementation strain, while the pull-down experiment showed no interaction of ApcG with PSI under any tested condition. Our results highlight the importance of ApcG for selectively directing energy harvested by the PBS and imply that the phosphorylation status of ApcG plays a role in regulating energy transfer from PSII to PSI.

Zobrazit více v PubMed

Adir N. Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. Photosynth Res. 2005:85(1):15–32. 10.1007/s11120-004-2143-y PubMed DOI

Anderson LK, Toole CM. A model for early events in the assembly pathway of cyanobacterial phycobilisomes. Mol Microbiol. 1998:30(3):467–474. 10.1046/j.1365-2958.1998.01081.x PubMed DOI

Angeleri M, Muth-Pawlak D, Aro EM, Battchikova N. Study of O-phosphorylation sites in proteins involved in photosynthesis-related processes in Synechocystis sp. strain PCC 6803: application of the SRM approach. J Proteome Res. 2016:15(12):4638–4652. 10.1021/acs.jproteome.6b00732 PubMed DOI

Beckova M, Gardian Z, Yu J, Konik P, Nixon PJ, Komenda J. Association of Psb28 and Psb27 proteins with PSII-PSI supercomplexes upon exposure of Synechocystis sp. PCC 6803 to high light. Mol Plant. 2017:10(1):62–72. 10.1016/j.molp.2016.08.001 PubMed DOI

Bhatti AF, Choubeh RR, Kirilovsky D, Wientjes E, Van Amerongen H. State transitions in cyanobacteria studied with picosecond fluorescence at room temperature. Biochim Biophys Acta Bioenerg. 2020:1861(10):148255. 10.1016/j.bbabio.2020.148255 PubMed DOI

Bibby TS, Nield J, Barber J. Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria. Nature. 2001a:412(6848):743–745. 10.1038/35089098 PubMed DOI

Bibby TS, Nield J, Barber J. Three-dimensional model and characterization of the iron stress-induced CP43′-photosystem I supercomplex isolated from the cyanobacterium Synechocystis PCC 6803. J Biol Chem. 2001b:276(46):43246–43252. 10.1074/jbc.M106541200 PubMed DOI

Billi D, Caiola MG, Paolozzi L, Ghelardini P. A method for DNA extraction from the desert cyanobacterium Chroococcidiopsis and its application to identification of ftsZ. Appl Environ Microbiol. 1998:64(10):4053–4056. 10.1128/AEM.64.10.4053-4056.1998 PubMed DOI PMC

Black TA, Cai YP, Wolk CP. Spatial expression and autoregulation of hetR, a gene involved in the control of heterocyst development in Anabaena. Mol Microbiol. 1993:10(5):1153. 10.1111/j.1365-2958.1993.tb00985.x PubMed DOI

Blum H, Beier H, Gross HJ. Improved silver staining of plant-proteins, RNA and DNA in polyacrylamide gels. Electrophoresis. 1987:8(2):93–99. 10.1002/elps.1150080203 DOI

Bonaventura C, Myers J. Fluorescence and oxygen evolution from Chlorella pyrenoidosa. Biochim Biophys Acta. 1969:189(3):366. 10.1016/0005-2728(69)90168-6 PubMed DOI

Bryant DA, Guglielmi G, De Marsac NT, Castets A, Cohen-Bazire G. The structure of cyanobacterial phycobilisomes: a model. Arch Microbiol. 1979:123(2):113–127. 10.1007/BF00446810 DOI

Burnap RL, Troyan T, Sherman LA. The highly abundant chlorophyll-protein complex of iron-deficient Synechococcus sp. PCC7942 (CP43′) is encoded by the isiA gene. Plant Physiol. 1993:103(3):893–902. 10.1104/pp.103.3.893 PubMed DOI PMC

Calzadilla PI, Kirilovsky D. Revisiting cyanobacterial state transitions. Photochem Photobiol Sci. 2020:19(5):585–603. 10.1039/c9pp00451c PubMed DOI

Chen Z, Zhan J, Chen Y, Yang M, He C, Ge F, Wang Q. Effects of phosphorylation of beta subunits of phycocyanins on state transition in the model cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol. 2015:56(10):1997–2013. 10.1093/pcp/pcv118 PubMed DOI

Cho SH, Jeong Y, Hong SJ, Lee H, Choi HK, Kim DM, Lee CG, Cho S, Cho BK. Different regulatory modes of Synechocystis sp. PCC 6803 in response to photosynthesis inhibitory conditions. mSystems. 2021:6(6):e0094321. 10.1128/mSystems.00943-21 PubMed DOI PMC

Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004:14(6):1188–1190. 10.1101/gr.849004 PubMed DOI PMC

Cunningham FX, Tice AB, Pham C, Gantt E. Inactivation of genes encoding plastoglobulin-like proteins in Synechocystis sp PCC 6803 leads to a light-sensitive phenotype. J Bacteriol. 2010:192(6):1700–1709. 10.1128/JB.01434-09 PubMed DOI PMC

De Marsac NT, Cohen-Bazire G. Molecular composition of cyanobacterial phycobilisomes. Proc Natl Acad Sci U S A. 1977:74(4):1635–1639. 10.1073/pnas.74.4.1635 PubMed DOI PMC

Dominguez-Martin MA, Sauer PV, Kirst H, Sutter M, Bina D, Greber BJ, Nogales E, Polivka T, Kerfeld CA. Structures of a phycobilisome in light-harvesting and photoprotected states. Nature. 2022:609(7928):835–845. 10.1038/s41586-022-05156-4 PubMed DOI

Dong CX, Tang AH, Zhao JD, Mullineaux CW, Shen GZ, Bryant DA. ApcD is necessary for efficient energy transfer from phycobilisomes to photosystem I and helps to prevent photoinhibition in the cyanobacterium Synechococcus sp PCC 7002. Biochim Biophys Acta Bioenerg. 2009:1787(9):1122–1128. 10.1016/j.bbabio.2009.04.007 PubMed DOI

Duhring U, Axmann IM, Hess WR, Wilde A. An internal antisense RNA regulates expression of the photosynthesis gene isiA. Proc Natl Acad Sci U S A. 2006:103(18):7054–7058. 10.1073/pnas.0600927103 PubMed DOI PMC

Emlyn-Jones D, Ashby MK, Mullineaux CW. A gene required for the regulation of photosynthetic light harvesting in the cyanobacterium Synechocystis 6803. Mol Microbiol. 1999:33(5):1050–1058. 10.1046/j.1365-2958.1999.01547.x PubMed DOI

Englund E, Liang FY, Lindberg P. Evaluation of promoters and ribosome binding sites for biotechnological applications in the unicellular cyanobacterium Synechocystis sp PCC 6803. Sci Rep. 2016:6(1):36640. 10.1038/srep36640 PubMed DOI PMC

Folea IM, Zhang P, Aro EM, Boekema EJ. Domain organization of photosystem II in membranes of the cyanobacterium Synechocystis PCC6803 investigated by electron microscopy. FEBS Lett. 2008:582(12):1749–1754. 10.1016/j.febslet.2008.04.044 PubMed DOI

Fuente D, Lazar D, Oliver-Villanueva JV, Urchueguia JF. Reconstruction of the absorption spectrum of Synechocystis sp. PCC 6803 optical mutants from the in vivo signature of individual pigments. Photosynth Res. 2021:147(1):75–90.10.1007/s11120-020-00799-8 PubMed DOI

Gantt E, Conti SF. Ultrastructure of blue-green algae. J Bacteriol. 1969:97(3):1486–1493. 10.1128/jb.97.3.1486-1493.1969 PubMed DOI PMC

Gindt YM, Zhou JH, Bryant DA, Sauer K. Core mutations of Synechococcus sp. PCC-7002 phycobilisomes—a spectroscopic study. J Photochem Photobiol B-Biol. 1992:15(1–2):75–89. 10.1016/1011-1344(92)87007-V PubMed DOI

Glauser M, Bryant DA, Frank G, Wehrli E, Rusconi SS, Sidler W, Zuber H. Phycobilisome structure in the cyanobacteria Mastigocladus-laminosus and Anabaena sp. PCC-7120. Eur J Biochem. 1992:205(3):907–915. 10.1111/j.1432-1033.1992.tb16857.x PubMed DOI

Gurchiek JK, Rose JB, Guberman-Pfeffer MJ, Tilluck RW, Ghosh S, Gascon JA, Beck WF. Fluorescence anisotropy detection of barrier crossing and ultrafast conformational dynamics in the S(2) state of beta-carotene. J Phys Chem B. 2020:124(41):9029–9046. 10.1021/acs.jpcb.0c06961 PubMed DOI

Havaux M, Guedeney G, He QF, Grossman AR. Elimination of high-light-inducible polypeptides related to eukaryotic chlorophyll a/b-binding proteins results in aberrant photoacclimation in Synechocystis PCC6803. Biochim Biophys Acta Bioenerg. 2003:1557:21–33. 10.1016/S0005-2728(02)00391-2 PubMed DOI

Hodges M, Barber J. State 1-state 2 transitions in a unicellular green algae: analysis of in vivo chlorophyll fluorescence induction curves in the presence of 3-(3,4-dichlorophenyl)-1, 1-dimethylurea (DCMU). Plant Physiol. 1983:72(4):1119–1122. 10.1104/pp.72.4.1119 PubMed DOI PMC

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, et al. . Highly accurate protein structure prediction with AlphaFold. Nature. 2021:596(7873):583–589. 10.1038/s41586-021-03819-2 PubMed DOI PMC

Kerfeld CA, Melnicki MR, Sutter M, Dominguez-Martin MA. Structure, function and evolution of the cyanobacterial orange carotenoid protein and its homologs. New Phytol. 2017:215(3):937–951. 10.1111/nph.14670 PubMed DOI

Lagarde D, Beuf L, Vermaas M. Increased production of zeaxanthin and other pigments by application of genetic engineering techniques to Synechocystis sp strain PCC 6803. Appl Environ Microbiol. 2000:66(1):64–72. 10.1128/AEM.66.1.64-72.2000 PubMed DOI PMC

Leverenz RL, Sutter M, Wilson A, Gupta S, Thurotte A, De Carbon CB, Petzold CJ, Ralston C, Perreau F, Kirilovsky D, et al. . A 12 angstrom carotenoid translocation in a photoswitch associated with cyanobacterial photoprotection. Science. 2015:348(6242):1463–1466. 10.1126/science.aaa7234 PubMed DOI

Li D, Xie J, Zhao J, Xia A, Li D, Gong Y. Light-induced excitation energy redistribution in Spirulina platensis cells: “spillover” or “mobile PBSs”? Biochim Biophys Acta. 2004:1608(2–3):114–121. 10.1016/j.bbabio.2003.11.002 PubMed DOI

Li H, Li D, Yang S, Xie J, Zhao J. The state transition mechanism—simply depending on light-on and -off in Spirulina platensis. Biochim Biophys Acta. 2006:1757(11):1512–1519. 10.1016/j.bbabio.2006.08.009 PubMed DOI

Li MJ, Ma JF, Li XM, Sui SF. In situ cryo-ET structure of phycobilisome-photosystem II supercomplex from red alga. Elife. 2021:10:e69635. 10.7554/eLife.69635 PubMed DOI PMC

Liu H. Cyanobacterial phycobilisome allostery as revealed by quantitative mass spectrometry. Biochemistry. 2023:62(7):1307–1320. 10.1021/acs.biochem.3c00047 PubMed DOI

Liu HJ, Zhang H, Niedzwiedzki DM, Prado M, He GN, Gross ML, Blankenship RE. Phycobilisomes supply excitations to both photosystems in a megacomplex in cyanobacteria. Science. 2013:342(6162):1104–1107. 10.1126/science.1242321 PubMed DOI PMC

Luimstra VM, Schuurmans JM, Hellingwerf KJ, Matthijs HCP, Huisman J. Blue light induces major changes in the gene expression profile of the cyanobacterium Synechocystis sp. PCC 6803. Physiol Plant. 2020:170(1):10–26. 10.1111/ppl.13086 PubMed DOI PMC

Maeda H, Sakuragi Y, Bryant DA, Dellapenna D. Tocopherols protect Synechocystis sp strain PCC 6803 from lipid peroxidation. Plant Physiol. 2005:138(3):1422–1435. 10.1104/pp.105.061135 PubMed DOI PMC

Mcconnell MD, Koop R, Vasil'ev S, Bruce D. Regulation of the distribution of chlorophyll and phycobilin-absorbed excitation energy in cyanobacteria. A structure-based model for the light state transition. Plant Physiol. 2002:130(3):1201–1212. 10.1104/pp.009845 PubMed DOI PMC

Mohamed A, Eriksson J, Osiewacz HD, Jansson C. Differential expression of the psbA genes in the cyanobacterium Synechocystis 6803. Mol Gen Genet. 1993:238(1–2):161–168. 10.1007/BF00279543 PubMed DOI

Mohamed A, Jansson C. Influence of light on accumulation of photosynthesis-specific transcripts in the cyanobacterium Synechocystis 6803. Plant Mol Biol. 1989:13(6):693–700. 10.1007/BF00016024 PubMed DOI

Mullineaux CW. Electron transport and light-harvesting switches in cyanobacteria. Front Plant Sci. 2014:5:7. 10.3389/fpls.2014.00007 PubMed DOI PMC

Mullineaux CW, Tobin MJ, Jones GR. Mobility of photosynthetic complexes in thylakoid membranes. Nature. 1997:390(6658):421–424. 10.1038/37157 DOI

Nagao R, Kato K, Hamaguchi T, Ueno Y, Tsuboshita N, Shimizu S, Furutani M, Ehira S, Nakajima Y, Kawakami K, et al. . Structure of a monomeric photosystem I core associated with iron-stress-induced-A proteins from Anabaena sp. PCC 7120. Nat Commun. 2023:14(1):920. 10.1038/s41467-023-36504-1 PubMed DOI PMC

Nieves-Morion M, Lechno-Yossef S, Lopez-Igual R, Frias JE, Mariscal V, Nurnberg DJ, Mullineaux CW, Wolk CP, Flores E. Specific glucoside transporters influence septal structure and function in the filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol. 2017:199(7):e00876-16. 10.1128/JB.00876-16 PubMed DOI PMC

Olive J, Ajlani G, Astier C, Recouvreur M, Vernotte C. Ultrastructure and light adaptation of phycobilisome mutants of Synechocystis PCC 6803. Biochim Biophys Acta Bioenerg. 1997:1319(2–3):275–282. 10.1016/S0005-2728(96)00168-5 DOI

Peng PP, Dong LL, Sun YF, Zeng XL, Ding WL, Scheer H, Yang XJ, Zhao KH. The structure of allophycocyanin B from Synechocystis PCC 6803 reveals the structural basis for the extreme redshift of the terminal emitter in phycobilisomes. Acta Crystallogr Sect D Struct Biol. 2014:70(10):2558–2569. 10.1107/S1399004714015776 PubMed DOI PMC

Platt T, Gallegos CL, Harrison WG. Photoinhibition of photosynthesis in natural assemblages of marine-phytoplankton. J Mar Res. 1980:38:687–701. 10.1016/0198-0149(82)90087-5 DOI

Rast A, Schaffer M, Albert S, Wan W, Pfeffer S, Beck F, Plitzko JM, Nickelsen J, Engel BD. Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane. Nat Plants. 2019:5(4):436–446. 10.1038/s41477-019-0399-7 PubMed DOI

Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J General Microbiol. 1979:111:1–61. 10.1099/00221287-111-1-1 DOI

Sakurai I, Stazic D, Eisenhut M, Vuorio E, Steglich C, Hess WR, Aro EM. Positive regulation of psbA gene expression by cis-encoded antisense RNAs in Synechocystis sp. PCC 6803. Plant Physiol. 2012:160(2):1000–1010. 10.1104/pp.112.202127 PubMed DOI PMC

Sanner MF. Python: a programming language for software integration and development. J Mol Graph Model. 1999:17:57–61. https://pubmed.ncbi.nlm.nih.gov/10660911/ PubMed

Sarcina M, Tobin MJ, Mullineaux CW. Diffusion of phycobilisomes on the thylakoid membranes of the cyanobacterium Synechococcus 7942—effects of phycobilisome size, temperature, and membrane lipid composition. J Biol Chem. 2001:276(50):46830–46834. 10.1074/jbc.M107111200 PubMed DOI

Schafer L, Vioque A, Sandmann G. Functional in situ evaluation of photosynthesis-protecting carotenoids in mutants of the cyanobacterium Synechocystis PCC6803. J Photochem Photobiol B. 2005:78(3):195–201. 10.1016/j.jphotobiol.2004.11.007 PubMed DOI

Schagger H, Vonjagow G. Blue native electrophoresis for isolation of membrane-protein complexes in enzymatically active form. Anal Biochem. 1991:199(2):223–231. 10.1016/0003-2697(91)90094-A PubMed DOI

Straskova A, Steinbach G, Konert G, Kotabova E, Komenda J, Tichy M, Kana R. Pigment-protein complexes are organized into stable microdomains in cyanobacterial thylakoids. Biochim Biophys Acta Bioenerg. 2019:1860(12):148053. 10.1016/j.bbabio.2019.07.008 PubMed DOI

Toyoshima M, Tokumaru Y, Matsuda F, Shimizu H. Assessment of protein content and phosphorylation level in Synechocystis sp. PCC 6803 under various growth conditions using quantitative phosphoproteomic analysis. Molecules. 2020:25(16):3582. 10.3390/molecules25163582 PubMed DOI PMC

Xu XL, Yang SZ, Xie J, Zhao JQ. Kinetics and dynamics for light state transition in cyanobacterium Spirulina platensis cells. Biochem Biophys Res Commun. 2012:422(2):233–237. 10.1016/j.bbrc.2012.04.131 PubMed DOI

Yang SZ, Su ZQ, Li H, Feng JJ, Xie J, Xia AD, Gong YD, Zhao JQ. Demonstration of phycobilisome mobility by the time- and space-correlated fluorescence imaging of a cyanobacterial cell. Biochim Biophys Acta Bioenerg. 2007:1767(1):15–21. 10.1016/j.bbabio.2006.11.012 PubMed DOI

You X, Zhang X, Cheng J, Xiao Y, Ma J, Sun S, Zhang X, Wang HW, Sui SF. In situ structure of the red algal phycobilisome-PSII-PSI-LHC megacomplex. Nature. 2023:616(7955):199–206. 10.1038/s41586-023-05831-0 PubMed DOI

Zavrel T, Chmelik D, Sinetova MA, Cerveny J. Spectrophotometric determination of phycobiliprotein content in cyanobacterium Synechocystis. J Vis Exp. 2018:139:58076. 10.3791/58076 PubMed DOI PMC

Zavrel T, Faizi M, Loureiro C, Poschmann G, Stuhler K, Sinetova M, Zorina A, Steuer R, Cerveny J. Quantitative insights into the cyanobacterial cell economy. Elife. 2019:8:e42508. 10.7554/eLife.42508 PubMed DOI PMC

Zavřel T, Sinetova MA, Červený J. Measurement of chlorophyll a and carotenoids concentration in cyanobacteria. Bio Protoc. 2015:5(9):e1467. 10.21769/BioProtoc.1467 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...