Spectrophotometric Determination of Phycobiliprotein Content in Cyanobacterium Synechocystis
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, audiovizuální média
PubMed
30272659
PubMed Central
PMC6235156
DOI
10.3791/58076
Knihovny.cz E-zdroje
- MeSH
- fykobiliproteiny metabolismus MeSH
- rostlinné proteiny metabolismus MeSH
- sinice patogenita MeSH
- spektrofotometrie metody MeSH
- Synechocystis patogenita MeSH
- Publikační typ
- audiovizuální média MeSH
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fykobiliproteiny MeSH
- rostlinné proteiny MeSH
This is a simple protocol for the quantitative determination of phycobiliprotein content in the model cyanobacterium Synechocystis. Phycobiliproteins are the most important components of phycobilisomes, the major light-harvesting antennae in cyanobacteria and several algae taxa. The phycobilisomes of Synechocystis contain two phycobiliproteins: phycocyanin and allophycocyanin. This protocol describes a simple, efficient, and reliable method for the quantitative determination of both phycocyanin and allophycocyanin in this model cyanobacterium. We compared several methods of phycobiliprotein extraction and spectrophotometric quantification. The extraction procedure as described in this protocol was also successfully applied to other cyanobacteria strains such as Cyanothece sp., Synechococcuselongatus, Spirulina sp., Arthrospira sp., and Nostoc sp., as well as to red algae Porphyridium cruentum. However, the extinction coefficients of specific phycobiliproteins from various taxa can differ and it is, therefore, recommended to validate the spectrophotometric quantification method for every single strain individually. The protocol requires little time and can be performed in any standard life science laboratory since it requires only standard equipment.
Department of Adaptive Biotechnologies Global Change Research Institute Czech Academy of Sciences
Department of Adaptive Biotechnologies Global Change Research Institute Czech Academy of Sciences;
Laboratory of Intracellular Regulation Institute of Plant Physiology Russian Academy of Sciences
Zobrazit více v PubMed
Mimuro M, Kikuchi H. Antenna Systems and Energy Transfer in Cyanophyta and Rhodophyta. In: Green BR, Parson WW, editors. Light-Harvesting Antennas in Photosynthesis. Dordrecht, The Netherlands: Springer; 2003. pp. 281–306.
Spear-bernstein L, Miller KR. Unique location of the phycobiliprotein light-harvesting pigment in the Cryptophyceae. Journal of Phycology. 1989;25(3):412–419.
Kirst H, Formighieri C, Melis A. Maximizing photosynthetic efficiency and culture productivity in cyanobacteria upon minimizing the phycobilisome light-harvesting antenna size. Biochimica et Biophysica Acta - Bioenergetics. 2014;1837(10):1653–1664. PubMed
Page LE, Liberton M, Pakrasi HB. Reduction of photoautotrophic productivity in the cyanobacterium Synechocystis sp. strain PCC 6803 by phycobilisome antenna truncation. Applied and Environmental Microbiology. 2012;78(17):6349–6351. PubMed PMC
Sonani RR. Recent advances in production, purification and applications of phycobiliproteins. World Journal of Biological Chemistry. 2016;7(1):100. PubMed PMC
Bryant DA. The Molecular Biology of Cyanobacteria. Dordrecht, The Netherlands: Springer Netherlands; 1994.
Kaneko T, et al. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. I. Sequence features in the 1 Mb region from map positions 64% to 92% of the genome. DNA Research. 1995;2:191–198. PubMed
Kaneko T, et al. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Research. 1996;3:109–136. PubMed
Grigorieva G, Shestakov S. Transformation in the cyanobacterium Synechocystis sp 6803. FEMS Microbiology Letters. 1982;13(4):367–370.
Zavřel T, Sinetova MA, Búzová D, Literáková P, Červený J. Characterization of a model cyanobacterium Synechocystis sp: PCC 6803 autotrophic growth in a flat-panel photobioreactor. Engineering in Life Sciences. 2015;15(1)
Zavřel T, Očenášová P, Červený J. Phenotypic characterization of Synechocystis sp. PCC 6803 substrains reveals differences in sensitivity to abiotic stress. PLoS One. 2017;12(12):e0189130. PubMed PMC
Bennett A, Bogorad L. Complementary chromatic adaption in a filamentous blue-green alga. The Journal of Cell Biology. 1973;58:419–435. PubMed PMC
Lüder UH, Knoetzel J, Wiencke C. Acclimation of photosynthesis and pigments to seasonally changing light conditions in the endemic antarctic red macroalga Palmaria decipiens. Polar Biology. 2001;24(8):598–603.
Evans LV. The effects of spectral composition and irradiance level on pigment levels in seaweeds. In: Lobban CS, Chapman DJ, Kremer BP, editors. Experimental Phycology: A Laboratory Manual. Cambridge, New York, New Rochelle, Melbourne, Sydney: Cambridge University Press; 1988. pp. 123–133.
Sampath-Wiley P, Neefus CD. An improved method for estimating R-phycoerythrin and R-phycocyanin contents from crude aqueous extracts of Porphyra (Bangiales, Rhodophyta) Journal of Applied Phycology. 2007;19(2):123–129. PubMed PMC
Chung YH, Park YM, Moon YJ, Lee EM, Choi JS. Photokinesis of Cyanobacterium Synechocystis sp. PCC 6803. Journal of Photoscience. 2004;11(3):89–94.
Sun L, et al. Phycobilisomes from Cyanobacteria. In: Gault PM, Marler HJ, editors. Handbook on Cyanobacteria: Biochemistry, Biotechnology and Applications. New York, NY: Nova Science Publishers, Inc; 2009. pp. 105–160.
Six C, et al. Diversity and evolution of phycobilisomes in marine Synechococcus spp.: A comparative genomics study. Genome Biology. 2007;8(12) PubMed PMC
Sinetova MA, Červený J, Zavřel T, Nedbal L. On the dynamics and constraints of batch culture growth of the cyanobacterium Cyanothece sp. ATCC 51142. Journal of Biotechnology. 2012;162(1) PubMed
Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G. Purification and properties of unicellular blue-green algae (order Chroococcales) Bacteriological Reviews. 1971;35(2):171–205. PubMed PMC
Zavřel T, Sinetova MA, Búzová D, Literáková P, Červený J. Characterization of a model cyanobacterium Synechocystis sp. PCC 6803 autotrophic growth in a flat-panel photobioreactor. Engineering in Life Sciences. 2015;15(1):122–132.
Hemlata G, Fareha B. Studies on Anabaena sp. nccu-9 with special reference to phycocyanin. Journal of Algal Biomass Utilization. 2011;2(1):30–51.
Rito-Palomares M, Nuez L, Amador D. Practical application of aqueous two-phase systems for the development of a prototype process for c-phycocyanin recovery from Spirulina maxima. Journal of Chemical Technology & Biotechnology. 2001;76(12):1273–1280.
Zhang H, et al. Selenium-Containing Allophycocyanin Purified from Selenium-Enriched Spirulina platensis Attenuates AAPH-Induced Oxidative Stress in Human Erythrocytes through Inhibition of ROS Generation. Journal of Agricultural and Food Chemistry. 2011;59(16):8683–8690. PubMed
Nedbal L, Trtílek M, Cervený J, Komárek O, Pakrasi HB. A photobioreactor system for precision cultivation of photoautotrophic microorganisms and for high-content analysis of suspension dynamics. Biotechnology and Bioengineering. 2008;100(5):902–910. PubMed
Zavřel T, Knoop H, Steuer R, Jones PR, Červený J, Trtílek M. A quantitative evaluation of ethylene production in the recombinant cyanobacterium Synechocystis sp. PCC 6803 harboring the ethylene-forming enzyme by membrane inlet mass spectrometry. Bioresource Technology. 2016;202:142–151. PubMed
Smith PK, et al. Measurement of protein using bicinchoninic acid. Analytical Biochemistry. 1985;150(1):76–85. PubMed
Lawrenz E, Fedewa EJ, Richardson TL. Extraction protocols for the quantification of phycobilins in aqueous phytoplankton extracts. Journal of Applied Phycology. 2011;23(5):865–871.
Lea-Smith DJ, et al. Phycobilisome-Deficient Strains of Synechocystis sp. PCC 6803 Have Reduced Size and Require Carbon-Limiting Conditions to Exhibit Enhanced Productivity. Plant Physiology. 2014;165(2):705–714. PubMed PMC
Seo YC, et al. Stable isolation of phycocyanin from Spirulina platensis associated with high-pressure extraction process. International Journal of Molecular Sciences. 2013;14(1):1778–1787. PubMed PMC
Touloupakis E, Cicchi B, Torzillo G. A bioenergetic assessment of photosynthetic growth of Synechocystis sp. PCC 6803 in continuous cultures. Biotechnology for Biofuels. 2015;8(1):133. PubMed PMC
Touloupakis E, Cicchi B, Benavides AMS, Torzillo G. Effect of high pH on growth of Synechocystis sp. PCC 6803 cultures and their contamination by golden algae (Poterioochromonas sp.) Applied Microbiology and Biotechnology. 2016;100(3):1333–1341. PubMed PMC
Ishii A, Hihara Y. An AbrB-Like Transcriptional Regulator, Sll0822, Is Essential for the Activation of Nitrogen-Regulated Genes in Synechocystis sp. PCC 6803. Plant Physiology. 2008;148(1):660–670. PubMed PMC
Isolation, Identification and Pigment Analysis of Novel Cyanobacterial Strains from Thermal Springs
A Comprehensive Study of Light Quality Acclimation in Synechocystis Sp. PCC 6803
Phycobilisome protein ApcG interacts with PSII and regulates energy transfer in Synechocystis