Isolation, Identification and Pigment Analysis of Novel Cyanobacterial Strains from Thermal Springs

. 2024 Oct 22 ; 13 (21) : . [epub] 20241022

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39519869

Grantová podpora
АР14870171 This work was funded by the Ministry of Science and Higher Education of the Republic of Ka-zakhstan within the project АР14870171.

Cyanobacterial pigments have attracted considerable attention in industry due to their bioactive potential and natural origin. In the present study, the growth dynamics and pigment composition, in terms of chlorophyll a, total carotenoids and phycobiliprotein content, of four cyanobacterial strains isolated from thermal springs, namely Oscillatoria subbrevis CZS 2201, Phormidium ambiguum CZS 2205, Nostoc calcicola TSZ 2203, and Synechococcus sp. CZS 2204, were investigated. The analysis revealed that the maximum quantity of chlorophyll a and total carotenoids was observed in Oscillatoria subbrevis CZS 2201 (26.49 and 3.44 µg mL-1), followed by Phormidium ambiguum CZS 2205 (18.64 and 2.32 µg mL-1), whereas a minimum amount was detected in Synechococcus sp. CZS 2204 (12.13 and 1.24 µg mL-1), respectively. In addition, Oscillatoria subbrevis CZS 2201 showed higher quantity of phycobiliproteins, especially C-phycocyanin (45.81 mg g-1), C-phycoerythrin (64.17 mg g-1) and C-allophycocyanin (27.45 mg g-1). Moreover, carotenoid derivatives of Oscillatoria subbrevis CZS 2201 were also identified, among which β-carotene was the dominant form (1.94 µg mL-1), while the accumulation of zeaxanthin and myxoxanthophyll was relatively high (0.53 and 0.41 µg mL-1, respectively) compared with echinenone and cryptoxanthin (0.34 and 0.23 µg mL-1, respectively). The study revealed that Oscillatoria subbrevis CZS 2201 was a potent producer of secondary carotenoids, including myxoxanthophyll.

Zobrazit více v PubMed

Mbow C., Rosenzweig C., Barioni L.G., Benton T.G., Herrero M., Krishnapillai M., Liwenga E., Pradhan P., Rivera-Ferre M.G., Sapkota T., et al. Food Security. In: Shukla P.R., Skea J., Buendia E.C., Masson-Delmotte V., Pörtner H.-O., Roberts D.C., Zhai P., Slade R., Connors S., van Diemen R., editors. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Cambridge University Press; Cambridge, UK: 2019. DOI

Sigamani S., Ramamurthy D., Natarajan H. A Review on Potential Biotechnological applications of Microalgae. J. App. Pharm. Sci. 2016;6:179–184. doi: 10.7324/JAPS.2016.60829. DOI

Vigani M., Parisi C., Rodríguez-Cerezo E., Barbosa M.J., Sijtsma L., Ploeg M., Enzing C. Food and feed products from micro-algae: Market opportunities and challenges for the EU. Trends Food Sci. Technol. 2015;42:81–92. doi: 10.1016/j.tifs.2014.12.004. DOI

Urtubia H.O., Betanzo L.B., Vásquez M. Microalgae and Cyanobacteria as Green Molecular Factories: Tools and Perspectives. In: Thajuddin N., Dhanasekaran D., editors. Algae—Organisms for Imminent Biotechnology. InTech; London, UK: 2016. DOI

Zahra Z., Choo D.H., Lee H., Parveen A. Cyanobacteria: Review of Current Potentials and Applications. Environments. 2020;7:13. doi: 10.3390/environments7020013. DOI

García-Vaquero M., Brunton N., Lafarga T., Tomas L. Microalgae as a source of pigments for food applications. In: Lafarga T., Acién G., editors. Cultured Microalgae for the Food Industry. Academic Press; Cambridge, MA, USA: 2021. pp. 177–198. DOI

Paz-Montelongo S., Hernández-Sánchez C., Guillén-Pino F., Rubio-Armendáriz C., Gutiérrez-Fernández Á.J., Hardisson A. Cyanobacterial Pigments: Pharmaceutical and Nutraceutical Applications. In: Mehmood M.A., Verma P., Shah M.P., Betenbaugh M.J., editors. Pharmaceutical and Nutraceutical Potential of Cyanobacteria. Springer; Cham, Switzerland: 2024. DOI

Saini D.K., Pabbi S., Shukla P. Cyanobacterial pigments: Perspectives and biotechnological approaches. Food Chem. Toxicol. 2018;120:616–624. doi: 10.1016/j.fct.2018.08.002. PubMed DOI

Pagels F., Vasconcelos V., Guedes A.C. Carotenoids from Cyanobacteria: Biotechnological Potential and Optimization Strategies. Biomolecules. 2021;11:735. doi: 10.3390/biom11050735. PubMed DOI PMC

Stadnichuk I.N., Krasilnikov P.M., Zlenko D.V. Cyanobacterial phycobilisomes and phycobiliproteins. Microbiology. 2015;84:101–111. doi: 10.1134/S0026261715020150. PubMed DOI

Del Campo J.A., García-González M., Guerrero M.G. Outdoor cultivation of microalgae for carotenoid production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2007;74:1163–1174. doi: 10.1007/s00253-007-0844-9. PubMed DOI

Assunçao J., Amaro H.M., Malcata F.X., Guedes A.C. Cyanobacterial pigments: Photosynthetic function and biotechnological purposes. In: Lopes G., Vasconcelos V., editors. The Pharmacological Potential of Cyanobacteria. Academic Press; Cambridge, MA, USA: 2022. pp. 201–256. DOI

Ghosh S., Sarkar T., Das A., Chakraborty R. Natural colorants from plant pigments and their encapsulation: An emerging window for the food industry. LWT. 2022;153:112527. doi: 10.1016/j.lwt.2021.112527. DOI

Rodriguez-Amaya D.B. Natural food pigments and colorants. Curr. Opin. Food Sci. 2016;7:20–26. doi: 10.1016/j.cofs.2015.08.004. DOI

Rao M.P.N., Xiao M., Li W.-J. Fungal and bacterial pigments: Secondary metabolites with wide applications. Front. Microbiol. 2017;8:1113. doi: 10.3389/fmicb.2017.01113. PubMed DOI PMC

Thevarajah B., Nishshanka G.K.S.H., Premaratne M., Wasath W.A.J., Nimarshana P.H.V., Malik A., Ariyadasa T.U. Cyanobacterial pigment production in wastewaters treated for heavy metal removal: Current status and perspectives. J. Environ. Chem. Eng. 2023;11:108999. doi: 10.1016/j.jece.2022.108999. DOI

Patel A.K., Albarico F.P.J.B., Perumal P.K., Vadrale A.P., Ntan C.T., Chau H.T.B., Anwar C., Wani H.M.U.D., Pal A., Saini R., et al. Algae as an emerging source of bioactive pigments. Bioresour. Technol. 2022;351:126910. doi: 10.1016/j.biortech.2022.126910. PubMed DOI

Cardozo K.H., Guaratini T., Barros M.P., Falcão V.R., Tonon A.P., Lopes N.P., Campos S., Torres M.A., Souza A.O., Colepicolo P., et al. Metabolites from algae with economical impact. Comp. Biochem. Physiol. C. 2007;146:60–78. doi: 10.1016/j.cbpc.2006.05.007. PubMed DOI

Kossalbayev B.D., Yilmaz G., Sadvakasova A.K., Zayadan B.K., Belkozhayev A.M., Kamshybayeva G.K., Sainova G.A., Bozieva A.M., Alharby H.F., Tomo T., et al. Biotechnological production of hydrogen: Design features of photobioreactors and improvement of conditions for cultivating cyanobacteria. Int. J. Hydrogen Energy. 2023;49:413–432. doi: 10.1016/j.ijhydene.2023.09.001. DOI

Chittora D., Meena M., Barupal T., Swapnil P. Cyanobacteria as a source of biofertilizers for sustainable agriculture. Biochem. Biophys. Rep. 2020;22:100737. doi: 10.1016/j.bbrep.2020.100737. PubMed DOI PMC

Papadopoulos G.A., Chalvatzi S., Kopecký J., Arsenos G., Fortomaris P.D. Effects of dietary fat source on lutein, zeaxanthin and total carotenoids content of the egg yolk in laying hens during the early laying period. Br. Poult. Sci. 2019;60:431–438. doi: 10.1080/00071668.2019.1614526. PubMed DOI

Begum H., Yusoff F.M., Banerjee S., Khatoon H., Shariff M. Availability and Utilization of Pigments from Microalgae. Crit. Rev. Food Sci. Nutr. 2016;56:2209–2222. doi: 10.1080/10408398.2013.764841. PubMed DOI

Sandybayeva S.K., Kossalbayev B.D., Zayadan B.K., Sadvakasova A.K., Bolatkhan K., Zadneprovskaya E.V., Kakimova A.B., Alwasel S., Leong Y.K., Allakhverdiev S.I. Prospects of cyanobacterial pigment production: Biotechnological potential and optimization strategies. Biochem. Eng. J. 2022;187:108640. doi: 10.1016/j.bej.2022.108640. DOI

Guedes A.C., Amaro H.M., Malcata F.X. Microalgae as Sources of Carotenoids. Mar. Drugs. 2011;9:625–644. doi: 10.3390/md9040625. PubMed DOI PMC

Graham J.E., Lecomte J.T.J., Bryant D.A., Park U.V. Synechoxanthin, an Aromatic C40 Xanthophyll That Is a Major Carotenoid in the Cyanobacterium Synechococcus Sp. PCC 7002. J. Nat. Prod. 2008;71:1647–1650. doi: 10.1021/np800310b. PubMed DOI

Buchecker R., Liaaen-Jensen S., Borch G., Siegelman H.W. Carotenoids of Anacystis Nidulans Structures of Caloxanthin and Nostoxanthin. Phytochemistry. 1976;15:1015–1018. doi: 10.1016/S0031-9422(00)84393-9. DOI

Schagerl M., Donabaum K. Patterns of Major Photosynthetic Pigments in Freshwater Algae. 1. Cyanoprokaryota, Rhodophyta and Cryptophyta. Ann. Limnol. 2003;39:35–47. doi: 10.1051/limn/2003003. DOI

Withers N.W., Alberteo R.S., Lewin R.A., Thornberi J.P., Britton G., Goodwin T.W. Photosynthetic Unit Size, Carotenoids, and Chlorophyll-Protein Composition of Prochloron Sp., a Prokaryotic Green Alga. Proc. Natl. Acad. Sci. USA. 1978;75:2301–2305. doi: 10.1073/pnas.75.5.2301. PubMed DOI PMC

Nagy V., Agócs A., Deli J., Gulyás-Fekete G., Illyés T.Z., Kurtán T., Turcsi E., Béni S., Dékány M., Ballot A., et al. Carotenoid Glycoside Isolated and Identified from Cyanobacterium Cylindrospermopsis Raciborskii. J. Food Compos. Anal. 2018;65:6–10. doi: 10.1016/j.jfca.2017.06.003. DOI

Yao L., Shabestary K., Björk S.M., Asplund-Samuelsson J., Joensson H.N., Jahn M., Hudson E.P. Pooled CRISPRi screening of the cyanobacterium Synechocystis sp PCC 6803 for enhanced industrial phenotypes. Nat. Commun. 2020;11:1666. doi: 10.1038/s41467-020-15491-7. PubMed DOI PMC

Patias L., Fernandes A., Petry F., Mercadante A., Jacob-Lopes E., Zepka L.Q. Carotenoid profile of three microalgae/cyanobacteria species with peroxyl radical scavenger capacity. Food Res. Int. 2017;100:260–266. doi: 10.1016/j.foodres.2017.06.069. PubMed DOI

Miller S.R., Castenholz R.W. Evolution of Thermotolerance in Hot Spring Cyanobacteria of the Genus Synechococcus. Appl. Environ. Microbiol. 2000;66:4222–4229. doi: 10.1128/AEM.66.10.4222-4229.2000. PubMed DOI PMC

Mohamed H.E., van de Meene A.M., Roberson R.W., Vermaas W.F. Myxoxanthophyll is required for normal cell wall structure and thylakoid organization in the cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacteriol. 2005;187:6883–6892. doi: 10.1128/JB.187.20.6883-6892.2005. PubMed DOI PMC

Singh Y., Gulati A., Singh D.P., Khattar J.I.S. Cyanobacterial community structure in hot water springs of Indian North-Western Himalayas: A morphological, molecular and ecological approach. Algal Res. 2018;29:179–192. doi: 10.1016/j.algal.2017.11.023. DOI

Alcorta J., Alarcón-Schumacher T., Salgado O., Díez B. Taxonomic novelty and distinctive genomic features of hot spring cyanobacteria. Front. Genet. 2020;11:568223. doi: 10.3389/fgene.2020.568223. PubMed DOI PMC

Strunecký O., Kopejtka K., Goecke F., Tomasch J., Lukavský J., Neori A., Kahl S., Pieper D.H., Pilarski P., Kaftan D., et al. High diversity of thermophilic cyanobacteria in Rupite hot spring identified by microscopy, cultivation, single-cell PCR and amplicon sequencing. Extremophiles. 2019;23:35–48. doi: 10.1007/s00792-018-1058-z. PubMed DOI

Tang J., Jiang D., Luo Y., Liang Y., Li L., Shah M.M.R., Daroch M. Potential new genera of cyanobacterial strains isolated from thermal springs of western Sichuan, China. Algal Res. 2018;31:14–20. doi: 10.1016/j.algal.2018.01.008. DOI

Swain S.S., Paidesetty S.K., Padhy R.N. Antibacterial, antifungal and antimycobacterial compounds from cyanobacteria, Biomed. Pharmacother. 2017;90:760–776. doi: 10.1016/j.biopha.2017.04.030. PubMed DOI

Rizwan M., Mujtaba G., Memon S., Lee K., Rashid N. Exploring the potential of microalgae for new biotechnology applications and beyond: A review. Renew. Sustain. Energy Rev. 2018;92:394–404. doi: 10.1016/j.rser.2018.04.034. DOI

Spolaore P., Joannis-Cassan C., Duran E., Isambert A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006;101:87–96. doi: 10.1263/jbb.101.87. PubMed DOI

Żymańczyk-Duda E., Samson S., Brzezińska-Rodak M., Klimek-Ochab M. Versatile applications of cyanobacteria in biotechnology. Microorganisms. 2022;10:2318. doi: 10.3390/microorganisms10122318. PubMed DOI PMC

Tiwari A.K., Tiwari B.S. Cyanotherapeutics: An emerging field for future drug discovery. Appl. Phycol. 2020;1:44–57. doi: 10.1080/26388081.2020.1744480. DOI

Pagels F., Salvaterra D., Amaro H.M., Lopes G., Sousa-Pinto I., Vasconcelos V., Guedes A.C. Bioactive potential of Cyanobium sp. pigment-rich extracts. J. Appl. Phycol. 2020;32:3031–3040. doi: 10.1007/s10811-020-02213-1. DOI

Nayak S., Prasanna R., Prasanna B., Sahoo D. Analysing diversity among Indian isolates of Anabaena (Nostocales, Cyanophyta) using morphological, physiological and biochemical characters. Microb. Ecol. 2007;23:1575–1584. doi: 10.1007/s11274-007-9403-x. DOI

Galetović A., Seura F., Gallardo V., Graves R., Cortés J., Valdivia C., Núñez J., Tapia C., Neira I., Sanzana S., et al. Use of phycobiliproteins from Atacama cyanobacteria as food colorants in a dairy beverage prototype. Foods. 2020;9:244. doi: 10.3390/foods9020244. PubMed DOI PMC

Kini S., Divyashree M., Mani M.K., Mamatha B.S. Algae and cyanobacteria as a source of novel bioactive compounds for biomedical applications. In: Singh P.K., Kumar A., Singh V.K., Shrivastava A.K., editors. Advances in Cyanobacterial Biology. Academic Press; Cambridge, MA, USA: 2020. pp. 173–194. DOI

Ferraro G., Imbimbo P., Marseglia A., Illiano A., Fontanarosa C., Amoresano A., Olivieri G., Pollio A., Monti D.M., Merlino A. A thermophilic C-phycocyanin with unprecedented biophysical and biochemical properties. Int. J. Biol. Macromol. 2020;150:38–51. doi: 10.1016/j.ijbiomac.2020.02.045. PubMed DOI

Liang Y., Kaczmarek M.B., Kasprzak A.K., Tang J., Shah M.M.R., Jin P., Klepacz-Smółka A., Cheng J.J., Ledakowicz S., Daroch M. Thermosynechococcaceae as a source of thermostable C-phycocyanins: Properties and molecular insights. Algal Res. 2018;35:223–235. doi: 10.1016/j.algal.2018.08.037. DOI

Tabassum R., Bhatnagar S.K., Dhar D.W. Enhanced pigment production in selected cyanobacteria through cultural manipulations. J. Indian. Bot. Soc. 2012;91:236–244.

Jeevanantham G., Vinoth M., Hussain J.M., Muruganantham P., Ahamed A.K. Biochemical characterization of five marine cyanobacteria species for their biotechnological applications. J. Pharmacogn. Phytochem. 2019;8:635–640.

Sarmah P., Rout J. Biochemical profile of five species of cyanobacteria isolated from polythene surface in domestic sewage water of Silchar town, Assam (India) Curr. Trends. Biotechnol. Pharm. 2018;12:2230–2303.

Singh J., Sarma K., Saini A., Kant D., Kant R. Biomass and bio-molecule profiling of Oscillatoria subbrevis and O. sancta (Oscillatoriales, Cyanophyta) Preprints. 2024:2024020434. doi: 10.20944/preprints202402.0434.v1. DOI

Nayeem J., Dey P., Dey S.K., Debi D., Ayoun M.A., Khatoon H. A comprehensive dataset on the extraction of pigments from Oscillatoria spp. Data Brief. 2024;52:109972. doi: 10.1016/j.dib.2023.109972. PubMed DOI PMC

Takaichi S., Maoka T., Masamoto K. Myxoxanthophyll in Synechocystis sp. PCC 6803 is myxol 2′-dimethyl-fucoside, 3R,2′S-myxol-2′-2,4-di-O-methyl-L-fucoside, not rhamnoside. Plant Cell Physiol. 2001;42:756–762. doi: 10.1093/pcp/pce098. PubMed DOI

Foss P., Skulberg O.M., Kilaas L., Liaaen-Jensen S. The carbohydrate moieties bound to the carotenoids myxol and oscillol and their chemosystematic applications. Phytochemistry. 1986;25:1127–1132. doi: 10.1016/S0031-9422(00)81568-X. DOI

Aakermann T., Skulberg O.M., Liaaen-Jensen S. A comparison of the carotenoids of strains of Oscillatoria and Spirulina cyanobacteria. Biochem. Syst. Ecol. 1992;20:761–769. doi: 10.1016/0305-1978(92)90035-C. DOI

Graham J.E., Bryant D.A. The biosynthetic pathway for myxol-2′ fucoside (myxoxanthophyll) in the cyanobacterium Synechococcus sp. strain PCC 7002. J. Bacteriol. 2009;191:3292–3300. doi: 10.1128/JB.00050-09. PubMed DOI PMC

Nováková M., Fábryová T., Vokurková D., Dolečková I., Kopecký J., Hrouzek P., Tůmová L., Cheel J. Separation of the Glycosylated Carotenoid Myxoxanthophyll from Synechocystis Salina by HPCCC and Evaluation of Its Antioxidant, Tyrosinase Inhibitory and Immune-Stimulating Properties. Separations. 2020;7:73. doi: 10.3390/separations7040073. DOI

Srivastava A., Thapa S., Chakdar H., Babele P., Shukla P. Cyanobacterial myxoxanthophylls: Biotechnological interventions and biological implications. Crit. Rev. Biotechnol. 2022;44:63–77. doi: 10.1080/07388551.2022.2117682. PubMed DOI

Jufri R.F. Microbial Isolation. J. La Lifesci. 2020;1:18–23. doi: 10.37899/journallalifesci.v1i1.33. DOI

Ergashev A.E. Key to Protococcal Algae of Central Asia. 2nd ed. Uzbekistan Academy of Science Publisher; Tashkent, Uzbekistan: 1979.

Tsarenko P.M. A Brief Guide to Chlorococcal Algae of the Ukrainian SSR. Nauk; Kiev, Ukraine: 1990.

Zinova A.D. Key to Green, Brown and Red Algae of the Southern Seas of the USSR. Nauka; Moscow, Leningrad, USSR: 1967. 400p

The on-Line Database of Cyanobacterial Genera. [(accessed on 1 October 2023)]. Available online: http://www.cyanodb.cz/

CyanoCyc Cyanobacterial Pathway/Genome Databases. [(accessed on 1 July 2024)]. Available online: https://cyanocyc.org/

Castiglioni B., Rizzi E., Frosini A., Sivonen K., Rajaniemi P., Rantala A., Mugnai M.A., Ventura S., Wilmotte A., Boutte C. Development of a universal microarray based on the ligation detection reaction and 16S rRNA gene polymorphism to target diversity of cyanobacteria. Appl. Environ. Microbiol. 2004;70:7161–7172. doi: 10.1128/AEM.70.12.7161-7172.2004. PubMed DOI PMC

NCBI DNA Database. [(accessed on 15 June 2024)]; Available online: https://www.ncbi.nlm.nih.gov/nucleotide/

Newman L., Duffus A.L.J., Lee C. Using the free program MEGA to build phylogenetic trees from molecular data. Am Biol Teach. 2016;78:608–612. doi: 10.1525/abt.2016.78.7.608. DOI

Rajasekaran C., Ajeesh C.M., Balaji S., Shalini M., Ramamoorthy S.I.V.A., Ranjan D.A.S., Fulzele D.P., Kalaivani T. Effect of Modified Zarrouk’s Medium on Growth of Different Spirulina Strains. J. Sci. Technol. 2013;13:67–75.

Allen M.M., Stanier R.Y. Growth and Division of Some Unicellular Blue-green Algae. J. Gen. Microbiol. 1968;51:199–202. doi: 10.1099/00221287-51-2-199. PubMed DOI

Zavřel T., Sinetova M., Buzova D., Literakova P., Červený J. Characterization of a model cyanobacterium Synechocystis sp. PCC 6803 autotrophic growth in a flat-panel photobioreactor. Eng. Life Sci. 2015;15:122–132. doi: 10.1002/elsc.201300165. DOI

Giannuzzi L. Cyanobacteria Growth Kinetics. In: Wong Y.K., editor. Algae. IntechOpen; London, UK: 2018. DOI

Dadheech P.K., Abed R.M.M., Mahmoud H., Mohan M.K., Krienitz L. Polyphasic characterization of cyanobacteria isolated from desert crusts, and the description of Desertifilum tharense gen. et sp. nov. (Oscillatoriales) Phycologia. 2012;51:260–270. doi: 10.2216/09-51.1. DOI

Zavřel T., Chmelík D., Sinetova M.A., Červený J. Spectrophotometric determination of phycobiliprotein content in cyanobacterium Synechocystis. J. Vis. Exp. 2018;139:58076. doi: 10.3791/58076. PubMed DOI PMC

Chakdar H., Saha S., Pabbi S. Chromatographic and spectroscopic characterization of phycocyanin and its subunits purified from Anabaena variabilis CCC421. Appl. Biochem. Microbiol. 2014;50:62–68. doi: 10.1134/S0003683813060057. PubMed DOI

Bennett A., Bogorad L. Complementary chromatic adaptation in filamentous blue-green algae. J. Cell Biol. 1973;58:419–435. doi: 10.1083/jcb.58.2.419. PubMed DOI PMC

Johnson E.M., Kumar K., Das D. Physicochemical parameters optimization, and purification of phycobiliproteins from the isolated Nostoc sp. Bioresour. Technol. 2014;166:541–547. doi: 10.1016/j.biortech.2014.05.097. PubMed DOI

Rodrigues D.B., Menezes C.R., Mercadante A.Z., Jacob-Lopes E., Zepka L.Q. Bioactive pigments from microalgae Phormidium autumnale. Food Res. Int. 2015;77:273–279. doi: 10.1016/j.foodres.2015.04.027. DOI

Zavřel T., Sinetova M., Cervený J. Measurement of chlorophyll a and carotenoids concentration in cyanobacteria. Bio-Protocol. 2015;5:e1467. doi: 10.21769/BioProtoc.1467. DOI

Britton G. UV/visible spectroscopy. In: Britton G., Liaaen-Jensen S., Pfander H., editors. Carotenoids: Spectroscopy. Birkhäuser; Boston, MA, USA: 1995. pp. 13–62.

De Rosso V.V., Mercadante A.Z. Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from Amazonian fruits. J. Agric. Food Chem. 2007;55:5062–5072. doi: 10.1021/jf0705421. PubMed DOI

Rodrigues D.B., Flores E.M.M., Barin J.S., Mercadante A.Z., Jacob-Lopes E., Zepka L.Q. From waste to natural pigments: Production of microalgal carotenoids in agroindustrial wastewater. Food Res. Int. 2014;65:144–148. doi: 10.1016/j.foodres.2014.06.037. DOI

Van Breemen R.B., Dong L., Pajkovic N.D. Atmospheric pressure chemical ionization tandem mass spectrometry of carotenoids. Int. J. Mass Spectrom. 2012;312:163–172. doi: 10.1016/j.ijms.2011.07.030. PubMed DOI PMC

Zepka L.Q., Mercadante A.Z. Degradation compounds of carotenoids formed during heating of a simulated cashew apple juice. Food Chem. 2009;117:28–34. doi: 10.1016/j.foodchem.2009.03.071. DOI

Rutherford A. Introducing ANOVA and ANCOVA: A GLM Approach. 1st ed. Sage Publications; Thousand Oaks, CA, USA: 2001.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace