Isolation, Identification and Pigment Analysis of Novel Cyanobacterial Strains from Thermal Springs
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
АР14870171
This work was funded by the Ministry of Science and Higher Education of the Republic of Ka-zakhstan within the project АР14870171.
PubMed
39519869
PubMed Central
PMC11547633
DOI
10.3390/plants13212951
PII: plants13212951
Knihovny.cz E-zdroje
- Klíčová slova
- biological activities, carotenoids, chromatography, cyanobacteria, extraction of pigments, identification, myxoxanthophyll,
- Publikační typ
- časopisecké články MeSH
Cyanobacterial pigments have attracted considerable attention in industry due to their bioactive potential and natural origin. In the present study, the growth dynamics and pigment composition, in terms of chlorophyll a, total carotenoids and phycobiliprotein content, of four cyanobacterial strains isolated from thermal springs, namely Oscillatoria subbrevis CZS 2201, Phormidium ambiguum CZS 2205, Nostoc calcicola TSZ 2203, and Synechococcus sp. CZS 2204, were investigated. The analysis revealed that the maximum quantity of chlorophyll a and total carotenoids was observed in Oscillatoria subbrevis CZS 2201 (26.49 and 3.44 µg mL-1), followed by Phormidium ambiguum CZS 2205 (18.64 and 2.32 µg mL-1), whereas a minimum amount was detected in Synechococcus sp. CZS 2204 (12.13 and 1.24 µg mL-1), respectively. In addition, Oscillatoria subbrevis CZS 2201 showed higher quantity of phycobiliproteins, especially C-phycocyanin (45.81 mg g-1), C-phycoerythrin (64.17 mg g-1) and C-allophycocyanin (27.45 mg g-1). Moreover, carotenoid derivatives of Oscillatoria subbrevis CZS 2201 were also identified, among which β-carotene was the dominant form (1.94 µg mL-1), while the accumulation of zeaxanthin and myxoxanthophyll was relatively high (0.53 and 0.41 µg mL-1, respectively) compared with echinenone and cryptoxanthin (0.34 and 0.23 µg mL-1, respectively). The study revealed that Oscillatoria subbrevis CZS 2201 was a potent producer of secondary carotenoids, including myxoxanthophyll.
Zobrazit více v PubMed
Mbow C., Rosenzweig C., Barioni L.G., Benton T.G., Herrero M., Krishnapillai M., Liwenga E., Pradhan P., Rivera-Ferre M.G., Sapkota T., et al. Food Security. In: Shukla P.R., Skea J., Buendia E.C., Masson-Delmotte V., Pörtner H.-O., Roberts D.C., Zhai P., Slade R., Connors S., van Diemen R., editors. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Cambridge University Press; Cambridge, UK: 2019. DOI
Sigamani S., Ramamurthy D., Natarajan H. A Review on Potential Biotechnological applications of Microalgae. J. App. Pharm. Sci. 2016;6:179–184. doi: 10.7324/JAPS.2016.60829. DOI
Vigani M., Parisi C., Rodríguez-Cerezo E., Barbosa M.J., Sijtsma L., Ploeg M., Enzing C. Food and feed products from micro-algae: Market opportunities and challenges for the EU. Trends Food Sci. Technol. 2015;42:81–92. doi: 10.1016/j.tifs.2014.12.004. DOI
Urtubia H.O., Betanzo L.B., Vásquez M. Microalgae and Cyanobacteria as Green Molecular Factories: Tools and Perspectives. In: Thajuddin N., Dhanasekaran D., editors. Algae—Organisms for Imminent Biotechnology. InTech; London, UK: 2016. DOI
Zahra Z., Choo D.H., Lee H., Parveen A. Cyanobacteria: Review of Current Potentials and Applications. Environments. 2020;7:13. doi: 10.3390/environments7020013. DOI
García-Vaquero M., Brunton N., Lafarga T., Tomas L. Microalgae as a source of pigments for food applications. In: Lafarga T., Acién G., editors. Cultured Microalgae for the Food Industry. Academic Press; Cambridge, MA, USA: 2021. pp. 177–198. DOI
Paz-Montelongo S., Hernández-Sánchez C., Guillén-Pino F., Rubio-Armendáriz C., Gutiérrez-Fernández Á.J., Hardisson A. Cyanobacterial Pigments: Pharmaceutical and Nutraceutical Applications. In: Mehmood M.A., Verma P., Shah M.P., Betenbaugh M.J., editors. Pharmaceutical and Nutraceutical Potential of Cyanobacteria. Springer; Cham, Switzerland: 2024. DOI
Saini D.K., Pabbi S., Shukla P. Cyanobacterial pigments: Perspectives and biotechnological approaches. Food Chem. Toxicol. 2018;120:616–624. doi: 10.1016/j.fct.2018.08.002. PubMed DOI
Pagels F., Vasconcelos V., Guedes A.C. Carotenoids from Cyanobacteria: Biotechnological Potential and Optimization Strategies. Biomolecules. 2021;11:735. doi: 10.3390/biom11050735. PubMed DOI PMC
Stadnichuk I.N., Krasilnikov P.M., Zlenko D.V. Cyanobacterial phycobilisomes and phycobiliproteins. Microbiology. 2015;84:101–111. doi: 10.1134/S0026261715020150. PubMed DOI
Del Campo J.A., García-González M., Guerrero M.G. Outdoor cultivation of microalgae for carotenoid production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2007;74:1163–1174. doi: 10.1007/s00253-007-0844-9. PubMed DOI
Assunçao J., Amaro H.M., Malcata F.X., Guedes A.C. Cyanobacterial pigments: Photosynthetic function and biotechnological purposes. In: Lopes G., Vasconcelos V., editors. The Pharmacological Potential of Cyanobacteria. Academic Press; Cambridge, MA, USA: 2022. pp. 201–256. DOI
Ghosh S., Sarkar T., Das A., Chakraborty R. Natural colorants from plant pigments and their encapsulation: An emerging window for the food industry. LWT. 2022;153:112527. doi: 10.1016/j.lwt.2021.112527. DOI
Rodriguez-Amaya D.B. Natural food pigments and colorants. Curr. Opin. Food Sci. 2016;7:20–26. doi: 10.1016/j.cofs.2015.08.004. DOI
Rao M.P.N., Xiao M., Li W.-J. Fungal and bacterial pigments: Secondary metabolites with wide applications. Front. Microbiol. 2017;8:1113. doi: 10.3389/fmicb.2017.01113. PubMed DOI PMC
Thevarajah B., Nishshanka G.K.S.H., Premaratne M., Wasath W.A.J., Nimarshana P.H.V., Malik A., Ariyadasa T.U. Cyanobacterial pigment production in wastewaters treated for heavy metal removal: Current status and perspectives. J. Environ. Chem. Eng. 2023;11:108999. doi: 10.1016/j.jece.2022.108999. DOI
Patel A.K., Albarico F.P.J.B., Perumal P.K., Vadrale A.P., Ntan C.T., Chau H.T.B., Anwar C., Wani H.M.U.D., Pal A., Saini R., et al. Algae as an emerging source of bioactive pigments. Bioresour. Technol. 2022;351:126910. doi: 10.1016/j.biortech.2022.126910. PubMed DOI
Cardozo K.H., Guaratini T., Barros M.P., Falcão V.R., Tonon A.P., Lopes N.P., Campos S., Torres M.A., Souza A.O., Colepicolo P., et al. Metabolites from algae with economical impact. Comp. Biochem. Physiol. C. 2007;146:60–78. doi: 10.1016/j.cbpc.2006.05.007. PubMed DOI
Kossalbayev B.D., Yilmaz G., Sadvakasova A.K., Zayadan B.K., Belkozhayev A.M., Kamshybayeva G.K., Sainova G.A., Bozieva A.M., Alharby H.F., Tomo T., et al. Biotechnological production of hydrogen: Design features of photobioreactors and improvement of conditions for cultivating cyanobacteria. Int. J. Hydrogen Energy. 2023;49:413–432. doi: 10.1016/j.ijhydene.2023.09.001. DOI
Chittora D., Meena M., Barupal T., Swapnil P. Cyanobacteria as a source of biofertilizers for sustainable agriculture. Biochem. Biophys. Rep. 2020;22:100737. doi: 10.1016/j.bbrep.2020.100737. PubMed DOI PMC
Papadopoulos G.A., Chalvatzi S., Kopecký J., Arsenos G., Fortomaris P.D. Effects of dietary fat source on lutein, zeaxanthin and total carotenoids content of the egg yolk in laying hens during the early laying period. Br. Poult. Sci. 2019;60:431–438. doi: 10.1080/00071668.2019.1614526. PubMed DOI
Begum H., Yusoff F.M., Banerjee S., Khatoon H., Shariff M. Availability and Utilization of Pigments from Microalgae. Crit. Rev. Food Sci. Nutr. 2016;56:2209–2222. doi: 10.1080/10408398.2013.764841. PubMed DOI
Sandybayeva S.K., Kossalbayev B.D., Zayadan B.K., Sadvakasova A.K., Bolatkhan K., Zadneprovskaya E.V., Kakimova A.B., Alwasel S., Leong Y.K., Allakhverdiev S.I. Prospects of cyanobacterial pigment production: Biotechnological potential and optimization strategies. Biochem. Eng. J. 2022;187:108640. doi: 10.1016/j.bej.2022.108640. DOI
Guedes A.C., Amaro H.M., Malcata F.X. Microalgae as Sources of Carotenoids. Mar. Drugs. 2011;9:625–644. doi: 10.3390/md9040625. PubMed DOI PMC
Graham J.E., Lecomte J.T.J., Bryant D.A., Park U.V. Synechoxanthin, an Aromatic C40 Xanthophyll That Is a Major Carotenoid in the Cyanobacterium Synechococcus Sp. PCC 7002. J. Nat. Prod. 2008;71:1647–1650. doi: 10.1021/np800310b. PubMed DOI
Buchecker R., Liaaen-Jensen S., Borch G., Siegelman H.W. Carotenoids of Anacystis Nidulans Structures of Caloxanthin and Nostoxanthin. Phytochemistry. 1976;15:1015–1018. doi: 10.1016/S0031-9422(00)84393-9. DOI
Schagerl M., Donabaum K. Patterns of Major Photosynthetic Pigments in Freshwater Algae. 1. Cyanoprokaryota, Rhodophyta and Cryptophyta. Ann. Limnol. 2003;39:35–47. doi: 10.1051/limn/2003003. DOI
Withers N.W., Alberteo R.S., Lewin R.A., Thornberi J.P., Britton G., Goodwin T.W. Photosynthetic Unit Size, Carotenoids, and Chlorophyll-Protein Composition of Prochloron Sp., a Prokaryotic Green Alga. Proc. Natl. Acad. Sci. USA. 1978;75:2301–2305. doi: 10.1073/pnas.75.5.2301. PubMed DOI PMC
Nagy V., Agócs A., Deli J., Gulyás-Fekete G., Illyés T.Z., Kurtán T., Turcsi E., Béni S., Dékány M., Ballot A., et al. Carotenoid Glycoside Isolated and Identified from Cyanobacterium Cylindrospermopsis Raciborskii. J. Food Compos. Anal. 2018;65:6–10. doi: 10.1016/j.jfca.2017.06.003. DOI
Yao L., Shabestary K., Björk S.M., Asplund-Samuelsson J., Joensson H.N., Jahn M., Hudson E.P. Pooled CRISPRi screening of the cyanobacterium Synechocystis sp PCC 6803 for enhanced industrial phenotypes. Nat. Commun. 2020;11:1666. doi: 10.1038/s41467-020-15491-7. PubMed DOI PMC
Patias L., Fernandes A., Petry F., Mercadante A., Jacob-Lopes E., Zepka L.Q. Carotenoid profile of three microalgae/cyanobacteria species with peroxyl radical scavenger capacity. Food Res. Int. 2017;100:260–266. doi: 10.1016/j.foodres.2017.06.069. PubMed DOI
Miller S.R., Castenholz R.W. Evolution of Thermotolerance in Hot Spring Cyanobacteria of the Genus Synechococcus. Appl. Environ. Microbiol. 2000;66:4222–4229. doi: 10.1128/AEM.66.10.4222-4229.2000. PubMed DOI PMC
Mohamed H.E., van de Meene A.M., Roberson R.W., Vermaas W.F. Myxoxanthophyll is required for normal cell wall structure and thylakoid organization in the cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacteriol. 2005;187:6883–6892. doi: 10.1128/JB.187.20.6883-6892.2005. PubMed DOI PMC
Singh Y., Gulati A., Singh D.P., Khattar J.I.S. Cyanobacterial community structure in hot water springs of Indian North-Western Himalayas: A morphological, molecular and ecological approach. Algal Res. 2018;29:179–192. doi: 10.1016/j.algal.2017.11.023. DOI
Alcorta J., Alarcón-Schumacher T., Salgado O., Díez B. Taxonomic novelty and distinctive genomic features of hot spring cyanobacteria. Front. Genet. 2020;11:568223. doi: 10.3389/fgene.2020.568223. PubMed DOI PMC
Strunecký O., Kopejtka K., Goecke F., Tomasch J., Lukavský J., Neori A., Kahl S., Pieper D.H., Pilarski P., Kaftan D., et al. High diversity of thermophilic cyanobacteria in Rupite hot spring identified by microscopy, cultivation, single-cell PCR and amplicon sequencing. Extremophiles. 2019;23:35–48. doi: 10.1007/s00792-018-1058-z. PubMed DOI
Tang J., Jiang D., Luo Y., Liang Y., Li L., Shah M.M.R., Daroch M. Potential new genera of cyanobacterial strains isolated from thermal springs of western Sichuan, China. Algal Res. 2018;31:14–20. doi: 10.1016/j.algal.2018.01.008. DOI
Swain S.S., Paidesetty S.K., Padhy R.N. Antibacterial, antifungal and antimycobacterial compounds from cyanobacteria, Biomed. Pharmacother. 2017;90:760–776. doi: 10.1016/j.biopha.2017.04.030. PubMed DOI
Rizwan M., Mujtaba G., Memon S., Lee K., Rashid N. Exploring the potential of microalgae for new biotechnology applications and beyond: A review. Renew. Sustain. Energy Rev. 2018;92:394–404. doi: 10.1016/j.rser.2018.04.034. DOI
Spolaore P., Joannis-Cassan C., Duran E., Isambert A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006;101:87–96. doi: 10.1263/jbb.101.87. PubMed DOI
Żymańczyk-Duda E., Samson S., Brzezińska-Rodak M., Klimek-Ochab M. Versatile applications of cyanobacteria in biotechnology. Microorganisms. 2022;10:2318. doi: 10.3390/microorganisms10122318. PubMed DOI PMC
Tiwari A.K., Tiwari B.S. Cyanotherapeutics: An emerging field for future drug discovery. Appl. Phycol. 2020;1:44–57. doi: 10.1080/26388081.2020.1744480. DOI
Pagels F., Salvaterra D., Amaro H.M., Lopes G., Sousa-Pinto I., Vasconcelos V., Guedes A.C. Bioactive potential of Cyanobium sp. pigment-rich extracts. J. Appl. Phycol. 2020;32:3031–3040. doi: 10.1007/s10811-020-02213-1. DOI
Nayak S., Prasanna R., Prasanna B., Sahoo D. Analysing diversity among Indian isolates of Anabaena (Nostocales, Cyanophyta) using morphological, physiological and biochemical characters. Microb. Ecol. 2007;23:1575–1584. doi: 10.1007/s11274-007-9403-x. DOI
Galetović A., Seura F., Gallardo V., Graves R., Cortés J., Valdivia C., Núñez J., Tapia C., Neira I., Sanzana S., et al. Use of phycobiliproteins from Atacama cyanobacteria as food colorants in a dairy beverage prototype. Foods. 2020;9:244. doi: 10.3390/foods9020244. PubMed DOI PMC
Kini S., Divyashree M., Mani M.K., Mamatha B.S. Algae and cyanobacteria as a source of novel bioactive compounds for biomedical applications. In: Singh P.K., Kumar A., Singh V.K., Shrivastava A.K., editors. Advances in Cyanobacterial Biology. Academic Press; Cambridge, MA, USA: 2020. pp. 173–194. DOI
Ferraro G., Imbimbo P., Marseglia A., Illiano A., Fontanarosa C., Amoresano A., Olivieri G., Pollio A., Monti D.M., Merlino A. A thermophilic C-phycocyanin with unprecedented biophysical and biochemical properties. Int. J. Biol. Macromol. 2020;150:38–51. doi: 10.1016/j.ijbiomac.2020.02.045. PubMed DOI
Liang Y., Kaczmarek M.B., Kasprzak A.K., Tang J., Shah M.M.R., Jin P., Klepacz-Smółka A., Cheng J.J., Ledakowicz S., Daroch M. Thermosynechococcaceae as a source of thermostable C-phycocyanins: Properties and molecular insights. Algal Res. 2018;35:223–235. doi: 10.1016/j.algal.2018.08.037. DOI
Tabassum R., Bhatnagar S.K., Dhar D.W. Enhanced pigment production in selected cyanobacteria through cultural manipulations. J. Indian. Bot. Soc. 2012;91:236–244.
Jeevanantham G., Vinoth M., Hussain J.M., Muruganantham P., Ahamed A.K. Biochemical characterization of five marine cyanobacteria species for their biotechnological applications. J. Pharmacogn. Phytochem. 2019;8:635–640.
Sarmah P., Rout J. Biochemical profile of five species of cyanobacteria isolated from polythene surface in domestic sewage water of Silchar town, Assam (India) Curr. Trends. Biotechnol. Pharm. 2018;12:2230–2303.
Singh J., Sarma K., Saini A., Kant D., Kant R. Biomass and bio-molecule profiling of Oscillatoria subbrevis and O. sancta (Oscillatoriales, Cyanophyta) Preprints. 2024:2024020434. doi: 10.20944/preprints202402.0434.v1. DOI
Nayeem J., Dey P., Dey S.K., Debi D., Ayoun M.A., Khatoon H. A comprehensive dataset on the extraction of pigments from Oscillatoria spp. Data Brief. 2024;52:109972. doi: 10.1016/j.dib.2023.109972. PubMed DOI PMC
Takaichi S., Maoka T., Masamoto K. Myxoxanthophyll in Synechocystis sp. PCC 6803 is myxol 2′-dimethyl-fucoside, 3R,2′S-myxol-2′-2,4-di-O-methyl-L-fucoside, not rhamnoside. Plant Cell Physiol. 2001;42:756–762. doi: 10.1093/pcp/pce098. PubMed DOI
Foss P., Skulberg O.M., Kilaas L., Liaaen-Jensen S. The carbohydrate moieties bound to the carotenoids myxol and oscillol and their chemosystematic applications. Phytochemistry. 1986;25:1127–1132. doi: 10.1016/S0031-9422(00)81568-X. DOI
Aakermann T., Skulberg O.M., Liaaen-Jensen S. A comparison of the carotenoids of strains of Oscillatoria and Spirulina cyanobacteria. Biochem. Syst. Ecol. 1992;20:761–769. doi: 10.1016/0305-1978(92)90035-C. DOI
Graham J.E., Bryant D.A. The biosynthetic pathway for myxol-2′ fucoside (myxoxanthophyll) in the cyanobacterium Synechococcus sp. strain PCC 7002. J. Bacteriol. 2009;191:3292–3300. doi: 10.1128/JB.00050-09. PubMed DOI PMC
Nováková M., Fábryová T., Vokurková D., Dolečková I., Kopecký J., Hrouzek P., Tůmová L., Cheel J. Separation of the Glycosylated Carotenoid Myxoxanthophyll from Synechocystis Salina by HPCCC and Evaluation of Its Antioxidant, Tyrosinase Inhibitory and Immune-Stimulating Properties. Separations. 2020;7:73. doi: 10.3390/separations7040073. DOI
Srivastava A., Thapa S., Chakdar H., Babele P., Shukla P. Cyanobacterial myxoxanthophylls: Biotechnological interventions and biological implications. Crit. Rev. Biotechnol. 2022;44:63–77. doi: 10.1080/07388551.2022.2117682. PubMed DOI
Jufri R.F. Microbial Isolation. J. La Lifesci. 2020;1:18–23. doi: 10.37899/journallalifesci.v1i1.33. DOI
Ergashev A.E. Key to Protococcal Algae of Central Asia. 2nd ed. Uzbekistan Academy of Science Publisher; Tashkent, Uzbekistan: 1979.
Tsarenko P.M. A Brief Guide to Chlorococcal Algae of the Ukrainian SSR. Nauk; Kiev, Ukraine: 1990.
Zinova A.D. Key to Green, Brown and Red Algae of the Southern Seas of the USSR. Nauka; Moscow, Leningrad, USSR: 1967. 400p
The on-Line Database of Cyanobacterial Genera. [(accessed on 1 October 2023)]. Available online: http://www.cyanodb.cz/
CyanoCyc Cyanobacterial Pathway/Genome Databases. [(accessed on 1 July 2024)]. Available online: https://cyanocyc.org/
Castiglioni B., Rizzi E., Frosini A., Sivonen K., Rajaniemi P., Rantala A., Mugnai M.A., Ventura S., Wilmotte A., Boutte C. Development of a universal microarray based on the ligation detection reaction and 16S rRNA gene polymorphism to target diversity of cyanobacteria. Appl. Environ. Microbiol. 2004;70:7161–7172. doi: 10.1128/AEM.70.12.7161-7172.2004. PubMed DOI PMC
NCBI DNA Database. [(accessed on 15 June 2024)]; Available online: https://www.ncbi.nlm.nih.gov/nucleotide/
Newman L., Duffus A.L.J., Lee C. Using the free program MEGA to build phylogenetic trees from molecular data. Am Biol Teach. 2016;78:608–612. doi: 10.1525/abt.2016.78.7.608. DOI
Rajasekaran C., Ajeesh C.M., Balaji S., Shalini M., Ramamoorthy S.I.V.A., Ranjan D.A.S., Fulzele D.P., Kalaivani T. Effect of Modified Zarrouk’s Medium on Growth of Different Spirulina Strains. J. Sci. Technol. 2013;13:67–75.
Allen M.M., Stanier R.Y. Growth and Division of Some Unicellular Blue-green Algae. J. Gen. Microbiol. 1968;51:199–202. doi: 10.1099/00221287-51-2-199. PubMed DOI
Zavřel T., Sinetova M., Buzova D., Literakova P., Červený J. Characterization of a model cyanobacterium Synechocystis sp. PCC 6803 autotrophic growth in a flat-panel photobioreactor. Eng. Life Sci. 2015;15:122–132. doi: 10.1002/elsc.201300165. DOI
Giannuzzi L. Cyanobacteria Growth Kinetics. In: Wong Y.K., editor. Algae. IntechOpen; London, UK: 2018. DOI
Dadheech P.K., Abed R.M.M., Mahmoud H., Mohan M.K., Krienitz L. Polyphasic characterization of cyanobacteria isolated from desert crusts, and the description of Desertifilum tharense gen. et sp. nov. (Oscillatoriales) Phycologia. 2012;51:260–270. doi: 10.2216/09-51.1. DOI
Zavřel T., Chmelík D., Sinetova M.A., Červený J. Spectrophotometric determination of phycobiliprotein content in cyanobacterium Synechocystis. J. Vis. Exp. 2018;139:58076. doi: 10.3791/58076. PubMed DOI PMC
Chakdar H., Saha S., Pabbi S. Chromatographic and spectroscopic characterization of phycocyanin and its subunits purified from Anabaena variabilis CCC421. Appl. Biochem. Microbiol. 2014;50:62–68. doi: 10.1134/S0003683813060057. PubMed DOI
Bennett A., Bogorad L. Complementary chromatic adaptation in filamentous blue-green algae. J. Cell Biol. 1973;58:419–435. doi: 10.1083/jcb.58.2.419. PubMed DOI PMC
Johnson E.M., Kumar K., Das D. Physicochemical parameters optimization, and purification of phycobiliproteins from the isolated Nostoc sp. Bioresour. Technol. 2014;166:541–547. doi: 10.1016/j.biortech.2014.05.097. PubMed DOI
Rodrigues D.B., Menezes C.R., Mercadante A.Z., Jacob-Lopes E., Zepka L.Q. Bioactive pigments from microalgae Phormidium autumnale. Food Res. Int. 2015;77:273–279. doi: 10.1016/j.foodres.2015.04.027. DOI
Zavřel T., Sinetova M., Cervený J. Measurement of chlorophyll a and carotenoids concentration in cyanobacteria. Bio-Protocol. 2015;5:e1467. doi: 10.21769/BioProtoc.1467. DOI
Britton G. UV/visible spectroscopy. In: Britton G., Liaaen-Jensen S., Pfander H., editors. Carotenoids: Spectroscopy. Birkhäuser; Boston, MA, USA: 1995. pp. 13–62.
De Rosso V.V., Mercadante A.Z. Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from Amazonian fruits. J. Agric. Food Chem. 2007;55:5062–5072. doi: 10.1021/jf0705421. PubMed DOI
Rodrigues D.B., Flores E.M.M., Barin J.S., Mercadante A.Z., Jacob-Lopes E., Zepka L.Q. From waste to natural pigments: Production of microalgal carotenoids in agroindustrial wastewater. Food Res. Int. 2014;65:144–148. doi: 10.1016/j.foodres.2014.06.037. DOI
Van Breemen R.B., Dong L., Pajkovic N.D. Atmospheric pressure chemical ionization tandem mass spectrometry of carotenoids. Int. J. Mass Spectrom. 2012;312:163–172. doi: 10.1016/j.ijms.2011.07.030. PubMed DOI PMC
Zepka L.Q., Mercadante A.Z. Degradation compounds of carotenoids formed during heating of a simulated cashew apple juice. Food Chem. 2009;117:28–34. doi: 10.1016/j.foodchem.2009.03.071. DOI
Rutherford A. Introducing ANOVA and ANCOVA: A GLM Approach. 1st ed. Sage Publications; Thousand Oaks, CA, USA: 2001.