Producers and important dietary sources of ochratoxin A and citrinin
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
24048364
PubMed Central
PMC3798874
DOI
10.3390/toxins5091574
PII: toxins5091574
Knihovny.cz E-zdroje
- MeSH
- Aspergillus metabolismus MeSH
- citrinin analýza metabolismus MeSH
- dieta MeSH
- kontaminace potravin * MeSH
- Monascus metabolismus MeSH
- ochratoxiny analýza metabolismus MeSH
- Penicillium metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- citrinin MeSH
- ochratoxin A MeSH Prohlížeč
- ochratoxiny MeSH
Ochratoxin A (OTA) is a very important mycotoxin, and its research is focused right now on the new findings of OTA, like being a complete carcinogen, information about OTA producers and new exposure sources of OTA. Citrinin (CIT) is another important mycotoxin, too, and its research turns towards nephrotoxicity. Both additive and synergistic effects have been described in combination with OTA. OTA is produced in foodstuffs by Aspergillus Section Circumdati (Aspergillus ochraceus, A. westerdijkiae, A. steynii) and Aspergillus Section Nigri (Aspergillus carbonarius, A. foetidus, A. lacticoffeatus, A. niger, A. sclerotioniger, A. tubingensis), mostly in subtropical and tropical areas. OTA is produced in foodstuffs by Penicillium verrucosum and P. nordicum, notably in temperate and colder zones. CIT is produced in foodstuffs by Monascus species (Monascus purpureus, M. ruber) and Penicillium species (Penicillium citrinum, P. expansum, P. radicicola, P. verrucosum). OTA was frequently found in foodstuffs of both plant origin (e.g., cereal products, coffee, vegetable, liquorice, raisins, wine) and animal origin (e.g., pork/poultry). CIT was also found in foodstuffs of vegetable origin (e.g., cereals, pomaceous fruits, black olive, roasted nuts, spices), food supplements based on rice fermented with red microfungi Monascus purpureus and in foodstuffs of animal origin (e.g., cheese).
Zobrazit více v PubMed
Pfohl-Leszkowicz A., Manderville R.A. Ochratoxin A: An overview on toxicity and carcinogenicity in animals and humans. Mol. Nutr. Food Res. 2007;51:61–99. doi: 10.1002/mnfr.200600137. PubMed DOI
Malir F., Ostry V., Novotna E. Toxicity of the mycotoxin ochratoxin A (OTA) in the light of recent data. Toxin Rev. 2013;32:19–33. doi: 10.3109/15569543.2013.782504. DOI
Malir F., Ostry V., Pfohl-Leszkowicz A., Roubal T. Ochratoxin A exposure biomarkers in the Czech Republic and comparison with foreign countries. Biomarkers. 2012;17:577–589. doi: 10.3109/1354750X.2012.692392. PubMed DOI
Pfohl-Leszkowicz A., Manderville R.A. An update on direct genotoxicity as a molecular mechanism of ochratoxin A carcinogenicity. Chem. Res. Toxicol. 2012;25:252–262. doi: 10.1021/tx200430f. PubMed DOI
Hibi D., Suzuki Y., Ishii Y., Jin M., Watanabe M., Sugita-Konishi Y., Yanai T., Nohmi T., Nishikawa A., Umemura T. Site-specific in vivo mutagenicity in the kidney of gpt delta rats given a carcinogenic dose of ochratoxin A. Toxicol. Sci. 2011;122:406–414. doi: 10.1093/toxsci/kfr139. PubMed DOI
Akman S.A., Adams M., Case D., Park G., Manderville R.A. Mutagenicity of ochratoxin A and its hydroquinone metabolite in the supF gene of the mutation reporter plasmid pS189. Toxins. 2012;4:267–280. doi: 10.3390/toxins4040267. PubMed DOI PMC
Pfohl-Leszkowicz A., Tozlovanu M., Manderville R., Peraica M., Castegnaro M., Stefanovic V. New molecular and field evidences for the implication of mycotoxins but not aristolochic acidin Human Nephropathy and Urinary tract tumor. Mol. Nutr. Food Res. 2007;51:1131–1146. doi: 10.1002/mnfr.200700045. PubMed DOI
Arai M., Hibino T. Tumorigenicity of citrinin in male F344 rats. Cancer Lett. 1983;17:281–287. doi: 10.1016/0304-3835(83)90165-9. PubMed DOI
Sándor G., Busch A., Watzke H., Reek J., Ványi A. Subacute toxicity testing of ochratoxin-A and citrinin in swine. Acta Vet. Hung. 1991;39:149–160. PubMed
Ammar H., Michailis G., Lisovsky T. A screen of yeast respiratory mutants for sensitivity against the mycotoxin citrinin identifies the vascular ATPase as an essential factor for the toxicity mechanism. Curr. Genet. 2000;37:277–284. PubMed
Sharma R.P. Imunotoxicity of mycotoxins. J. Dairy Sci. 1993;76:892–897. doi: 10.3168/jds.S0022-0302(93)77415-9. PubMed DOI
Hood R.D., Hayes A.W., Scammell J.G. Effects of prenatal administration of citrinin and viriditoxin to mice. Food Cosmetics Toxicol. 1976;14:175–178. doi: 10.1016/S0015-6264(76)80419-1. PubMed DOI
Singh N.D., Sharma A.K., Dwivedi P., Patil R.D., Kumar M. Citrinin and endosulfan induced maternal toxicity in pregnant Wistar rats: Pathomorphological study. J. Appl. Toxicol. 2007;27:589–601. doi: 10.1002/jat.1242. PubMed DOI
Singh N.D., Sharma A.K., Dwivedi P., Patil R.D., Kumar M. Citrinin and endosulfan induced teratogenic effects in Wistar rats. J. Appl. Toxicol. 2007;27:143–151. doi: 10.1002/jat.1185. PubMed DOI
Singh N.D., Sharma A.K., Dwivedi P., Patil R.D., Kumar M. Experimentally induced citrinin and endosulfan toxicity in pregnant Wistar rats: Histopathological alterations in liver and kidneys of fetuses. J. Appl. Toxicol. 2008;28:901–907. doi: 10.1002/jat.1354. PubMed DOI
Singh N.D., Sharma A.K., Dwivedi P., Patil R.D., Kumar M., Ahamad D.B. Toxicity of endosulfan and citrinin alone and in combination in pregnant rats: Clinico-Haematological and serum biochemical alterations. Ind. J. Vet. Pathol. 2006;30:27–31.
Ciegler A., Vesonder R.F., Jackson L.K. Production and biological activity of patulin and citrinin from Penicillium expansum. Appl. Environ. Microbiol. 1977;33:1004–1006. PubMed PMC
Vesela D., Vesely D., Jelinek R. Toxic effects of ochratoxin A and citrinin, alone and in combination, on chicken embryos. Appl. Environ. Microbiol. 1983;45:91–93. PubMed PMC
Sansing G.A., Lillehoj E.B., Detroy R.W., Miller M.A. Synergistic toxic effects of citrinin, ochratoxin A and penicillic acid in mice. Toxicology. 1976;14:213–220. PubMed
Kitchen D.N., Carlton W.W., Hinsman J. Ochratoxin A and citrinin induced nephrosis in beagle dogs. III. Terminal renal ultrastructural alterations. Vet. Pathol. 1977;14:392–406. PubMed
Thacker H.L., Carlton W.W. Citrinin mycotoxicosis in the guinea pig. Food Cosmetics Toxicol. 1977;15:553–556. doi: 10.1016/0015-6264(77)90070-0. PubMed DOI
Siraj M., Phillips T.D., Hayes A.W. Effects of the mycotoxins citrinin and ochratoxin A on hepatic mixed-function oxidase and adenosine triphosphatase in neonatal rats. J. Toxicol. Environ. Health. 1981;8:131–140. doi: 10.1080/15287398109530057. PubMed DOI
Knasmüller S., Cavin C., Chakraborty A., Darroudi F., Majer B.J., Huber W.W., Ehrlich V.A. Structurally related mycotoxins ochratoxin A, ochratoxin B, and citrinin differ in their genotoxic activities and in their mode of action in human-derived liver (HepG2) cells: Implications for risk assessment. Nutr. Cancer. 2004;50:190–197. doi: 10.1207/s15327914nc5002_9. PubMed DOI
International Agency for Research on Cancer (IARC) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Vlolume 40. World Health Organization; Lyon, France: 1986. Some Naturally Occurring and Synthetic Food Components, Furocoumarins and Ultraviolet Radiation; p. 67. PubMed
Kanisawa M. Synergistic effect of citrinin on hepatorenal carcinogenesis of ochratoxin A in mice. Dev. Food Sci. 1984;7:245–254.
Jeswal P. Cumulative effect of ochratoxin A and citrinin on induction of hepatorenal carcinogenesis in mice (Mus musculus) Biomed. Lett. 1995;52:269–275.
Heussner A.H., Dietrich D.R., O’Brien E. In vitro investigation of individual and combined cytotoxic effects of ochratoxin A and other selected mycotoxins on renal cells. Toxicol. In Vitro. 2006;20:332–341. doi: 10.1016/j.tiv.2005.08.003. PubMed DOI
Grenier B., Oswald I.P. Mycotoxin co-contamination of food and feed: Meta-Analysis of publications describing toxicological interactions. World Mycotoxin. J. 2011;4:285–313. doi: 10.3920/WMJ2011.1281. DOI
Pfohl-Leszkowicz A., Molinié A., Tozlovanu M., Manderville R.A. Combined Toxic Effects of Ochratoxin A and Citrinin, in Vitro and in Vivo. In: Siantar D.P., Trucksess M.W., Scott P.M., Herman E.M., editors. Food Contaminats: Mycotoxins & Food Allergens. American Society of Microbiology; Washington D.C., USA: 2008. pp. 56–80. (American Chemical Society Symposium Series, 1001).
Manderville R., Pfohl-Leszkowicz A. Bioactivation and DNA adduction as a rationale for ochratoxin A carcinogenesis. World Mycotoxin. J. 2008;1:357–367. doi: 10.3920/WMJ2008.x039. DOI
Trivedi A.B., Doi E., Kitabatake N. Toxic compounds formed on prolonged heating of citrinin under watery conditions. J. Food Sci. 1993;58:229–232. doi: 10.1111/j.1365-2621.1993.tb03251.x. DOI
Trivedi A.B., Hirota M., Doi E., Kitabatake N. Formation of a new toxic compound, citrinin H1, from citrinin on mild heating in water. J. Chem. Soc. 1993:2167–2171.
Kitabatake N., Trivedi A.B., Doi E. Thermal decomposition and detoxification of citrinin under various moisture conditions. J. Agric. Food Chem. 1991;39:2240–2244. doi: 10.1021/jf00012a028. DOI
Van der Merwe K.J., Steyn P.S., Fourie L., Scott D.B., Theron L.L. Ochratoxin A, a toxic metabolite produced by Aspergillus ochraceus Wilh. Nature. 1965;205:1112–1113. doi: 10.1038/2051112a0. PubMed DOI
Abarca M.L., Bragulat M.R., Castella G., Cabañes F.J. Ochratoxin A production by strains of Aspergillus niger var. niger. Appl. Environ. Microbiol. 1994;60:2650–2652. PubMed PMC
Teren J., Varga J., Hamari Z., Rinyu E., Kevei E. Immunochemical detection of ochratoxin A in black Aspergillus strains. Mycopathologia. 1996;134:171–176. doi: 10.1007/BF00436726. PubMed DOI
Frisvad J.C., Fank J.M., Houbraken J.A.M.P., Kuipers A.F.A., Samson R.A. New ochratoxin A producing species of Aspergillus section Circumdati. Stud. Mycol. 2004;50:23–43.
Samson R.A., Houbraken J.A.M.P., Kuipers A.F.A., Frank J.M., Frisvad J.C. New ochratoxin A or sclerotium producing species in Aspergillus section Nigri. Stud. Mycol. 2004;50:45–46.
Perrone G., Susca A., Epifani F., Mule G. AFLP characterization of Southern Europe population of Aspergillus Section Nigri from grapes. Int. J. Food Microbiol. 2006;111:22–27. doi: 10.1016/j.ijfoodmicro.2006.03.009. PubMed DOI
Larsen T.O., Svendsen A., Smedsgaard J. Biochemical characterization of ochratoxin A-producing strains of the genus Penicillium. Appl. Env. Microb. 2001;67:3630–3635. doi: 10.1128/AEM.67.8.3630-3635.2001. PubMed DOI PMC
Battilani P., Pietri V.A., Giorni P., Formenti S., Bertuzzi T., Toscani T., Virgili R., Kozakiewicz Z. Penicillium populations in dry-cured ham manufacturing plants. J. Food Prot. 2007;70:975–980. PubMed
Stark A.A. Threat assessment of mycotoxins as weapons: Molecular mechanisms of acute toxicity. J. Food Prot. 2005;68:1285–1293. PubMed
Samson R.A., Frisvad J.C. Penicillium subgenus Penicillium: New taxonomic schemes and mycotoxins and other extrolites. Stud. Mycol. 2004;49:260.
Samson R.A., Pitt J.I. Integration of Modern Taxonomic Methods for Penicillium. and Aspergillus. Classification. Harwood Academic Publishers; Amsterdam, The Netherlands: 2000.
Pitt J.I. Biology and Ecology of Toxigenic Penicillium Species. In: DeVries J.W., Truckseess M.W., Jackson L.S., editors. Mycotoxins and Food Safety. Kluwer Academic, Plenum Publishers; New York, NY, USA: 2002. pp. 29–41. PubMed
Somma S., Perrone G., Logrieco A.F. Diversity of black Aspergilli and mycotoxin risks in grape, wine and dried vine fruits. Phytopathol. Mediterr. 2012;51:131–147.
Rodriguez A., Rodriguez M., Martin A., Nunez F., Cordoba J.J. Evaluation of hazard of aflatoxin B1, ochratoxin A and patulin production in dry-cured ham and early detection of producing moulds by qPCR. Food Contr. 2012;27:118–126. doi: 10.1016/j.foodcont.2012.03.009. DOI
Dall’Asta C., Galaverna G., Bertuzzi T., Moseriti A., Pietri A., Dossena A., Marchelli R. Occurrence of ochratoxin A in raw ham muscle, salami and dry-cured ham from pigs fed with contaminated diet. Food Chem. 2010;120:978–983. doi: 10.1016/j.foodchem.2009.11.036. DOI
Duarte S.C., Lino C.M., Pena A. Food safety implications of ochratoxin A in animal-derived food products. Vet. J. 2012;192:286–292. doi: 10.1016/j.tvjl.2011.11.002. PubMed DOI
Overy D.P., Frisvad J.C. New Penicillium species associated with bulbs and root vegetables. Syst. Appl. Microbiol. 2003;26:631–639. doi: 10.1078/072320203770865945. PubMed DOI
Blanc P.J., Loret M.O., Goma G. Production of citrinin by various species of Monascus. Biotechnol. Lett. 1995;17:291–294. doi: 10.1007/BF01190639. DOI
Samson R.A., Seifert K.A., Kuijpers A.F.A., Houbraken J.A.M.P., Frisvad J.C. Phylogenetic analysis of Penicillium subgenus Penicillium using partial β-tubulin sequences. Stud. Mycol. 2004;49:175–200.
Hawksworth D.L., Pitt J.I. A new taxonomy for Monascus species based on cultural and microscopical characters. Aust. J. Bot. 1983;31:51–61. doi: 10.1071/BT9830051. DOI
EFSA. Opinion of the scientific panel on contaminants in the food chain on request from the commission related to ochratoxin A in food. EFSA J. 2006;365:1–56.
Degen G.H., Mayer S., Blaszkewicz M. Biomonitoring of ochratoxin A in grain workers. Mycotox. Res. 2007;23:88–93. doi: 10.1007/BF02946032. PubMed DOI
Zimmerli B., Dick R. Determination of ochratoxin A at the ppt level in human blood, serum, milk and some foodstuffs by high, performance liquid chromatography with enhanced fluorescence detection and immunoaffinity column cleanup: Methodology and Swiss data. J. Chromatogr. B. 1995;666:85–99. doi: 10.1016/0378-4347(94)00569-Q. PubMed DOI
Rizzo A., Eskola M., Atroshi F. Ochratoxin A in cereals, foodstuffs and human plasma. Eur. J. Plant Pathol. 2002;108:631–637. doi: 10.1023/A:1020683130901. DOI
Bonvehi J.S. Occurrence of ochratoxin A in cocoa products and chocolate. J. Agric. Food Chem. 2004;52:6347–6352. doi: 10.1021/jf040153w. PubMed DOI
Molinié A., Faucet V., Castegnaro P., Pfohl-Leszkowicz A. Analysis of some breakfast cereals on the French market for their contents of ochratoxin A, citrinin and fumonisin B-1: Development of a method for simultaneous extraction of ochratoxin A and citrinin. Food Chem. 2005;92:391–400. doi: 10.1016/j.foodchem.2004.06.035. DOI
Jørgensen K. Occurrence of ochratoxin A in commodities and processed food—A review of EU occurrence data. Food Addit. Contam. 2005;S1:26–30. doi: 10.1080/02652030500344811. PubMed DOI
Clark H.A., Snedeker S.M. Ochratoxin A: Its cancer risk and potential for exposure. J. Toxicol. Environ. Health Part B. 2006;9:265–296. doi: 10.1080/15287390500195570. PubMed DOI
Napolitano A., Fogliano V., Tafuri A., Ritieni A. Natural occurrence of ochratoxin A and antioxidant activities of green and roasted coffees and corresponding byproducts. J. Agric. Food Chem. 2007;55:10499–10504. doi: 10.1021/jf071959+. PubMed DOI
De Almeida A.P., Alaburda J., Shundo L., Ruvieri V., Navas S.A., Lamardo L.C.A., Sabino M. Ochratoxin A in Brazilian instant coffee. Braz. J. Microbiol. 2007;38:300–303. doi: 10.1590/S1517-83822007000200022. DOI
Mounjouenpou P., Gueule D., Fontana-Tachon A., Guyot B., Tondje P.R., Guiraud J.P. Filamentous fungi producing ochratoxin A during cocoa processing in Cameroon. Int. J. Food Microbiol. 2008;121:234–241. doi: 10.1016/j.ijfoodmicro.2007.11.017. PubMed DOI
Tozlovanu M., Pfohl-Leszkowicz A. Ochratoxin A in roasted coffee purchased in french super market. Transfer in coffee beverage: Comparison of several methods. Toxins. 2010;2:1928–1949. doi: 10.3390/toxins2081928. PubMed DOI PMC
Skarkova J., Ostry V., Malir F., Roubal T. The determination of ultra-trace amounts of ochratoxin A in foodstuffs by HPLC method. Anal. Lett. 2013:1–26. doi: 10.1080/00032719.2013.771266. DOI
Pietri A., Rastelli S., Bertuzzi T. Ochratoxin A and aflatoxins in liquorice products. Toxins. 2010;2:758–770. doi: 10.3390/toxins2040758. PubMed DOI PMC
Pietri A., Rastelli S., Mulazzi A., Bertuzzi T. Aflatoxins and ochratoxin A in dried chestnuts and chestnut flour produced in Italy. Food Contr. 2012;25:601–606. doi: 10.1016/j.foodcont.2011.11.042. DOI
Bertuzzi T., Gualla A., Morlacchini M., Pietri A. Direct and indirect contamination with ochratoxin A of ripened pork products. Food Control. 2013;34:79–83. doi: 10.1016/j.foodcont.2013.04.011. DOI
Schmidt-Heydt M., Graf E., Batzler J., Geisen R. The application of transcriptomics to understand the ecological reasons of ochratoxin A biosynthesis by Penicillium nordicum on sodium chloride rich dry cured food. Trends Food Sci. Tech. 2013;22:39–48. doi: 10.1016/j.tifs.2011.02.010. DOI
Biancardi A., Piro R., Galaverna G., Dall’Asta C. A simple and reliable liquid chromatography-tandem mass spectrometry method for determination of ochratoxin A in hard cheese. Inter. J. Food Sci. Nutr. 2013;64:632–640. doi: 10.3109/09637486.2013.763911. PubMed DOI
Dall’Asta C., De Dea Lindner J., Galaverna G., Dossena A., Neviani E., Marchelli R. The occurrence of ochratoxin A in blue cheese. Food Chem. 2008;106:729–734. doi: 10.1016/j.foodchem.2007.06.049. DOI
Pfohl-Leszkowicz A., Petkova-Bocharova T., Chernozemsky I.N., Castegnaro M. Balkan endemic nephropathy and the associated urinary tract tumours: Review on etiological causes, potential role of mycotoxins. Food Addit. Contam. 2002;19:282–302. doi: 10.1080/02652030110079815. PubMed DOI
Castegnaro M., Canadas D., Vrabcheva T., Petkova-Bocharova T., Chernozemsky I.N., Pfohl-Leszkowicz A. Balkan endemic nephropathy: Role of ochratoxins A through biomarkers. Mol. Nutr. Food Res. 2006;50:519–529. doi: 10.1002/mnfr.200500182. PubMed DOI
Markov K., Pleadin J., Bevardi M., Vahčić N., Sokolić-Mihalak D., Frece J. Natural occurrence of aflatoxin B1, ochratoxin A and citrinin in Croatian fermented meat products. Food Contr. 2013;34:312–317. doi: 10.1016/j.foodcont.2013.05.002. DOI
Reddy R.V., Berndt W.O. Citrinin. In: Sharma R.P., Salunk D.K., editors. Mycotoxins and Phytoalexins. CRC Press; Boca Raton, FL, USA: 1991. pp. 237–250.
Jimenez M., Mateo R., Querol A., Huerta T., Hernandez E. Mycotoxins and mycotoxigenic moulds in nuts and sunflower seeds for human consumption. Mycopathologia. 1991;115:121–127. doi: 10.1007/BF00436800. PubMed DOI
Dietrich R., Schmid A., Märtlbauer E. Citrinin in fruit juices. Mycotox. Res. 2001;17:156–159. doi: 10.1007/BF03036426. PubMed DOI
Meister U. New method of citrinin determination by HPLC after polyamide column clean-up. Eur. Food Res. Technol. 2004;218:394–399. doi: 10.1007/s00217-003-0858-1. DOI
El Adlouni C., Tozlovanu M., Naman F., Faid M., Pfohl-Leszkowicz A. Preliminary data on the presence of mycotoxins (ochratoxin A, citrinin and aflatoxin B1) in black table olives “Greek style” of Moroccan origin. Mol. Nutr. Food Res. 2006;50:507–512. doi: 10.1002/mnfr.200600055. PubMed DOI
Heperkan D., Meric B.E., Sismanoglu G., Dalkiliç G., Güler F.K. Mycobiota, mycotoxigenic fungi, and citrinin production in black olives. Adv. Exp. Med. Biol. 2006;571:203–210. doi: 10.1007/0-387-28391-9_13. PubMed DOI
Nguyen Minh T., Tozlovanu M., Tran Thi L., Pfohl-Leszkowicz A. Occurrence of aflatoxin B1, citrinin and ochratoxin A in rice in five provinces of central region in Vietnam. Food Chem. 2007;105:42–47. doi: 10.1016/j.foodchem.2007.03.040. DOI
Bailly J.D., Querin A., le Bars-Bailly S., Benard G., Guerre P. Citrinin production and stability in cheese. J. Food Prot. 2002;65:1317–1321. PubMed
EFSA. Scientific Opinion on the risks for public and animal health related to the presence of citrinin in food and feed. EFSA J. 2012;12:1–82.
Kumari H.P.M., Naidu K.A., Vishwanatha S., Narasimhamurthy K., Vijayalakshmi G. Safety evaluation of Monascus purpureus red mould rice in albino rats. Food Chem. Toxicol. 2009;47:1739–1746. doi: 10.1016/j.fct.2009.04.038. PubMed DOI
Zheng Y., Xin Y., Guo Y. Study on the fingerprint profile of Monascus products with HPLC-FD, PAD and MS. Food Chem. 2009;113:705–711. doi: 10.1016/j.foodchem.2008.07.105. DOI
Gordon R.Y., Cooperman T., Obermeyer W., Becker D.J. Marked variability of monacolin levels in commercial red yeast rice products: buyer beware! Arch. Inter. Med. 2010;170:1722–1727. doi: 10.1001/archinternmed.2010.382. PubMed DOI
Samsudin N.I., Abdullah N. A preliminary survey on the occurrence of mycotoxigenic fungi and mycotoxins contaminating red rice at consumer level in Selangor, Malaysia. Mycotoxin Res. 2013;29:89–96. doi: 10.1007/s12550-012-0154-7. PubMed DOI
Wu C.L., Kuo Y.H., Lee C.L., Hsu Y.W., Pan T.M. Synchronous high-performance liquid chromatography with a photodiode array detector and mass spectrometry for the determination of citrinin, monascin, ankaflavin, and the lactone and acid forms of monacolin K in red mold rice. J. AOAC Int. 2011;94:179–190. PubMed
Dimmer T. (Czech Agriculture and Food Inspection Authority, Brno, Czech). personal communication. 2013.
Hazard characterisation for significant mycotoxins in food
A Review on Mycotoxins and Microfungi in Spices in the Light of the Last Five Years