A Review on Mycotoxins and Microfungi in Spices in the Light of the Last Five Years
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
Grantová podpora
22112/2019
Darina Pickova - Faculty of Science, University of Hradec Kralove, Czech Republic - International
NIPH, IN 75010330
Vladimir Ostry - Ministry of Health, National Institute of Public Health, Czech Republic - International
PubMed
33322380
PubMed Central
PMC7763258
DOI
10.3390/toxins12120789
PII: toxins12120789
Knihovny.cz E-zdroje
- Klíčová slova
- contamination, microfungi, mycotoxin, spices,
- MeSH
- aflatoxiny analýza toxicita MeSH
- časové faktory MeSH
- houby izolace a purifikace MeSH
- internacionalita * zákonodárství a právo MeSH
- kontaminace potravin zákonodárství a právo prevence a kontrola MeSH
- koření škodlivé účinky analýza toxicita MeSH
- lidé MeSH
- mykotoxiny analýza toxicita MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- aflatoxiny MeSH
- mykotoxiny MeSH
Spices are imported worldwide mainly from developing countries with tropical and/or subtropical climate. Local conditions, such as high temperature, heavy rainfall, and humidity, promote fungal growth leading to increased occurrence of mycotoxins in spices. Moreover, the lack of good agricultural practice (GAP), good manufacturing practice (GMP), and good hygienic practice (GHP) in developing countries are of great concern. This review summarizes recent data from a total of 56 original papers dealing with mycotoxins and microfungi in various spices in the last five years. A total of 38 kinds of spices, 17 mycotoxins, and 14 microfungi are discussed in the review. Worldwide, spices are rather overlooked in terms of mycotoxin regulations, which usually only cover aflatoxins (AFs) and ochratoxin A (OTA). In this paper, an extensive attention is devoted to the limits on mycotoxins in spices in the context of the European Union (EU) as well as other countries. As proven in this review, the incidence of AFs and OTA, as well as other mycotoxins, is relatively high in many spices; thus, the preparation of new regulation limits is advisable.
Zobrazit více v PubMed
Marroquín-Cardona A.G., Johnson N.M., Phillips T.D., Hayes A.W. Mycotoxins in a changing global environment—A review. Food Chem. Toxicol. 2014;69:220–230. doi: 10.1016/j.fct.2014.04.025. PubMed DOI
Botana L.M., Sainz M.J., editors. Climate Change and Mycotoxins. Walter de Gruyter GmbH; Berlin, Germany: 2015.
Kabak B., Dobson A.D. Mycotoxins in spices and herbs–An update. Crit. Rev. Food Sci. Nutr. 2017;57:18–34. doi: 10.1080/10408398.2013.772891. PubMed DOI
Uhl S.R. Handbook of Spices, Seasonings, and Flavorings. 2nd ed. CRC Press; Boca Raton, FL, USA: 2006.
Chomchalow N. Spice Production in Asia—An Overview. AU J. Technol. 2001;5:1–14.
Abd El-Tawab A.A., El-Diasty E.M., Khater D.F., Al-baaly Y.M. Mycological identification of some fungi isolated from meat products and spices with molecular identification of some Penicillium isolates. Adv. Anim. Vet. Sci. 2020;8:124–129. doi: 10.17582/journal.aavs/2020/8.2.124.129. DOI
Iha M.H., Trucksess M.W. Management of mycotoxins in spices. J. AOAC Int. 2019;102:1732–1739. doi: 10.1093/jaoac/102.6.1732. PubMed DOI
Jeswal P., Kumar D. Mycobiota and natural incidence of aflatoxins, ochratoxin A, and citrinin in Indian spices confirmed by LC-MS/MS. Int. J. Microbiol. 2015;2015:242486. doi: 10.1155/2015/242486. PubMed DOI PMC
El Darra N., Gambacorta L., Solfrizzo M. Multimycotoxins occurrence in spices and herbs commercialized in Lebanon. Food Control. 2019;95:63–70. doi: 10.1016/j.foodcont.2018.07.033. DOI
Gambacorta L., El Darra N., Fakhoury R., Logrieco A.F., Solfrizzo M. Incidence and levels of Alternaria mycotoxins in spices and herbs produced worldwide and commercialized in Lebanon. Food Control. 2019;106:106724. doi: 10.1016/j.foodcont.2019.106724. DOI
Jalili M., Jinap S. Natural occurrence of aflatoxins and ochratoxin A in commercial dried chili. Food Control. 2012;24:160–164. doi: 10.1016/j.foodcont.2011.09.020. DOI
Winter G., Pereg L. A review on the relation between soil and mycotoxins: Effect of aflatoxin on field, food and finance. Eur. J. Soil Sci. 2019;70:882–897. doi: 10.1111/ejss.12813. DOI
Udomkun P., Wiredu A.N., Nagle M., Müller J., Vanlauwe B., Bandyopadhyay R. Innovative technologies to manage aflatoxins in foods and feeds and the profitability of application—A review. Food Control. 2017;76:127–138. doi: 10.1016/j.foodcont.2017.01.008. PubMed DOI PMC
Sanatombi K., Rajkumari S. Effect of processing on quality of pepper: A review. Food Rev. Int. 2019;36:626–643. doi: 10.1080/87559129.2019.1669161. DOI
European Commission Commission Regulation (EC) No. 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union. 2006;L364:5–24.
Yogendrarajah P., Van Poucke C., De Meulenaer B., De Saeger S. Development and validation of a QuEChERS based liquid chromatography tandem mass spectrometry method for the determination of multiple mycotoxins in spices. J. Chromatogr. A. 2013;1297:1–11. doi: 10.1016/j.chroma.2013.04.075. PubMed DOI
Oguntoyinbo F.A. Safety challenges associated with traditional foods of West Africa. Food Rev. Int. 2014;30:338–358. doi: 10.1080/87559129.2014.940086. DOI
Pfliegler W.P., Pócsi I., Győri Z., Pusztahelyi T. The Aspergilli and their mycotoxins: Metabolic interactions with plants and the soil biota. Front. Microbiol. 2020;10:2921. doi: 10.3389/fmicb.2019.02921. PubMed DOI PMC
Zhang C., Selvaraj J.N., Yang Q., Liu Y. A survey of aflatoxin-producing Aspergillus sp. from peanut field soils in four agroecological zones of China. Toxins. 2017;9:40. doi: 10.3390/toxins9010040. PubMed DOI PMC
Snigdha M., Hariprasad P., Venkateswaran G. Transport via xylem and accumulation of aflatoxin in seeds of groundnut plant. Chemosphere. 2015;119:524–529. doi: 10.1016/j.chemosphere.2014.07.033. PubMed DOI
Siruguri V., Bhat R.V. Assessing intake of spices by pattern of spice use, frequency of consumption and portion size of spices consumed from routinely prepared dishes in southern India. Nutr. J. 2015;14:7. doi: 10.1186/1475-2891-14-7. PubMed DOI PMC
Shylaja M.R., Peter K.V. The functional role of herbal spices. In: Peter K.V., editor. Handbook of Herbs and Spices: Volume 2. Volume 2. Woodhead Publishing Limited; Cambridge, UK: 2004. pp. 26–45.
Szűcs V., Szabó E., Lakner Z., Székács A. National seasoning practices and factors affecting the herb and spice consumption habits in Europe. Food Control. 2018;83:147–156. doi: 10.1016/j.foodcont.2017.04.039. DOI
Pradeep K.U., Geervani P., Eggum B.O. Common Indian spices: Nutrient composition, consumption and contribution to dietary value. Plant Foods Hum. Nutr. 1993;44:137–148. doi: 10.1007/BF01088378. PubMed DOI
Mathur P., Choudhry M. Consumption pattern of fenugreek seeds in Rajasthani families. J. Hum. Ecol. 2009;25:9–12. doi: 10.1080/09709274.2009.11906127. DOI
Lu M., Yuan B., Zeng M., Chen J. Antioxidant capacity and major phenolic compounds of spices commonly consumed in China. Food Res. Int. 2011;44:530–536. doi: 10.1016/j.foodres.2010.10.055. DOI
Yin M.-C., Cheng W.-S. Inhibition of Aspergillus niger and Aspergillus flavus by some herbs and spices. J. Food Prot. 1998;61:123–125. doi: 10.4315/0362-028X-61.1.123. PubMed DOI
Tapsell L.C., Hemphill I., Cobiac L., Sullivan D.R., Fenech M., Patch C.S., Roodenrys S., Keogh J.B., Clifton P.M., Williams P.G. Health benefits of herbs and spices: The past, the present, the future. Med. J. Aust. 2006;185:4–24. doi: 10.5694/j.1326-5377.2006.tb00548.x. PubMed DOI
Tantipopipat S., Boonpraderm A., Charoenkiatkul S., Wasantwisut E., Winichagoon P. Dietary intake of spices and herbs in habitual northeast Thai diets. Malays. J. Nutr. 2010;16:137–148. PubMed
Akeem S., Joseph J., Kayode R., Kolawole F. Comparative phytochemical analysis and use of some Nigerian spices. Croat. J. Food Technol. Biotechnol. Nutr. 2016;11:145–151.
Borquaye L.S., Darko G., Laryea M.K., Gasu E.N., Amponsah N.A.A., Appiah E.N. Nutritional and anti-nutrient profiles of some Ghanaian spices. Cogent Food Agric. 2017;3:1348185. doi: 10.1080/23311932.2017.1348185. DOI
Nwinuka N.M., Ibeh G.O., Ekeke G.I. Proximate composition and levels of some toxicants in four commonly consumed spices. J. Appl. Sci. Environ. Manag. 2005;9:150–155. doi: 10.4314/jasem.v9i1.17274. DOI
Otunola G.A., Oloyede O.B., Oladiji A.T., Afolayan A.J. Comparative analysis of the chemical composition of three spices–Allium sativum L. Zingiber officinale Rosc. and Capsicum frutescens L. commonly consumed in Nigeria. Afr. J. Biotechnol. 2010;9:6927–6931. doi: 10.5897/AJB10.183. DOI
Chilaka C.A., De Boevre M., Atanda O.O., De Saeger S. Quantification of Fusarium mycotoxins in Nigerian traditional beers and spices using a multi-mycotoxin LC-MS/MS method. Food Control. 2018;87:203–210. doi: 10.1016/j.foodcont.2017.12.028. DOI
Nguegwouo E., Sone L.E., Tchuenchieu A., Tene H.M., Mounchigam E., Njayou N.F., Nama G.M. Ochratoxin A in black pepper, white pepper and clove sold in Yaoundé (Cameroon) markets: Contamination levels and consumers’ practices increasing health risk. Int. J. Food Contam. 2018;5:1. doi: 10.1186/s40550-017-0063-9. DOI
Dalhat M.H., Adefolake F.A., Musa M. Nutritional composition and phytochemical analysis of aqueous extract of Allium cepa (Onion) and Allium sativum (Garlic) Asian Food Sci. J. 2018;3:1–9. doi: 10.9734/AFSJ/2018/43165. PubMed DOI
FAOSTAT Food and Agriculture Organization of the United Nations. [(accessed on 25 February 2020)]; Available online: http://www.fao.org/faostat/en/#data/QC/visualize.
Bennett J.W., Klich M. Mycotoxins. Clin. Microbiol. Rev. 2003;16:497–516. doi: 10.1128/CMR.16.3.497-516.2003. PubMed DOI PMC
Bhat R., Rai R.V., Karim A.A. Mycotoxins in food and feed: Present status and future concerns. Compr. Rev. Food Sci. Food Saf. 2010;9:57–81. doi: 10.1111/j.1541-4337.2009.00094.x. PubMed DOI
Frisvad J.C., Andersen B., Samson R.A. Association of moulds to foods. In: Dijksterhuis J., Samson R.A., editors. Food Mycology: A Multifaceted Approach to Fungi and Food. CRC Press; Boca Raton, FL, USA: 2007. pp. 199–239.
Ismaiel A., Papenbrock J. Mycotoxins: Producing fungi and mechanisms of phytotoxicity. Agriculture. 2015;5:492–537. doi: 10.3390/agriculture5030492. DOI
Frisvad J.C., Hubka V., Ezekiel C.N., Hong S.-B., Nováková A., Chen A.J., Arzanlou M., Larsen T.O., Sklenář F., Mahakarnchanakul W., et al. Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Stud. Mycol. 2019;93:1–63. doi: 10.1016/j.simyco.2018.06.001. PubMed DOI PMC
Haque M.A., Wang Y., Shen Z., Li X., Saleemi M.K., He C. Mycotoxin contamination and control strategy in human domestic animal and poultry: A review. Microb. Pathog. 2020;142:104095. doi: 10.1016/j.micpath.2020.104095. PubMed DOI
Ojuri O.T., Ezekiel C.N., Sulyok M., Ezeokoli O.T., Oyedele O.A., Ayeni K.I., Eskola M.K., Šarkanj B., Hajšlová J., Adeleke R.A., et al. Assessing the mycotoxicological risk from consumption of complementary foods by infants and young children in Nigeria. Food Chem. Toxicol. 2018;121:37–50. doi: 10.1016/j.fct.2018.08.025. PubMed DOI
Selvaraj J.N., Wang Y., Zhou L., Zhao Y., Xing F., Dai X., Liu Y. Recent mycotoxin survey data and advanced mycotoxin detection techniques reported from China: A review. Food Addit. Contam. Part A. 2015;32:440–452. doi: 10.1080/19440049.2015.1010185. PubMed DOI
European Food Safety Authority Dietary exposure assessment to Alternaria toxins in the European population. EFSA J. 2016;14:e04654. doi: 10.2903/j.efsa.2016.4654. DOI
PubChem. [(accessed on 15 April 2020)]; Available online: https://pubchem.ncbi.nlm.nih.gov/
Pitt J.I., Miller J.D. A concise history of mycotoxin research. J. Agric. Food Chem. 2017;65:7021–7033. doi: 10.1021/acs.jafc.6b04494. PubMed DOI
Arenas-Huertero F., Zaragoza-Ojeda M., Sánchez-Alarcón J., Milić M., Šegvić Klarić M., Montiel-González J.M., Valencia-Quintana R. Involvement of AhR pathway in toxicity of aflatoxins and other mycotoxins. Front. Microbiol. 2019;10:2347. doi: 10.3389/fmicb.2019.02347. PubMed DOI PMC
Kensler T.W., Roebuck B.D., Wogan G.N., Groopman J.D. Aflatoxin: A 50-year odyssey of mechanistic and translational toxicology. Toxicol. Sci. 2011;120:S28–S48. doi: 10.1093/toxsci/kfq283. PubMed DOI PMC
Kumar P., Mahato D.K., Kamle M., Mohanta T.K., Kang S.G. Aflatoxins: A global concern for food safety, human health and their management. Front. Microbiol. 2017;7:2170. doi: 10.3389/fmicb.2016.02170. PubMed DOI PMC
Ostry V., Malir F., Toman J., Grosse Y. Mycotoxins as human carcinogens—The IARC monographs classification. Mycotoxin Res. 2017;33:65–73. doi: 10.1007/s12550-016-0265-7. PubMed DOI
Benkerroum N. Aflatoxins: Producing-molds, structure, health issues and incidence in Southeast Asian and Sub-Saharan African countries. Int. J. Environ. Res. Public Health. 2020;17:1215. doi: 10.3390/ijerph17041215. PubMed DOI PMC
Medina Á., Valle-Algarra F.M., Mateo R., Gimeno-Adelantado J.V., Mateo F., Jiménez M. Survey of the mycobiota of Spanish malting barley and evaluation of the mycotoxin producing potential of species of Alternaria, Aspergillus and Fusarium. Int. J. Food Microbiol. 2006;108:196–203. doi: 10.1016/j.ijfoodmicro.2005.12.003. PubMed DOI
Varga J., Frisvad J.C., Samson R.A. Two new aflatoxin producing species, and an overview of Aspergillus section Flavi. Stud. Mycol. 2011;69:57–80. doi: 10.3114/sim.2011.69.05. PubMed DOI PMC
Calderari T.O., Iamanaka B.T., Frisvad J.C., Pitt J.I., Sartori D., Pereira J.L., Fungaro M.H.P., Taniwaki M.H. The biodiversity of Aspergillus section Flavi in Brazil nuts: From rainforest to consumer. Int. J. Food Microbiol. 2013;160:267–272. doi: 10.1016/j.ijfoodmicro.2012.10.018. PubMed DOI
Pfohl-Leszkowicz A., Manderville R.A. Ochratoxin A: An overview on toxicity and carcinogenicity in animals and humans. Mol. Nutr. Food Res. 2007;51:61–99. doi: 10.1002/mnfr.200600137. PubMed DOI
Shin H.S., Lee H.J., Pyo M.C., Ryu D., Lee K.-W. Ochratoxin A-induced hepatotoxicity through phase I and phase II reactions regulated by AhR in liver cells. Toxins. 2019;11:377. doi: 10.3390/toxins11070377. PubMed DOI PMC
Malir F., Ostry V., Novotna E. Toxicity of the mycotoxin ochratoxin A in the light of recent data. Toxin Rev. 2013;32:19–33. doi: 10.3109/15569543.2013.782504. DOI
European Food Safety Authority Risk assessment of ochratoxin A in food. EFSA J. 2020;18:6113. doi: 10.2903/j.efsa.2020.6113. PubMed DOI PMC
Ostry V., Malir F., Ruprich J. Producers and important dietary sources of ochratoxin A and citrinin. Toxins. 2013;5:1574–1586. doi: 10.3390/toxins5091574. PubMed DOI PMC
Samson R.A., Visagie C.M., Houbraken J., Hong S.-B., Hubka V., Klaassen C.H.W., Perrone G., Seifert K.A., Susca A., Tanney J.B., et al. Phylogeny, identification and nomenclature of the genus Aspergillus. Stud. Mycol. 2014;78:141–173. doi: 10.1016/j.simyco.2014.07.004. PubMed DOI PMC
De Oliveira Filho J.W.G., Islam M.T., Ali E.S., Uddin S.J., Santos J.V.O., De Alencar M.V.O.B., Júnior A.L.G., Paz M.F.C.J., De Brito M.R.M., E Sousa J.M.C., et al. A comprehensive review on biological properties of citrinin. Food Chem. Toxicol. 2017;110:130–141. doi: 10.1016/j.fct.2017.10.002. PubMed DOI
Flajs D., Peraica M. Toxicological properties of citrinin. Arch. Ind. Hyg. Toxicol. 2009;60:457–464. doi: 10.2478/10004-1254-60-2009-1992. PubMed DOI
European Food Safety Authority Scientific Opinion on the risks for public and animal health related to the presence of citrinin in food and feed. EFSA J. 2012;10:2605. doi: 10.2903/j.efsa.2012.2605. DOI
Broggi L.E., González H.H.L., Resnik S.L., Pacin A.M. Mycoflora distribution in dry-milled fractions of corn in Argentina. Cereal Chem. 2002;79:741–744. doi: 10.1094/CCHEM.2002.79.5.741. DOI
Blanc P.J., Laussac J.P., Le Bars J., Le Bars P., Loret M.O., Pareilleux A., Prome D., Prome J.C., Santerre A.L., Goma G. Characterization of monascidin A from Monascus as citrinin. Int. J. Food Microbiol. 1995;27:201–213. doi: 10.1016/0168-1605(94)00167-5. PubMed DOI
Escrivá L., Font G., Manyes L. In vivo toxicity studies of fusarium mycotoxins in the last decade: A review. Food Chem. Toxicol. 2015;78:185–206. doi: 10.1016/j.fct.2015.02.005. PubMed DOI
Kamle M., Mahato D.K., Devi S., Lee K.E., Kang S.G., Kumar P. Fumonisins: Impact on agriculture, food, and human health and their management strategies. Toxins. 2019;11:328. doi: 10.3390/toxins11060328. PubMed DOI PMC
Desjardins A.E. Fusarium Mycotoxins: Chemistry, Genetics, and Biology. APS Press; St. Paul, MN, USA: 2006.
Logrieco A., Visconti A. An Overview on Toxigenic Fungi and Mycotoxins in Europe. Springer; New York, NY, USA: 2004.
Frisvad J.C., Smedsgaard J., Samson R.A., Larsen T.O., Thrane U. Fumonisin B2 production by Aspergillus niger. J. Agric. Food Chem. 2007;55:9727–9732. doi: 10.1021/jf0718906. PubMed DOI
Mogensen J.M., Frisvad J.C., Thrane U., Nielsen K.F. Production of fumonisin B2 and B4 by Aspergillus niger on grapes and raisins. J. Agric. Food Chem. 2010;58:954–958. doi: 10.1021/jf903116q. PubMed DOI
European Food Safety Authority Scientific opinion on the risks for animal and public health related to the presence of T-2 and HT-2 toxin in food and feed. EFSA J. 2011;9:2481. doi: 10.2903/j.efsa.2011.2481. DOI
European Food Safety Authority Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J. 2017;15:e04718. doi: 10.2903/j.efsa.2017.4718. PubMed DOI PMC
Ostry V., Dofkova M., Blahova J., Malir F., Kavrik R., Rehurkova I., Ruprich J. Dietary exposure assessment of sum deoxynivalenol forms, sum T-2/HT-2 toxins and zearalenone from cereal-based foods and beer. Food Chem. Toxicol. 2020;139:111280. doi: 10.1016/j.fct.2020.111280. PubMed DOI
Desjardins A.E., Proctor R.H. Molecular biology of Fusarium mycotoxins. Int. J. Food Microbiol. 2007;119:47–50. doi: 10.1016/j.ijfoodmicro.2007.07.024. PubMed DOI
Frisvad J.C., Thrane U., Samson R.A. Mycotoxin producers. In: Dijksterhuis J., Samson R.A., editors. Food Mycology: A Multifaceted Approach to Fungi and Food. CRC Press; Boca Raton, FL, USA: 2007. pp. 135–159.
European Food Safety Authority Appropriateness to set a group health-based guidance value for zearalenone and its modified forms. EFSA J. 2016;14:4425. doi: 10.2903/j.efsa.2016.4425. DOI
Bertero A., Moretti A., Spicer L., Caloni F. Fusarium molds and mycotoxins: Potential species-specific effects. Toxins. 2018;10:244. doi: 10.3390/toxins10060244. PubMed DOI PMC
Ostry V. Alternaria mycotoxins: An overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs. World Mycotoxin J. 2008;1:175–188. doi: 10.3920/WMJ2008.x013. DOI
Liu G.T., Qian Y.Z., Zhang P.E., Dong W.H., Qi Y.M., Guo H. Etiological role of Alternaria alternata in human esophageal cancer. Chin. Med. J. (Engl.) 1992;105:394–400. PubMed
Logrieco A., Bottalico A., Mulé G., Moretti A., Perrone G. Epidemiology of toxigenic fungi and their associated mycotoxins for some mediterranean crops. Eur. J. Plant Pathol. 2003;109:645–667. doi: 10.1023/A:1026033021542. DOI
Romero S.M., Comerio R.M., Larumbe G., Ritieni A., Vaamonde G., Fernández Pinto V. Toxigenic fungi isolated from dried vine fruits in Argentina. Int. J. Food Microbiol. 2005;104:43–49. doi: 10.1016/j.ijfoodmicro.2005.04.001. PubMed DOI
Andersen B., Krøger E., Roberts R.G. Chemical and morphological segregation of Alternaria arborescens, A. infectoria and A. tenuissima species-groups. Mycol. Res. 2002;106:170–182. doi: 10.1017/S0953756201005263. DOI
Andersen B., Hansen M.E., Smedsgaard J. Automated and unbiased image analyses as tools in phenotypic classification of small-spored Alternaria spp. Phytopathology. 2005;95:1021–1029. doi: 10.1094/PHYTO-95-1021. PubMed DOI
European Food Safety Authority Scientific opinion on the risk for public and animal health related to the presence of sterigmatocystin in food and feed. EFSA J. 2013;11:3254. doi: 10.2903/j.efsa.2013.3254. DOI
Chrevatidis A. Mycotoxins|Occurrence and determination. In: Caballero B., editor. Encyclopedia of Food Sciences and Nutrition. 2nd ed. Academic Press; Oxford, UK: 2003. pp. 4089–4096.
Piontek M., Łuszczyńska K., Lechów H. Spergilli on building partitions infested with moulds in residential housing and public utility premises. Civ. Environ. Eng. Rep. 2017;27:91–104. doi: 10.1515/ceer-2017-0053. DOI
Rank C., Nielsen K.F., Larsen T.O., Varga J., Samson R.A., Frisvad J.C. Distribution of sterigmatocystin in filamentous fungi. Fungal Biol. 2011;115:406–420. doi: 10.1016/j.funbio.2011.02.013. PubMed DOI
Yu J., Chang P.-K., Ehrlich K.C., Cary J.W., Bhatnagar D., Cleveland T.E., Payne G.A., Linz J.E., Woloshuk C.P., Bennett J.W. Clustered pathway genes in aflatoxin biosynthesis. Appl. Environ. Microbiol. 2004;70:1253–1262. doi: 10.1128/AEM.70.3.1253-1262.2004. PubMed DOI PMC
Committee on Contaminants in Foods Report of the 9th Session of the Codex Committee on Contaminants in Foods. [(accessed on 20 April 2020)];2015 Mar 16–20; Available online: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/tr/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-735-12%252FREPORT%252520%2528FINAL%2529%252FREP18_CFe.pdf.
Committee on Contaminants in Foods Report of the 12th Session of the Codex Committee on Contaminants in Foods. [(accessed on 20 April 2020)];2018 Mar 12–16; Available online: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-735-12%252FWD%252Fcf12_11e.pdf.
Council of the European Communities Council Regulation (EEC) No 315/93 of 8 February 1993 laying down Community procedures for contaminants in food. J. Eur. Union. 1993;37:1–3.
European Comission Commission Regulation (EU) No. 105/2010 of 5 February 2010 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards ochratoxin A. Off. J. Eur. Union. 2010;L35:7–8.
European Comission Commission regulation (EU) No 594/2012 of 5 July 2012 amending Regulation (EC) 1881/2006 as regards the maximum levels of the contaminants ochratoxin A, non dioxin-like PCBs and melamine in foodstuffs. Off. J. Eur. Union. 2012;176:43–45.
Ham H., Kim S., Kim M.-H., Lee S., Hong S.K., Ryu J.-G., Lee T. Mycobiota of ground red pepper and their aflatoxigenic potential. J. Microbiol. 2016;54:832–837. doi: 10.1007/s12275-016-6480-2. PubMed DOI
Food Safety and Standards Authority of India FSSAI Publishes Guidance Note of Aflatoxins. [(accessed on 20 April 2020)]; Available online: https://foodsafetyhelpline.com/fssai-publishes-guidance-note-of-aflatoxins/
Wu L., Zhu D. Food Safety in China: A Comprehensive Review. 1st ed. CRC Press; Boca Raton, FL, USA: 2014.
Tao L. China Consults on GB 2761, 2762 and 29921 for the Maximum Limits of Mycotoxins, Contaminants and Pathogenic Bacteria in Foods. [(accessed on 20 April 2020)]; Available online: https://food.chemlinked.com/news/food-news/china-consults-gb-2761-2762-and-29921-maximum-limits-mycotoxins-contaminants-and-pathogenic-bacteria-foods.
Taniwaki M.H., Pitt J.I., Copetti M.V., Teixeira A.A., Iamanaka B.T. Understanding mycotoxin contamination across the food chain in Brazil: Challenges and opportunities. Toxins. 2019;11:411. doi: 10.3390/toxins11070411. PubMed DOI PMC
Kolybye A.C., Jr. Statement. Hearings before the Subcommittee on Science, Technology and Space of the Committee on Commerce, Science and Transportation, United States Senate, Ninety-fifth Congress, First Session on Toxic Substances, Polybrominated Biphenyls (PBB) Contamination in Michigan. US Government Printing Office; Washington, DC, USA: 1977.
European Commission Commission Regulation (EU) No. 165/2010 of 26 February 2010 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards aflatoxins. Off. J. Eur. Union. 2010;50:8–12.
European Comission Commission regulation (EU) 2015/1137 of 13 July 2015 amending Regulation (EC) No 1881/2006 as regards the maximum level of Ochratoxin A in Capsicum spp. spices. Off. J. Eur. Union. 2015;L185:11–12.
Dharmaputra O.S., Ambarwati S., Retnowati I.N.A., Nurfadila N. Fungal infection and aflatoxin contamination in stored nutmeg (Myristica fragrans) kernels at various stages of delivery chain in North Sulawesi province. Biotropia. 2016;22:129–139. doi: 10.11598/btb.2015.22.458. DOI
Singh P., Cotty P.J. Aflatoxin contamination of dried red chilies: Contrasts between the United States and Nigeria, two markets differing in regulation enforcement. Food Control. 2017;80:374–379. doi: 10.1016/j.foodcont.2017.05.014. DOI
Gambacorta L., Magistà D., Perrone G., Murgolo S., Logrieco A.F., Solfrizzo M. Co-occurrence of toxigenic moulds, aflatoxins, ochratoxin A, Fusarium and Alternaria mycotoxins in fresh sweet peppers (Capsicum annuum) and their processed products. World Mycotoxin J. 2018;11:159–174. doi: 10.3920/WMJ2017.2271. DOI
Zahra N., Khan M., Mehmood Z., Saeed M., Kalim I., Ahmad I., Malik K. Determination of aflatoxins in spices and dried fruits. J. Sci. Res. 2018;10:315–321. doi: 10.3329/jsr.v10i3.37075. DOI
Migahed F., Abdel-Gwad M., Mohamed S. Aflatoxigenic fungi associated with some medicinal plants. Annu. Res. Rev. Biol. 2017;14:1–20. doi: 10.9734/ARRB/2017/34797. DOI
Khazaeli P., Mehrabani M., Heidari M.R., Asadikaram G., NAJAFI M.L. Prevalence of aflatoxin contamination in herbs and spices in different regions of Iran. Iran. J. Public Health. 2017;46:1540–1545. PubMed PMC
Azzoune N., Mokrane S., Riba A., Bouras N., Verheecke-Vaessen C., Sabaou N., Mathieu F. Contamination of common spices by aflatoxigenic fungi and aflatoxin B1 in Algeria. Qual. Assur. Saf. Crop. Foods. 2015;8:137–144. doi: 10.3920/QAS2014.0426. DOI
Ali N., Hashim N.H., Shuib N.S. Natural occurrence of aflatoxins and ochratoxin A in processed spices marketed in Malaysia. Food Addit. Contam. Part Chem. Anal. Control Expo. Risk Assess. 2015;32:518–532. doi: 10.1080/19440049.2015.1011712. PubMed DOI
Wikandari R., Mayningsih I.C., Sari M.D.P., Purwandari F.A., Setyaningsih W., Rahayu E.S., Taherzadeh M.J. Assessment of microbiological quality and mycotoxin in dried chili by morphological identification, molecular detection, and chromatography analysis. Int. J. Environ. Res. Public Health. 2020;17:1847. doi: 10.3390/ijerph17061847. PubMed DOI PMC
Alsharif A.M.A., Choo Y.-M., Tan G.-H. Detection of five mycotoxins in different food matrices in the Malaysian market by using validated liquid chromatography electrospray ionization triple quadrupole mass spectrometry. Toxins. 2019;11:196. doi: 10.3390/toxins11040196. PubMed DOI PMC
Karaaslan M., Arslanğray Y. Aflatoxins B1, B2, G1, and G2 contamination in ground red peppers commercialized in Sanliurfa, Turkey. Environ. Monit. Assess. 2015;187:184–192. doi: 10.1007/s10661-015-4402-0. PubMed DOI
Jalili M. Natural occurrence of aflatoxins contamination in commercial spices in Iran. Iran. J. Health Saf. Environ. 2016;3:513–517.
Manda P., Adanou K.M., Ardjouma D., Adepo A.J.B., Dano D.S. Occurrence of ochratoxin A in spices commercialized in Abidjan (Côte d’Ivoire) Mycotoxin Res. 2016;32:137–143. doi: 10.1007/s12550-016-0248-8. PubMed DOI
Jacxsens L., Yogendrarajaha P., Meulenaer B. Risk assessment of mycotoxins and predictive mycology in Sri Lankan spices: Chilli and pepper. Procedia Food Sci. 2016;6:326–330. doi: 10.1016/j.profoo.2016.02.065. DOI
Gherbawy Y.A., Shebany Y.M. Mycobiota, total aflatoxins and ochratoxin A of cardamom pods. Food Sci. Technol. Res. 2018;24:87–96. doi: 10.3136/fstr.24.87. DOI
Ostry V., Malir F., Dofkova M., Skarkova J., Pfohl-Leszkowicz A., Ruprich J. Ochratoxin A dietary exposure of ten population groups in the Czech Republic: Comparison with data over the world. Toxins. 2015;7:3608–3635. doi: 10.3390/toxins7093608. PubMed DOI PMC
Jalili M. Natural occurrence of ochratoxin A contamination in commercial spices in Tehran. Nutr. Food Sci. Res. 2016;3:25–30. doi: 10.18869/acadpub.nfsr.3.3.25. DOI
Abd-Elhaleem Z.A. Determination of common spices and herbs contamination with aflatoxin in Al Majmaah province. J. Chem. Biol. Phys. Sci. 2017;8:69–77. doi: 10.24214/jcbps.B.8.1.06977. DOI
Reinholds I., Pugajeva I., Bavrins K., Kuckovska G., Bartkevics V. Mycotoxins, pesticides and toxic metals in commercial spices and herbs. Food Addit. Contam. Part B. 2016;10:5–14. doi: 10.1080/19393210.2016.1210244. PubMed DOI
Potortì A., Tropea A., Turco V., Pellizzeri V., Belfita A., Dugo G., Bella G. Mycotoxins in spices and culinary herbs from Italy and Tunisia. Nat. Prod. Res. 2019;34:167–171. doi: 10.1080/14786419.2019.1598995. PubMed DOI
Naz N., Kashif A., Kanwal K., Khan A.M., Abbas M. Quantitative scrutinization of aflatoxins in different spices from Pakistan. Int. J. Anal. Chem. 2016;2016:4907425. doi: 10.1155/2016/4907425. PubMed DOI PMC
Jeswal P., Kumar D. Natural occurrence of toxigenic mycoflora and ochratoxin A & aflatoxins in commonly used spices from Bihar state (India) J. Environ. Sci. Toxicol. Food Technol. 2015;9:50–55. doi: 10.9790/2402-09215055. DOI
Aiko V., Mehta A. Prevalence of toxigenic fungi in common medicinal herbs and spices in India. 3 Biotech. 2016;6:159–168. doi: 10.1007/s13205-016-0476-9. PubMed DOI PMC
Aye C., Nakagawa H., Kushiro M. Occurrence of aflatoxins in processed chili pepper sold in Myanmar. JSM Mycotoxins. 2019;69:9–13. doi: 10.2520/myco.69-1-4. DOI
Barani A., Nasiri Z., Jarrah N. Natural occurrence of Aflatoxins in commercial pepper in Iran. Food Agric. Immunol. 2016;27:570–576. doi: 10.1080/09540105.2016.1148124. DOI
Fofana-Diomande A., Kuaou K., Narcisse A., Sory T., Dembele A. Study of the contamination of some spices from Côte d’Ivoire by mycotoxins (AFB1 and OTA) J. Chem. Biol. Phys. Sci. 2019;9:389–399. doi: 10.24214/jcbps.B.9.3.38999. DOI
Garcia M.V., Mallmann C.A., Copetti M.V. Aflatoxigenic and ochratoxigenic fungi and their mycotoxins in spices marketed in Brazil. Food Res. Int. 2018;106:136–140. doi: 10.1016/j.foodres.2017.12.061. PubMed DOI
Gherbawy Y.A., Shebany Y.M., Hussein M.A., Maghraby T.A. Molecular detection of mycobiota and aflatoxin contamination of chili. Arch. Biol. Sci. 2015;67:223–234. doi: 10.2298/ABS141010028G. DOI
Motloung L., De Saeger S., De Boevre M., Detavernier C., Audenaert K., Adebo O.A., Njobeh P.B. Study on mycotoxin contamination in South African food spices. World Mycotoxin J. 2018;11:401–409. doi: 10.3920/WMJ2017.2191. DOI
Mozaffarinejad A.S., Giri A. The measurement of aflatoxin B1 in chilli and black peppers of Qaemshahr, Iran. J. Kerman Univ. Med. Sci. 2015;22:185–193.
Pesavento G., Ostuni M., Calonico C., Rossi S., Capei R., Lo Nostro A. Mycotic and aflatoxin contamination in Myristica fragrans seeds (nutmeg) and Capsicum annum (chilli), packaged in Italy and commercialized worldwide. J. Prev. Med. Hyg. 2016;57:E102–E109. PubMed PMC
Yilmaz S. The contamination rate of aflatoxins in ground red peppers, dried figs, walnuts without shell and seedless black raisins commercialized in Sakarya City Center, Turkey. Ital. J. Food Sci. 2017;29:591–598. doi: 10.14674/1120-1770-IJFS670. DOI
Kim S., Lee S., Nam T.-G., Seo D., Yoo M. Comparison of a newly developed liquid chromatography with tandem mass spectrometry method and enzyme-linked immunosorbent assay for detection of multiple mycotoxins in red pepper powder. J. Food Prot. 2017;80:1347–1354. doi: 10.4315/0362-028X.JFP-17-006. PubMed DOI
Iqbal S.Z., Asi M.R., Mehmood Z., Mumtaz A., Malik N. Survey of aflatoxins and ochratoxin A in retail market chilies and chili sauce samples. Food Control. 2017;81:218–223. doi: 10.1016/j.foodcont.2017.06.012. DOI
Bisht D., Menon K.R.K. Variation in the occurence of Aflatoxins in various processed forms of dried Ginger. J. Microbiol. Biotechnol. Food Sci. 2017;7:110–112. doi: 10.15414/jmbfs.2017.7.2.110-112. DOI
Lippolis V., Irurhe B., Porricelli A., Cortese M., Schena R., Imafidon T., Oluwadun A., Pascale M. Natural co-occurrence of aflatoxins and ochratoxin A in ginger (Zingiber officinale) from Nigeria. Food Control. 2016;73:1061–1067. doi: 10.1016/j.foodcont.2016.10.026. DOI
Huang X., Wang S., Mao D., Miao S., Hu Q., Ji S. Optimized QuEChERS method combined with UHPLC-MS/MS for the simultaneous determination of 15 mycotoxins in liquorice. J. AOAC Int. 2018;101:633–642. doi: 10.5740/jaoacint.17-0365. PubMed DOI
Tonti S., Mandrioli M., Nipoti P., Pisi A., Toschi T.G., Prodi A. Detection of fumonisins in fresh and dehydrated commercial garlic. J. Agric. Food Chem. 2017;65:7000–7005. doi: 10.1021/acs.jafc.7b02758. PubMed DOI
Gürer Ü., Omurtag Korkmaz B.I., Dumlu M., Omurtag G. Occurrence of fumonisins B 1 and B 2 in homemade medicinal plants: Exposure assessment in northern Turkey. Acta Aliment. 2016;45:54–60. doi: 10.1556/066.2016.45.1.7. DOI
Makhlouf J., Carvajal-Campos A., Querin A., Tadrist S., Puel O., Lorber S., Oswald I.P., Hamze M., Bailly J.-D., Bailly S. Morphologic, molecular and metabolic characterization of Aspergillus section Flavi in spices marketed in Lebanon. Sci. Rep. 2019;9:5263. doi: 10.1038/s41598-019-41704-1. PubMed DOI PMC
Mezeal I.A., Alwaan N.M. Discovery of Fungi Supplementary with Some Spices Collected from Iraqi Markets. [(accessed on 30 March 2020)]; Available online: https://www.semanticscholar.org/paper/Discovery-of-Fungi-Supplementary-with-Some-Spices-Mezeal-Alwaan/06182a58968b8ef306d3be6da96f5f066db4c769.
Temu G.E. Molecular identification of aspergillus strains and quick detection of aflatoxin from selected common spices in Tanzania. J. Sci. Res. Rep. 2016;10:1–8. doi: 10.9734/JSRR/2016/26102. DOI
Haruna M., Dangora D.B., Khan A.U., Saleh A. Mycobiota and aflatoxin contaminations of some spices and condiments sold in Katsina central market, Nigeria. UMYU J. Microbiol. Res. 2016;1:143–151.
Haruna M., Dangora D.B., Khan A.U. Natural occurrence of fungi and aflatoxin in spices and condiments sold at Kafur market, Katsina State, Nigeria. Niger. J. Sci. Res. 2017;16:720–724.
Garcia M.V., Parussolo G., Moro C., Bernardi A., Copetti M.V. Fungi in spices and mycotoxigenic potential of some Aspergilli isolated. Food Microbiol. 2018;73:93–98. doi: 10.1016/j.fm.2018.01.013. PubMed DOI
Lema A.A., Mudansiru A., Alexander B.A., Sakinatu M.J. Evaluation of fungal species isolated from three different varieties of pepper (Capsicum chinense, C. frutescens and C. annum L.) in Dutsin-ma, Katsina State. Ann. Biol. Sci. 2018;6:13–17. doi: 10.21767/2348-1927.1000115. DOI
Sabokbar A., Motevalibashi M., Talebi S. Molecular identification of Aflatoxin B1 Aspergillus flavus in red, black and white pepper using PCR method. Int. J. Mol. Clin. Microbiol. 2018;8:1016–1022.
Dharmaputra O.S., Ambarwati S., Retnowati I., Nurfadila N. Determining appropriate postharvest handling method to minimize fungal infection and aflatoxin contamination in nutmeg (Myristica fragrans) Int. Food Res. J. 2018;25:545–552.
Nurtjahja K., Dharmaputra O.S., Rahayu W.P., Syarief R. Fungal population and aflatoxin contamination on stored gamma-irradiated nutmeg (Myristica fragrans) kernels. At. Indones. 2018;44:57–61. doi: 10.17146/aij.2018.593. DOI
Nurtjahja K., Dharmaputra O.S., Rahayu W.P., Syarief R. Fungal population of nutmeg (Myristica fragrans) kernels affected by water activity during storage. Agritech. 2017;37:288–294. doi: 10.22146/agritech.10639. DOI
Yogendrarajah P., Devlieghere F., Njumbe Ediage E., Jacxsens L., Meulenaer B., Saeger S. Toxigenic potentiality of Aspergillus flavus and Aspergillus parasiticus strains isolated from black pepper assessed by an LC-MS/MS based multi-mycotoxin method. Food Microbiol. 2015;52:185–196. doi: 10.1016/j.fm.2015.07.016. PubMed DOI
RASFF Rapid Alert System for Food and Feed Portal Database. [(accessed on 9 February 2020)]; Available online: https://webgate.ec.europa.eu/rasff-window/portal/
Basilico M.Z., Basilico J.C. Inhibitory effects of some spice essential oils on Aspergillus ochraceus NRRL 3174 growth and ochratoxin A production. Lett. Appl. Microbiol. 1999;29:238–241. doi: 10.1046/j.1365-2672.1999.00621.x. PubMed DOI
Magan N., Aldred D. Post-harvest control strategies: Minimizing mycotoxins in the food chain. Int. J. Food Microbiol. 2007;119:131–139. doi: 10.1016/j.ijfoodmicro.2007.07.034. PubMed DOI
Soliman K.M., Badeaa R.I. Effect of oil extracted from some medicinal plants on different mycotoxigenic fungi. Food Chem. Toxicol. 2002;40:1669–1675. doi: 10.1016/S0278-6915(02)00120-5. PubMed DOI