Investigation of Ochratoxin A and Citrinin Occurrence in Medicinal Herbal Products from the Czech Market
Status Publisher Jazyk angličtina Země Nový Zéland Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Specific research project 2106/2022
Faculty of Science, University of Hradec Kralove, Czech Republic
National Institute of Public Health-NIPH
Ministerstvo Zdravotnictví Ceské Republiky
IN 75010330
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
40506653
DOI
10.1007/s40264-025-01570-5
PII: 10.1007/s40264-025-01570-5
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Medicinal plants are extensively utilized as dietary supplements to encourage disease prevention and to support the treatment of various health disorders. Unfortunately, several plants are known for mycotoxin contamination, which may overwhelm any beneficial effects the plants might have. OBJECTIVE: The purpose of the study was to determine the presence of ochratoxin A (OTA) and citrinin (CIT) in medicinal herbal products (MHP). METHODS: Sixty samples of different MHP types were purchased on the Czech market during 2020-2021. Both mycotoxins were determined using high-performance liquid chromatography with a fluorescence detector with immunoaffinity columns employed as a pretreatment. RESULTS: In total, 40% and 27% of samples were above the limit of quantification with the concentrations ranging up to 826.62 ng/g and 472.79 ng/g for OTA and CIT, respectively. The co-occurrence was confirmed in six MHP types. CONCLUSIONS: MHP could be a significant source of OTA and CIT. To protect the health of MHP users, it is desirable to continue monitoring the presence of mycotoxins in MHP. During this study, new OTA regulations for herbs came into force in the EU.
Zobrazit více v PubMed
Kaefer CM, Milner JA. The role of herbs and spices in cancer prevention. J Nutr Biochem. 2008;19:347–61. PubMed DOI PMC
Kumarasamy Y, Nahar L, Cox PJ, Jaspars M, Sarker SD. Bioactivity of secoiridoid glycosides from Centaurium erythraea. Phytomedicine. 2003;10:344–7. PubMed DOI
Rodríguez-Pérez C, Jiménez Sánchez C, Lozano-Sánchez J, Quirantes-Piné R, Segura-Carretero A. Emerging green technologies for the extraction of phenolic compounds from medicinal plants. In: Govil JN, Pathak M, editors. Recent progress in medicinal plants analytical and processing techniques. Houston: Studium Press; 2016. p. 81–104.
Valentão P, Fernandes E, Carvalho F, Andrade PB, Seabra RM, Bastos ML. Hydroxyl radical and hypochlorous acid scavenging activity of small Centaury (Centaurium erythraea) infusion. A comparative study with green tea (Camellia sinensis). Phytomedicine. 2003;10:517–22. PubMed DOI
El Menyiy N, Guaouguaou F-E, El Baaboua A, El Omari N, Taha D, Salhi N, et al. Phytochemical properties, biological activities and medicinal use of Centaurium erythraea Rafn. J Ethnopharmacol. 2021;276: 114171. PubMed DOI
Menković N, Savikin K, Tasić S, Zdunić G, Stesević D, Milosavljević S, et al. Ethnobotanical study on traditional uses of wild medicinal plants in Prokletije Mountains (Montenegro). J Ethnopharmacol [Internet]. 2011;133. https://pubmed.ncbi.nlm.nih.gov/20837123/ . Cited 21 Nov 2023.
Rodríguez-Pérez C, Roca RA. Medicinal properties of herbs and spices: past present, and future. In: Brunton NP, Hossain MB, Rai DK, editors. Herbs, spices and medicinal plants: processing, health benefits and safety [Internet]. 1st edition. New Jersey: Wiley; 2020. p. 400. https://books.google.com/books?hl=cs&lr=&id=I1_4DwAAQBAJ&oi=fnd&pg=PP1&dq=Herbs,+Spices+and+Medicinal+Plants:+Processing,+Health+Benefits+and+Safety&ots=bea7wrwi8r&sig=b-CaE3-vTuOLOU3R3sEZNf9o8Bs . Cited 19 Oct 2023.
Thompson Coon J, Ernst E. Systematic review: herbal medicinal products for non-ulcer dyspepsia. Aliment Pharmacol Ther. 2002;16:1689–99. PubMed DOI
Huang W-Y, Cai Y-Z, Zhang Y. Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr Cancer. 2009;62:1–20. DOI
Vanherweghem JL, Depierreux M, Tielemans C, Abramowicz D, Dratwa M, Jadoul M, et al. Rapidly progressive interstitial renal fibrosis in young women: association with slimming regimen including Chinese herbs. Lancet. 1993;341:387–91. PubMed DOI
Depierreux M, Van Damme B, Vanden Houte K, Vanherweghem JL. Pathologic aspects of a newly described nephropathy related to the prolonged use of Chinese herbs. Am J Kidney Dis. 1994;24:172–80. PubMed DOI
Cosyns JP, Jadoul M, Squifflet JP, Van Cangh PJ, van Ypersele de Strihou C. Urothelial malignancy in nephropathy due to Chinese herbs. Lancet. 1994;344:188. PubMed DOI
Vanhaelen M, Vanhaelen-Fastre R, But P, Vanherweghem JL. Identification of aristolochic acid in Chinese herbs. Lancet. 1994;343:174. PubMed DOI
Kumar N, Kulsoom M, Shukla V, Kumar D, Priyanka null, Kumar S, et al. Profiling of heavy metal and pesticide residues in medicinal plants. Environ Sci Pollut Res Int. 2018;25:29505–10.
Luo L, Wang B, Jiang J, Fitzgerald M, Huang Q, Yu Z, et al. Heavy metal contaminations in herbal medicines: determination, comprehensive risk assessments, and solutions. Front Pharmacol. 2021;11: 595335. PubMed DOI PMC
Leung KS-Y, Chan K, Chan C-L, Lu G-H. Systematic evaluation of organochlorine pesticide residues in Chinese materia medica. Phytother Res. 2005;19:514–8.
Xue J, Hao L, Peng F. Residues of 18 organochlorine pesticides in 30 traditional Chinese medicines. Chemosphere. 2008;71:1051–5. PubMed DOI
Kowalska G. Pesticide residues in some polish herbs. Agriculture. 2020;10:154. DOI
Russo K, Lucchetti D, Triolone D, Di Giustino P, Mancuso M, Delfino D, et al. Pesticides and mycotoxins evaluation in medicinal herbs and spices from EU and non-EU countries. Phytochem Lett. 2021;46:153–61. DOI
Ałtyn I, Twarużek M. Mycotoxin contamination concerns of herbs and medicinal plants. Toxins. 2020;12:182. PubMed DOI PMC
Ashiq S, Hussain M, Ahmad B. Natural occurrence of mycotoxins in medicinal plants: a review. Fungal Genet Biol. 2014;66:1–10. PubMed DOI
Pickova D, Ostry V, Toman J, Malir F. Presence of mycotoxins in Milk Thistle (Silybum marianum) food supplements: a review. Toxins (Basel). 2020;12.
Steinhoff B. Review: quality of herbal medicinal products: state of the art of purity assessment. Phytomedicine. 2019;60: 153003. PubMed DOI
Boško R, Pluháčková H, Martiník J, Benešová K, Svoboda Z, Běláková S, et al. Occurrence of mycotoxins in milk thistle: to be included in legislation or not? Mycotoxin Res. 2025;41:199–206. PubMed DOI
Posadzki P, Watson L, Ernst E. Contamination and adulteration of herbal medicinal products (HMPs): an overview of systematic reviews. Eur J Clin Pharmacol. 2013;69:295–307. PubMed DOI
Fibigr J, SatInsky D, Solich P. Current trends in the analysis and quality control of food supplements based on plant extracts. Anal Chim Acta. 2018;1036:1–15. PubMed DOI
Malir F, Roubal T, Brndiar M, Osterreicher J, Severa J, Knizek J, et al. Ochratoxin a in the Czech Republic. J Toxicol Toxin Rev. 2001;20:261–74. DOI
PubChem. PubChem. 2023. https://pubchem.ncbi.nlm.nih.gov/ . Cited 20 Nov 2023.
Frisvad JC, Samson RA. Polyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Stud Mycol. 2004;49:174.
Ostry V, Malir F, Ruprich J. Producers and important dietary sources of ochratoxin A and citrinin. Toxins. 2013;5:1574–86. PubMed DOI PMC
Cui Z, Guo L, Jin Z, Ma L, Yang H, Miao M. Highly sensitive and specific assessment of ochratoxin A in herbal medicines via activator regeneration by electron transfer ATRP. New J Chem. 2022;46:17479–86. DOI
Malir F, Ostry V, Novotna E. Toxicity of the mycotoxin ochratoxin A in the light of recent data. Toxin Rev. 2013;32:19–33. DOI
Malir F, Ostry V, Pfohl-Leszkowicz A, Malir J, Toman J. Ochratoxin A: 50 years of research. Toxins. 2016;8:191. PubMed DOI PMC
EFSA. Opinion of the scientific panel on contaminants in the food chain on a request from the commission related to ochratoxin A in food, adopted on 4 April 2006. EFSA J. 2006;365:1–56.
Silva LJG, Pereira AMPT, Pena A, Lino CM. Citrinin in foods and supplements: a review of occurrence and analytical methodologies. Foods. 2020;10:14. PubMed DOI PMC
Zhang H, Ahima J, Yang Q, Zhao L, Zhang X, Zheng X. A review on citrinin: its occurrence, risk implications, analytical techniques, biosynthesis, physiochemical properties and control. Food Res Int. 2021;141: 110075. PubMed DOI
Dalefield R. Mycotoxins and mushrooms. In: Dalefield R, editor. Veterinary toxicology for Australia and New Zealand [Internet]. Amsterdam: Elsevier; 2017. pp. 373–419. https://www.google.com/books?hl=cs&lr=&id=yWVzAwAAQBAJ&oi=fnd&pg=PP1&dq=dalefield+Mycotoxins+and+Mushrooms&ots=wzaL2JnSl0&sig=dJ3wck6XriKWv3JKnBfdCweyYPI . Cited 20 Nov 2023.
Huiqin W, Shufen Z, Taifeng L, Dawei Z. Introduction and safety evaluation of citrinin in foods. J Food Nutr Sci. 2017;5:179–83.
Lhotská I, Šatínský D, Havlíková L, Solich P. A fully automated and fast method using direct sample injection combined with fused-core column on-line SPE–HPLC for determination of ochratoxin A and citrinin in lager beers. Anal Bioanal Chem. 2016;408:3319–29. PubMed DOI
Li Y, Zhou Y-C, Yang M-H, Ou-Yang Z. Natural occurrence of citrinin in widely consumed traditional Chinese food red yeast rice, medicinal plants and their related products. Food Chem. 2012;132:1040–5. DOI
Markov K, Pleadin J, Bevardi M, Vahčić N, Sokolić-Mihalak D, Frece J. Natural occurrence of aflatoxin B1, ochratoxin A and citrinin in Croatian fermented meat products. Food Control. 2013;34:312–7. DOI
Wang M, Jiang N, Xian H, Wei D, Shi L, Feng X. A single-step solid phase extraction for the simultaneous determination of 8 mycotoxins in fruits by ultra-high performance liquid chromatography tandem mass spectrometry. J Chromatogr A. 2016;1429:22–9. PubMed DOI
Pfohl-Leszkowicz A, Molinié A, Tozlovanu M, Manderville RA. Combined toxic effects of Ochratoxin A and Citrinin, in vivo and in vitro. In: Siantar DP, Trucksess MW, Scott PM, Herman EM, editors. Food contaminants: mycotoxins & food allergen [Internet]. Washington DC: American Chemical Society; 2008. pp. 56–80. https://doi.org/10.1021/bk-2008-1001.ch003 . Cited 18 Apr 2020.
Bamias G, Boletis J. Balkan Nephropathy: evolution of our knowledge. Am J Kidney Dis. 2008;52:606–16. PubMed DOI PMC
Vrabcheva T, Usleber E, Dietrich R, Märtlbauer E. Co-occurrence of ochratoxin A and citrinin in cereals from Bulgarian villages with a history of Balkan endemic nephropathy. J Agric Food Chem. 2000;48:2483–8. PubMed DOI
De Oliveira Filho JWG, Islam MT, Ali ES, Uddin SJ, Santos JVO, De Alencar MVOB, et al. A comprehensive review on biological properties of citrinin. Food Chem Toxicol. 2017;110:130–41. PubMed DOI
Knasmüller S, Cavin C, Chakraborty A, Darroudi F, Majer BJ, Huber WW, et al. Structurally related mycotoxins ochratoxin A, ochratoxin B, and citrinin differ in their genotoxic activities and in their mode of action in human-derived liver (HepG2) cells: implications for risk assessment. Nutr Cancer. 2004;50:190–7. PubMed DOI
Pfohl-Leszkowicz A, Manderville R. Ochratoxin A: an overview on toxicity and carcinogenicity in animals and humans. Mol Nutr Food Res. 2007;51:61–99. PubMed DOI
Sharma RP. Immunotoxicity of mycotoxins. J Dairy Sci. 1993;76:892–7. PubMed DOI
Tao Y, Xie S, Xu F, Liu A, Wang Y, Chen D, et al. Ochratoxin A: toxicity, oxidative stress and metabolism. Food Chem Toxicol. 2018;112:320–31. PubMed DOI
IARC. IARC monographs on the evaluation of carcinogenic risks to humans: some naturally occurring substances: food items and costituents, heterocyclic aromatic amines and mycotoxins. Lyon: IARC Press; 1993.
IARC. IARC Monographs on the evaluation of the carcinogenic risk of chemicals to humans. Some naturally occurring nd ynthetic food components, Furocoumarins and ultraviolet radiation, vol. 40. Lyon: IARC Press; 1986.
EC. Commission Regulation (EU) 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006. Off J Eur Comm. 2023;103.157.
Ministry of Agriculture of the Czech Republic. Current topics of discussion in the field of contaminants in food—September 2023 [Internet]. Food Safety Information Center Web Site. 2023. https://bezpecnostpotravin.cz/aktualni-diskutovana-temata-v-oblasti-kontaminantu-v-potravinach-zari-2023/ . Cited 19 Oct 2023.
Chomchalow N. Spice production in Asia—an overview. AU J Technol. 2001;5:1–14.
Uhl SR. Handbook of spices, seasonings, and flavorings [Internet]. 2nd edition. Boca Raton: CRC Press; 2006. https://books.google.cz/books?id=bePKBQAAQBAJ .
Pickova D, Toman J, Ostry V, Malir F. Natural occurrence of ochratoxin A in spices marketed in the Czech Republic during 2019–2020. Foods. 2021;10:2984. PubMed DOI PMC
R-Biopharm - Rhône Ltd. OCHRAREP(R). Product Code: P14/P14B. Immunoaffinity columns for use in conjunction with HPLC or LC MS/MS.For in vitro use only. Version P14/V21/30.06.21. Darmstadt, Germany; 2021.
Toman J, Pickova D, Rejman L, Ostry V, Malir F. Investigation of ochratoxin A in air-dry-cured hams. Meat Sci. 2024;217: 109605. PubMed DOI
R-Biopharm - Rhône Ltd. EASI-EXTRACT(R) CITRININ. Product code: DP126/P126. Immunoaffinity columns for use in conjunction with HPLC or LC-MS/MS. For in vitro use only. Version: P126/V8/29.10.2021. Darmstadt, Germany; 2021.
Baser KHC, Özek T, Kırımer N, Deliorman D, Ergun F. Composition of the essential oils of Galium aparine L. and Galium odoratum (L.) Scop. from Turkey. J Essent Oil Res. 2004;16:305–7. DOI
Laanet P-R, Saar-Reismaa P, Jõul P, Bragina O, Vaher M. Phytochemical screening and antioxidant activity of selected Estonian Galium Species. Molecules. 2023;28:2867. PubMed DOI PMC
Basilico MZ, Basilico JC. Inhibitory effects of some spice essential oils on Aspergillus ochraceus NRRL 3174 growth and ochratoxin A production. Lett Appl Microbiol. 1999;29:238–41. PubMed DOI
Halt M. Moulds and mycotoxins in herb tea and medicinal plants. Eur J Epidemiol. 1998;14:269–74. PubMed DOI
Han Z, Ren Y, Zhu J, Cai Z, Chen Y, Luan L, et al. Multianalysis of 35 mycotoxins in traditional Chinese medicines by ultra-high-performance liquid chromatography-tandem mass spectrometry coupled with accelerated solvent extraction. J Agric Food Chem. 2012;60:8233–47. PubMed DOI
Santos L, Marín S, Sanchis V, Ramos AJ. Screening of mycotoxin multicontamination in medicinal and aromatic herbs sampled in Spain. J Sci Food Agric. 2009;89:1802–7. DOI
Pallarés N, Berrada H, Font G, Ferrer E. Mycotoxins occurrence in medicinal herbs dietary supplements and exposure assessment. J Food Sci Technol. 2022;59:2830–41. PubMed DOI
El Darra N, Gambacorta L, Solfrizzo M. Multimycotoxins occurrence in spices and herbs commercialized in Lebanon. Food Control. 2019;95:63–70. DOI
Arroyo-Manzanares N, García-Campaña AM, Gámiz-Gracia L. Multiclass mycotoxin analysis in Silybum marianum by ultra high performance liquid chromatography–tandem mass spectrometry using a procedure based on QuEChERS and dispersive liquid–liquid microextraction. J Chromatogr A. 2013;1282:11–9. PubMed DOI
Veprikova Z, Zachariasova M, Dzuman Z, Zachariasova A, Fenclova M, Slavikova P, et al. Mycotoxins in plant-based dietary supplements: hidden health risk for consumers. J Agric Food Chem. 2015;63:6633–43. PubMed DOI
Toman J, Malir F, Ostry V, Kilic MA, Roubal T, Grosse Y, et al. Transfer of ochratoxin A from raw black tea to tea infusions prepared according to the Turkish tradition. J Sci Food Agric. 2018;98:261–5. PubMed DOI
Toman J, Ostry V, Grosse Y, Roubal T, Malir F. Occurrence of ochratoxin A in Astragalus propinquus root and its transfer to decoction. Mycotoxin Res. 2018;34:223–7. PubMed DOI
Malir F, Ostry V, Pfohl-Leszkowicz A, Toman J, Bazin I, Roubal T. Transfer of ochratoxin A into tea and coffee beverages. Toxins (Basel). 2014;6:3438–53. PubMed DOI PMC