A Unified Picture of S* in Carotenoids
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27509302
PubMed Central
PMC5011297
DOI
10.1021/acs.jpclett.6b01455
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
In π-conjugated chain molecules such as carotenoids, coupling between electronic and vibrational degrees of freedom is of central importance. It governs both dynamic and static properties, such as the time scales of excited state relaxation as well as absorption spectra. In this work, we treat vibronic dynamics in carotenoids on four electronic states (|S0⟩, |S1⟩, |S2⟩, and |Sn⟩) in a physically rigorous framework. This model explains all features previously associated with the intensely debated S* state. Besides successfully fitting transient absorption data of a zeaxanthin homologue, this model also accounts for previous results from global target analysis and chain length-dependent studies. Additionally, we are able to incorporate findings from pump-deplete-probe experiments, which were incompatible to any pre-existing model. Thus, we present the first comprehensive and unified interpretation of S*-related features, explaining them by vibronic transitions on either S1, S0, or both, depending on the chain length of the investigated carotenoid.
Zobrazit více v PubMed
Uzer T.; Miller W. H. Theories of Intramolecular Vibrational-Energy Transfer. Phys. Rep. 1991, 199, 73–146. 10.1016/0370-1573(91)90140-H. DOI
Polivka T.; Sundstrom V. Ultrafast dynamics of carotenoid excited states - From solution to natural and artificial systems. Chem. Rev. 2004, 104, 2021–2071. 10.1021/cr020674n. PubMed DOI
Polivka T.; Sundstrom V. Dark Excited States of Carotenoids: Consensus and Controversy. Chem. Phys. Lett. 2009, 477, 1–11. 10.1016/j.cplett.2009.06.011. DOI
Fiedor L.; Heriyanto; Fiedor J.; Pilch M. Effects of Molecular Symmetry on the Electronic Transitions in Carotenoids. J. Phys. Chem. Lett. 2016, 7, 1821–1829. 10.1021/acs.jpclett.6b00637. PubMed DOI
Tavan P.; Schulten K. Electronic Excitations in Finite and Infinite Polyenes. Phys. Rev. B: Condens. Matter Mater. Phys. 1987, 36, 4337–4357. 10.1103/PhysRevB.36.4337. PubMed DOI
Andersson P. O.; Gillbro T. Photophysics and Dynamcis of the Lowest Excited Singlet-State in Long Substituted Polyenes With Implications to the Very Long-Chain Limit. J. Chem. Phys. 1995, 103, 2509–2519. 10.1063/1.469672. DOI
Staleva H.; Zeeshan M.; Chábera P.; Partali V.; Sliwka H.-R.; Polívka T. Ultrafast Dynamics of Long Homologues of Carotenoid Zeaxanthin. J. Phys. Chem. A 2015, 119, 11304–11312. 10.1021/acs.jpca.5b08460. PubMed DOI
Gradinaru C. C.; Kennis J. T. M.; Papagiannakis E.; van Stokkum I. H. M.; Cogdell R. J.; Fleming G. R.; Niederman R. A.; van Grondelle R. An Unusual Pathway of Excitation Energy Deactivation in Carotenoids: Singlet-to-Triplet Conversion on an Ultrafast Timescale in a Photosynthetic Antenna. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 2364–2369. 10.1073/pnas.051501298. PubMed DOI PMC
Papagiannakis E.; Kennis J. T. M.; van Stokkum I. H. M.; Cogdell R. J.; van Grondelle R. An alternative carotenoid-to-bacteriochlorophyll energy transfer pathway in photosynthetic light harvesting. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 6017–6022. 10.1073/pnas.092626599. PubMed DOI PMC
Kosumi D.; Maruta S.; Horibe T.; Nagaoka Y.; Fujii R.; Sugisaki M.; Cogdell R. J.; Hashimoto H. Ultrafast Excited State Dynamics of Spirilloxanthin in Solution and Bound to Core Antenna Complexes: Identification of the S* and T-1 States. J. Chem. Phys. 2012, 137, 064505.10.1063/1.4737129. PubMed DOI
Niedzwiedzki D.; Koscielecki J. F.; Cong H.; Sullivan J. O.; Gibson G. N.; Birge R. R.; Frank H. A. Ultrafast Dynamics and Excited State Spectra of Open-Chain Carotenoids at Room and Low Temperatures. J. Phys. Chem. B 2007, 111, 5984–5998. 10.1021/jp070500f. PubMed DOI
Hauer J.; Maiuri M.; Viola D.; Lukes V.; Henry S.; Carey A. M.; Cogdell R. J.; Cerullo G.; Polli D. Explaining the Temperature Dependence of Spirilloxanthin’s S* Signal by an Inhomogeneous Ground State Model. J. Phys. Chem. A 2013, 117, 6303–6310. 10.1021/jp4011372. PubMed DOI PMC
Papagiannakis E.; van Stokkum I. H. M.; Vengris M.; Cogdell R. J.; van Grondelle R.; Larsen D. S. Excited-State Dynamics of Carotenoids in Light-Harvesting Complexes. 1. Exploring the Relationship between the S-1 and S* States. J. Phys. Chem. B 2006, 110, 5727–5736. 10.1021/jp054633h. PubMed DOI
Lukes V.; Christensson N.; Milota F.; Kauffmann H. F.; Hauer J. Electronic Ground State Conformers of Beta-Carotene and Their Role in Ultrafast Spectroscopy. Chem. Phys. Lett. 2011, 506, 122–127. 10.1016/j.cplett.2011.02.060. DOI
Kloz M.; Weißenborn J.; Polivka T.; Frank H. A.; Kennis J. T. M. Spectral Watermarking in Femtosecond Stimulated Raman Spectroscopy: Resolving the Nature of the Carotenoid S* State. Phys. Chem. Chem. Phys. 2016, 18, 14619–14628. 10.1039/C6CP01464J. PubMed DOI
Quick M.; Kasper M.-A.; Richter C.; Mahrwald R.; Dobryakov A. L.; Kovalenko S. A.; Ernsting N. P. β-Carotene Revisited by Transient Absorption and Stimulated Raman Spectroscopy. ChemPhysChem 2015, 16, 3824–3835. 10.1002/cphc.201500586. PubMed DOI
Christensen R. L.; Enriquez M. M.; Wagner N. L.; Peacock-Villada A. Y.; Scriban C.; Schrock R. R.; Polivka T.; Frank H. A.; Birge R. R. Energetics and Dynamics of the Low-Lying Electronic States of Constrained Polyenes: Implications for Infinite Polyenes. J. Phys. Chem. A 2013, 117, 1449–1465. 10.1021/jp310592s. PubMed DOI PMC
Herek J. L.; Wohlleben W.; Cogdell R. J.; Zeidler D.; Motzkus M. Quantum Control of Energy Flow in Light Harvesting. Nature 2002, 417, 533–535. 10.1038/417533a. PubMed DOI
Wohlleben W.; Buckup T.; Hashimoto H.; Cogdell R. J.; Herek J. L.; Motzkus M. Pump-Deplete-Probe Spectroscopy and the Puzzle of Carotenoid Dark States. J. Phys. Chem. B 2004, 108, 3320–3325. 10.1021/jp036145k. DOI
Buckup T.; Savolainen J.; Wohlleben W.; Herek J. L.; Hashimoto H.; Correia R. R. B.; Motzkus M. Pump-Probe and Pump-Deplete-Probe Spectroscopies on Carotenoids With N = 9–15 Conjugated Bonds. J. Chem. Phys. 2006, 125, 194505.10.1063/1.2388274. PubMed DOI
Savolainen J.; Buckup T.; Hauer J.; Jafarpour A.; Serrat C.; Motzkus M.; Herek J. L. Carotenoid Deactivation in an Artificial Light-Harvesting Complex Via a Vibrationally Hot Ground State. Chem. Phys. 2009, 357, 181–187. 10.1016/j.chemphys.2009.01.002. DOI
Hauer J.; Buckup T.; Motzkus M. Quantum Control Spectroscopy of Vibrational Modes: Comparison of Control Scenarios for Ground and Excited States in Beta-Carotene. Chem. Phys. 2008, 350, 220–229. 10.1016/j.chemphys.2008.03.021. DOI
Hauer J.; Buckup T.; Motzkus M. Pump-Degenerate Four Wave Mixing as a Technique for Analyzing Structural and Electronic Evolution: Multidimensional Time-Resolved Dynamics Near a Conical Intersection. J. Phys. Chem. A 2007, 111, 10517–10529. 10.1021/jp073727j. PubMed DOI
Wohlleben W.; Buckup T.; Hashimoto H.; Cogdell R. J.; Herek J. L.; Motzkus M. Pump–Deplete–Probe Spectroscopy and the Puzzle of Carotenoid Dark States. J. Phys. Chem. B 2004, 108, 3320–3325. 10.1021/jp036145k. DOI
Jailaubekov A. E.; Song S. H.; Vengris M.; Cogdell R. J.; Larsen D. S. Using Narrowband Excitation to Confirm that the S* State in Carotenoids is Not a Vibrationally-Excited Ground State Species. Chem. Phys. Lett. 2010, 487, 101–107. 10.1016/j.cplett.2010.01.014. DOI
Ehlers F.; Scholz M.; Schimpfhauser J.; Bienert J.; Oum K.; Lenzer T. Collisional Relaxation of Apocarotenals: Identifying the S* State With Vibrationally Excited Molecules in the Ground Electronic State S-0*. Phys. Chem. Chem. Phys. 2015, 17, 10478–10488. 10.1039/C4CP05600K. PubMed DOI
Golibrzuch K.; Ehlers F.; Scholz M.; Oswald R.; Lenzer T.; Oum K.; Kim H.; Koo S. Ultrafast Excited State Dynamics and Spectroscopy of 13,13 ’-Diphenyl-Beta-Carotene. Phys. Chem. Chem. Phys. 2011, 13, 6340–6351. 10.1039/c0cp02525a. PubMed DOI
Lenzer T.; Ehlers F.; Scholz M.; Oswald R.; Oum K. Assignment of Carotene S* state Features to the Vibrationally Hot Ground Electronic State. Phys. Chem. Chem. Phys. 2010, 12, 8832–8839. 10.1039/b925071a. PubMed DOI
van Stokkum I. H. M.; Larsen D. S.; van Grondelle R. Global and Target Analysis of Time-Resolved Spectra. Biochim. Biophys. Acta, Bioenerg. 2004, 1657, 82–104. 10.1016/j.bbabio.2004.04.011. PubMed DOI
Jailaubekov A. E.; Vengris M.; Song S. H.; Kusumoto T.; Hashimoto H.; Larsen D. S. Deconstructing the Excited-State Dynamics of Beta-Carotene in Solution. J. Phys. Chem. A 2011, 115, 3905–3916. 10.1021/jp1082906. PubMed DOI
Balevicius V.; Pour A. G.; Savolainen J.; Lincoln C. N.; Lukes V.; Riedle E.; Valkunas L.; Abramavicius D.; Hauer J. Vibronic Energy Relaxation Approach Highlighting Deactivation Pathways in Carotenoids. Phys. Chem. Chem. Phys. 2015, 17, 19491–19499. 10.1039/C5CP00856E. PubMed DOI
Mendelsohn R.; Vanholten R. W. Zeaxanthin ([3r,3′r]-Beta-Beta-Carotene-3–3′diol) as a Resonance Raman and Visible Absorption Probe of Membrane-Structure. Biophys. J. 1979, 27, 221–235. 10.1016/S0006-3495(79)85213-3. PubMed DOI PMC
Mendes-Pinto M. M.; Sansiaume E.; Hashimoto H.; Pascal A. A.; Gall A.; Robert B. Electronic Absorption and Ground State Structure of Carotenoid Molecules. J. Phys. Chem. B 2013, 117, 11015–11021. 10.1021/jp309908r. PubMed DOI
Valkunas L.; Abramavicius D.; Mancal T.. Molecular Excitation Dynamics and Relaxation: Quantum Theory and Spectroscopy; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2013.
May V.; Kuehn O.. Charge and Energy Transfer Dynamics in Molecular Systems, 3rd ed.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2011.
Kardas T. M.; Ratajska-Gadomska B.; Lapini A.; Ragnoni E.; Righini R.; Di Donato M.; Foggi P.; Gadomski W. Dynamics of the Time-Resolved Stimulated Raman Scattering Spectrum in Presence of Transient Vibronic Inversion of Population on the Example of Optically Excited Trans-Beta-Apo-8 ′-Carotenal. J. Chem. Phys. 2014, 140, 204312.10.1063/1.4879060. PubMed DOI
Zhang J. P.; Chen C. H.; Koyama Y.; Nagae H. Vibrational Relaxation and Redistribution in the 2A(g)(−) State of All-Trans-Lycopene as Revealed by Picosecond Time-Resolved Absorption Spectroscopy. J. Phys. Chem. B 1998, 102, 1632–1640. 10.1021/jp9728058. DOI
Ostroumov E. E.; Muller M. G.; Reus M.; Holzwarth A. R. On the Nature of the ″Dark S*″ Excited State of beta-Carotene. J. Phys. Chem. A 2011, 115, 3698–3712. 10.1021/jp105385c. PubMed DOI
Mukamel S.Principles of Nonlinear Optical Spectroscopy; Oxford University Press: Oxford, UK, 1995.
McCamant D. W.; Kukura P.; Mathies R. A. Femtosecond Time-Resolved Stimulated Raman Spectroscopy: Application to the Ultrafast Internal Conversion in Beta-Ccarotene. J. Phys. Chem. A 2003, 107, 8208–8214. 10.1021/jp030147n. PubMed DOI PMC
Kraack J. P.; Wand A.; Buckup T.; Motzkus M.; Ruhman S. Mapping Multidimensional Excited State Dynamics Using Pump-Impulsive-Vibrational-Spectroscopy and Pump-Degenerate-Four-Wave-Mixing. Phys. Chem. Chem. Phys. 2013, 15, 14487–14501. 10.1039/c3cp50871d. PubMed DOI
Papagiannakis E.; van Stokkum I. H. M.; van Grondelle R.; Niederman R. A.; Zigmantas D.; Sundstrom V.; Polivka T. A Near-Infrared Transient Absorption Study of the Excited-State Dynamics of the Carotenoid Spirilloxanthin in Solution and in the LH1 Complex of Rhodospirillum Rubrum. J. Phys. Chem. B 2003, 107, 11216–11223. 10.1021/jp034931j. DOI
Polivka T.; Herek J. L.; Zigmantas D.; Akerlund H. E.; Sundstrom V. Direct observation of the (forbidden) S1 state in carotenoids. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 4914–4917. 10.1073/pnas.96.9.4914. PubMed DOI PMC
Maiuri M.; Snellenburg J. J.; van Stokkum I. H. M.; Pillai S.; Carter K. W.; Gust D.; Moore T. A.; Moore A. L.; van Grondelle R.; Cerullo G.; Polli D. Ultrafast Energy Transfer and Excited State Coupling in an Artificial Photosynthetic Antenna. J. Phys. Chem. B 2013, 117, 14183–14190. 10.1021/jp401073w. PubMed DOI
Niedzwiedzki D. M.; Sullivan J. O.; Polivka T.; Birge R. R.; Frank H. A. Femtosecond Time-Resolved Transient Absorption Spectroscopy of Xanthophylls. J. Phys. Chem. B 2006, 110, 22872–22885. 10.1021/jp0622738. PubMed DOI
Zhang J. P.; Skibsted L. H.; Fujii R.; Koyama Y. Transient Absorption from the 1B(u)(+) State of All-Trans-Beta-Carotene Newly Identified in the Near-Infrared Region. Photochem. Photobiol. 2001, 73, 219–222. 10.1562/0031-8655(2001)073<0219:TAFTUS>2.0.CO;2. PubMed DOI
Kosumi D.; Komukai M.; Hashimoto H.; Yoshizawa M. Ultrafast Dynamics of All-Trans-Beta-Carotene Explored by Resonant and Nonresonant Photoexcitations. Phys. Rev. Lett. 2005, 95, 213601.10.1103/PhysRevLett.95.213601. PubMed DOI
Christensson N.; Milota F.; Nemeth A.; Pugliesi I.; Riedle E.; Sperling J.; Pullerits T.; Kauffmann H. F.; Hauer J. Electronic Double-Quantum Coherences and Their Impact on Ultrafast Spectroscopy: The Example of Beta-Carotene. J. Phys. Chem. Lett. 2010, 1, 3366–3370. 10.1021/jz101409r. PubMed DOI PMC
Christensson N.; Milota F.; Nemeth A.; Sperling J.; Kauffmann H. F.; Pullerits T.; Hauer J. Two-Dimensional Electronic Spectroscopy of Beta-Carotene. J. Phys. Chem. B 2009, 113, 16409–16419. 10.1021/jp906604j. PubMed DOI
Garavelli M.; Celani P.; Bernardi F.; Robb M. A.; Olivucci M. Force Fields for ’’Ultrafast’’ Photochemistry: The S-2 (1B(u))- > S-1(2A(g))- > S-0 (1A(g)) Reaction Path for All-Trans-Hexa-1,3,5-Triene. J. Am. Chem. Soc. 1997, 119, 11487–11494. 10.1021/ja971280u. DOI
Structural and quantum chemical basis for OCP-mediated quenching of phycobilisomes
Carotenoid responds to excess energy dissipation in the LH2 complex from Rhodoblastus acidophilus
Understanding Carotenoid Dynamics via the Vibronic Energy Relaxation Approach
A Protein Environment-Modulated Energy Dissipation Channel in LHCII Antenna Complex