Carotenoid-to-bacteriochlorophyll energy transfer through vibronic coupling in LH2 from Phaeosprillum molischianum

. 2018 Mar ; 135 (1-3) : 45-54. [epub] 20170518

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28523607
Odkazy

PubMed 28523607
PubMed Central PMC5783993
DOI 10.1007/s11120-017-0398-3
PII: 10.1007/s11120-017-0398-3
Knihovny.cz E-zdroje

The peripheral light-harvesting antenna complex (LH2) of purple photosynthetic bacteria is an ideal testing ground for models of structure-function relationships due to its well-determined molecular structure and ultrafast energy deactivation. It has been the target for numerous studies in both theory and ultrafast spectroscopy; nevertheless, certain aspects of the convoluted relaxation network of LH2 lack a satisfactory explanation by conventional theories. For example, the initial carotenoid-to-bacteriochlorophyll energy transfer step necessary on visible light excitation was long considered to follow the Förster mechanism, even though transfer times as short as 40 femtoseconds (fs) have been observed. Such transfer times are hard to accommodate by Förster theory, as the moderate coupling strengths found in LH2 suggest much slower transfer within this framework. In this study, we investigate LH2 from Phaeospirillum (Ph.) molischianum in two types of transient absorption experiments-with narrowband pump and white-light probe resulting in 100 fs time resolution, and with degenerate broadband 10 fs pump and probe pulses. With regard to the split Qx band in this system, we show that vibronically mediated transfer explains both the ultrafast carotenoid-to-B850 transfer, and the almost complete lack of transfer to B800. These results are beyond Förster theory, which predicts an almost equal partition between the two channels.

Zobrazit více v PubMed

Andersson PO, Gillbro T. Photophysics and dynamcis of the lowest excited singlet-state in long susbtituted polyenes with implications to the very long-chain limit. J Chem Phys. 1995;103(7):2509–2519. doi: 10.1063/1.469672. DOI

Balevicius V, Pour AG, Savolainen J, Lincoln CN, Lukes V, Riedle E, Valkunas L, Abramavicius D, Hauer J. Vibronic energy relaxation approach highlighting deactivation pathways in carotenoids. Phys Chem Chem Phys. 2015;17(29):19491–19499. doi: 10.1039/C5CP00856E. PubMed DOI

Balevičius V, Abramavicius D, Polívka T, Galestian Pour A, Hauer J. A unified picture of S* in carotenoids. J Phys Chem Lett. 2016;7(7):3347–3352. doi: 10.1021/acs.jpclett.6b01455. PubMed DOI PMC

Billsten HH, Herek JL, Garcia-Asua G, Hashoj L, Polivka T, Hunter CN, Sundstrom V. Dynamics of energy transfer from lycopene to bacteriochlorophyll in genetically-modified LH2 complexes of Rhodobacter sphaeroides. Biochemistry. 2002;41(12):4127–4136. doi: 10.1021/bi011741v. PubMed DOI

Billsten HH, Zigmantas D, Sundstrom V, Polivka T. Dynamics of vibrational relaxation in the S-1 state of carotenoids having 11 conjugated C=C bonds. Chem Phys Lett. 2002;355(5–6):465–470. doi: 10.1016/S0009-2614(02)00268-3. DOI

Blankenship RE. Molecular mechanisms of photosynthesis. 2. Chichester: Wiley; 2014.

Christensson N, Milota F, Nemeth A, Sperling J, Kauffmann HF, Pullerits T, Hauer J. Two-dimensional electronic spectroscopy of beta-carotene. J Phys Chem B. 2009;113(51):16409–16419. doi: 10.1021/jp906604j. PubMed DOI

Christensson N, Milota F, Nemeth A, Pugliesi I, Riedle E, Sperling J, Pullerits T, Kauffmann HF, Hauer J. Electronic double-quantum coherences and their impact on ultrafast spectroscopy: the example of beta-carotene. J Phys Chem Lett. 2010;1(23):3366–3370. doi: 10.1021/jz101409r. PubMed DOI PMC

Christiana R, Miki T, Kakitani Y, Aoyagi S, Koyama Y, Limantara L. Energies and excited-state dynamics of 1B(u)(+), 1B(u)() and 3A(g)() states of carotenoids bound to LH2 antenna complexes from purple photosynthetic bacteria. Chem Phys Lett. 2009;480(4–6):289–295. doi: 10.1016/j.cplett.2009.08.074. DOI

Cong H, Niedzwiedzki DM, Gibson GN, LaFountain AM, Kelsh RM, Gardiner AT, Cogdell RJ, Frank HA. Ultrafast time-resolved carotenoid to-bacteriochlorophyll energy transfer in LH2 complexes from photosynthetic bacteria. J Phys Chem B. 2008;112(34):10689–10703. doi: 10.1021/jp711946w. PubMed DOI PMC

Damjanovic A, Ritz T, Schulten K. Energy transfer between carotenoids and bacteriochlorophylls in light-harvesting complex II of purple bacteria. Phys Rev E. 1999;59(3):3293–3311. doi: 10.1103/PhysRevE.59.3293. DOI

Fuller FD, Pan J, Gelzinis A, Butkus V, Senlik SS, Wilcox DE, Yocum CF, Valkunas L, Abramavicius D, Ogilvie JP. Vibronic coherence in oxygenic photosynthesis. Nat Chem. 2014;6(8):706–711. doi: 10.1038/nchem.2005. PubMed DOI

Gradinaru CC, Kennis JTM, Papagiannakis E, van Stokkum IHM, Cogdell RJ, Fleming GR, Niederman RA, van Grondelle R. An unusual pathway of excitation energy deactivation in carotenoids: singlet-to-triplet conversion on an ultrafast timescale in a photosynthetic antenna. Proc Natl Acad Sci USA. 2001;98(5):2364–2369. doi: 10.1073/pnas.051501298. PubMed DOI PMC

Herek JL, Wendling M, He Z, Polivka T, Garcia-Asua G, Cogdell RJ, Hunter CN, van Grondelle R, Sundstrom V, Pullerits T. Ultrafast carotenoid band shifts: experiment and theory. J Phys Chem B. 2004;108(29):10398–10403. doi: 10.1021/jp040094p. DOI

Ihalainen JA, Linnanto J, Myllyperkio P, van Stokkum IHM, Ucker B, Scheer H, Korppi-Tommola JEI. Energy transfer in LH2 of Rhodospirillum molischianum, studied by subpicosecond spectroscopy and configuration interaction exciton calculations. J Phys Chem B. 2001;105(40):9849–9856. doi: 10.1021/jp010921b. DOI

Jumper CC, Arpin PC, Turner DB, McClure SD, Rafiq S, Dean JC, Cina JA, Kovac PA, Mirkovic T, Scholes GD. Broad-band pump-probe spectroscopy quantifies ultrafast solvation dynamics of proteins and molecules. J Phys Chem Lett. 2016;7(22):4722–4731. doi: 10.1021/acs.jpclett.6b02237. PubMed DOI

Knox RS. Ultrashort processes and biology. J Photoch Photobio B. 1999;49(2–3):81–88. doi: 10.1016/S1011-1344(99)00060-3. DOI

Koepke J, Hu XC, Muenke C, Schulten K, Michel H. The crystal structure of the light-harvesting complex II (B800850) from Rhodospirillum molischianum. Structure. 1996;4(5):581–597. doi: 10.1016/S0969-2126(96)00063-9. PubMed DOI

Kosumi D, Fujiwara M, Fujii R, Cogdell RJ, Hashimoto H, Yoshizawa M (2009) The dependence of the ultrafast relaxation kinetics of the S-2 and S-1 states in beta-carotene homologs and lycopene on conjugation length studied by femtosecond time-resolved absorption and Kerr-gate fluorescence spectroscopies. J Chem Phys 130(21). doi:10.1063/1.3147008 PubMed

Krueger BP, Scholes GD, Fleming GR. Calculation of couplings and energy-transfer pathways between the pigments of LH2 by the ab initio transition density cube method. J Phys Chem B. 1998;102(27):5378–5386. doi: 10.1021/jp9811171. DOI

Liebel M, Schnedermann C, Wende T, Kukura P. Principles and applications of broadband impulsive vibrational spectroscopy. J Phys Chem A. 2015;119(36):9506–9517. doi: 10.1021/acs.jpca.5b05948. PubMed DOI

Lincoln CN, Hayden J, Pour AG, Perlik V, Sanda F, Hauer J. A quantitative study of coherent vibrational dynamics probed by heterodyned transient grating spectroscopy. Vib Spectrosc. 2016;85:167–174. doi: 10.1016/j.vibspec.2016.04.018. DOI

Macpherson AN, Arellano JB, Fraser NJ, Cogdell RJ, Gillbro T. Efficient energy transfer from the carotenoid S-2 state in a photosynthetic light-harvesting complex. Biophys J. 2001;80(2):923–930. doi: 10.1016/S0006-3495(01)76071-7. PubMed DOI PMC

Maiuri M, Rehault J, Carey AM, Hacking K, Garavelli M, Luer L, Polli D, Cogdell RJ, Cerullo G (2015) Ultra-broadband 2D electronic spectroscopy of carotenoid-bacteriochlorophyll interactions in the LH1 complex of a purple bacterium. J Chem Phys 142(21). doi:10.1063/1.4919056 PubMed

Mcdermott G, Prince SM, Freer AA, Hawthornthwaitelawless AM, Papiz MZ, Cogdell RJ, Isaacs NW. Crystal-structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature. 1995;374(6522):517–521. doi: 10.1038/374517a0. DOI

Merlin JC. Resonance raman-spectroscopy of carotenoids and carotenoid-containing systems. Pure Appl Chem. 1985;57(5):785–792. doi: 10.1351/pac198557050785. DOI

Mirkovic T, Ostroumov E, Anna JM, Van Grondelle R, Govindjee, Scholes GD. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem Rev. 2017;117(2):44. doi: 10.1021/acs.chemrev.6b00002. PubMed DOI

Niedzwiedzki DM, Kobayashi M, Blankenship RE. Triplet excited state spectra and dynamics of carotenoids from the thermophilic purple photosynthetic bacterium Thermochromatium tepidum. Photosynth Res. 2011;107(2):177–186. doi: 10.1007/s11120-011-9620-x. PubMed DOI

Niedzwiedzki DM, Bina D, Picken N, Honkanen S, Blankenship RE, Holten D, Cogdell RJ. Spectroscopic studies of two spectral variants of light-harvesting complex 2 (LH2) from the photosynthetic purple sulfur bacterium Allochromatium vinosum. Bba-Bioenergetics. 2012;1817(9):1576–1587. doi: 10.1016/j.bbabio.2012.05.009. PubMed DOI

Niedzwiedzki DM, Hunter CN, Blankenship RE. Evaluating the nature of so-called S*-state feature in transient absorption of carotenoids in light-harvesting complex 2 (LH2) from purple photosynthetic bacteria. J Phys Chem B. 2016;120(43):11123–11131. doi: 10.1021/acs.jpcb.6b08639. PubMed DOI PMC

Perlik V, Sanda F (2016) Simulations of coherent nonlinear optical response of molecular vibronic dimers. arXiv:160400327 [physicschem-ph]

Perlik V, Seibt J, Cranston LJ, Cogdell RJ, Lincoln CN, Savolainen J, Sanda F, Mancal T, Hauer J (2015) Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters. J Chem Phys 142(21). doi:10.1063/1.4919548 PubMed

Polivka T, Sundstrom V. Ultrafast dynamics of carotenoid excited states—from solution to natural and artificial systems. Chem Rev. 2004;104(4):2021–2071. doi: 10.1021/cr020674n. PubMed DOI

Polivka T, Sundstrom V. Dark excited states of carotenoids: consensus and controversy. Chem Phys Lett. 2009;477(1–3):1–11. doi: 10.1016/j.cplett.2009.06.011. DOI

Polivka T, Zigmantas D, Herek JL, He Z, Pascher T, Pullerits T, Cogdell RJ, Frank HA, Sundstrom V. The carotenoid S-1 state in LH2 complexes from purple bacteria Rhodobacter sphaeroides and Rhodopseudomonas acidophila: S-1 energies, dynamics, and carotenoid radical formation. J Phys Chem B. 2002;106(42):11016–11025. doi: 10.1021/jp025752p. DOI

Polivka T, Niedzwiedzki D, Fuciman M, Sundstrom V, Frank HA. Role of B800 in carotenoid-bacteriochlorophyll energy and electron transfer in LH2 complexes from the purple bacterium Rhodobacter sphaeroides. J Phys Chem B. 2007;111(25):7422–7431. doi: 10.1021/jp071395c. PubMed DOI

Polli D, Cerullo G, Lanzani G, De Silvestri S, Hashimoto H, Cogdell RJ. Carotenoid-bacteriochlorophyll energy transfer in LH2 complexes studied with 10-fs time resolution. Biophys J. 2006;90(7):2486–2497. doi: 10.1529/biophysj.105.069286. PubMed DOI PMC

Polli D, Luer L, Cerullo G (2007) High-time-resolution pump-probe system with broadband detection for the study of time-domain vibrational dynamics. Rev Sci Instrum 78(10). doi:10.1063/1.2800778 PubMed

Rondonuwu FS, Yokoyama K, Fujii R, Koyama Y, Cogdell RJ, Watanabe Y. The role of the 1(1)B(u)() state in carotenoid-to-bacteriochlorophyll singlet-energy transfer in the LH2 antenna complexes from Rhodobacter sphaeroides G1C, Rhodobacter sphaeroides 2.4.1, Rhodospirillum molischianum and Rhodopseudomonas acidophila. Chem Phys Lett. 2004;390(4–6):314–322. doi: 10.1016/j.cplett.2004.03.089. DOI

Shreve AP, Trautman JK, Frank HA, Owens TG, Albrecht AC. Femtosecond energy-transfer processes in the B800850 light-harvesting complex of Rhodobacter sphaeroides-2.4.1. Biochim Biophys Acta. 1991;1058(2):280–288. doi: 10.1016/S0005-2728(05)80248-8. PubMed DOI

Theiss C, Leupold D, Moskalenko AA, Razjivin AP, Eichler HJ, Lokstein H. Femtosecond spectroscopy of native and carotenoidless purple-bacterial LH2 clarifies functions of carotenoids. Biophys J. 2008;94(12):4808–4811. doi: 10.1529/biophysj.107.121681. PubMed DOI PMC

Tretiak S, Middleton C, Chernyak V, Mukamel S. Bacteriochlorophyll and carotenoid excitonic couplings in the LH2 system of purple bacteria. J Phys Chem B. 2000;104(40):9540–9553. doi: 10.1021/jp001585m. DOI

Valkunas L, Abramavicius D, Mančal Ts. Molecular excitation dynamics and relaxation: quantum theory and spectroscopy. Weinheim: Wiley-VCH; 2013.

van Stokkum IHM, Larsen DS, van Grondelle R. Global and target analysis of time-resolved spectra. Bba-Bioenergetics. 2004;1657(2–3):82–104. doi: 10.1016/j.bbabio.2004.04.011. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...