Light harvesting in purple bacteria does not rely on resonance fine-tuning in peripheral antenna complexes

. 2024 Sep ; 161 (3) : 191-201. [epub] 20240621

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38907135

Grantová podpora
LLC002760 Laser Lab Europe
514636421 Deutsche Forschungsgemeinschaft
2021-05836 Vetenskapsrådet

Odkazy

PubMed 38907135
PubMed Central PMC11324704
DOI 10.1007/s11120-024-01107-4
PII: 10.1007/s11120-024-01107-4
Knihovny.cz E-zdroje

The ring-like peripheral light-harvesting complex 2 (LH2) expressed by many phototrophic purple bacteria is a popular model system in biological light-harvesting research due to its robustness, small size, and known crystal structure. Furthermore, the availability of structural variants with distinct electronic structures and optical properties has made this group of light harvesters an attractive testing ground for studies of structure-function relationships in biological systems. LH2 is one of several pigment-protein complexes for which a link between functionality and effects such as excitonic coherence and vibronic coupling has been proposed. While a direct connection has not yet been demonstrated, many such interactions are highly sensitive to resonance conditions, and a dependence of intra-complex dynamics on detailed electronic structure might be expected. To gauge the sensitivity of energy-level structure and relaxation dynamics to naturally occurring structural changes, we compare the photo-induced dynamics in two structurally distinct LH2 variants. Using polarization-controlled 2D electronic spectroscopy at cryogenic temperatures, we directly access information on dynamic and static disorder in the complexes. The simultaneous optimal spectral and temporal resolution of these experiments further allows us to characterize the ultrafast energy relaxation, including exciton transport within the complexes. Despite the variations in PPC molecular structure manifesting as clear differences in electronic structure and disorder, the energy-transport and-relaxation dynamics remain remarkably similar. This indicates that the light-harvesting functionality of purple bacteria within a single LH2 complex is highly robust to structural perturbations and likely does not rely on finely tuned electronic- or electron-vibrational resonance conditions.

Zobrazit více v PubMed

Augulis R, Zigmantas D, Hybl JD, Albrecht AW, Faeder SM, Jonas DM (2011) Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance. Opt Express 1(14):13126–1313310.1364/OE.19.013126 PubMed DOI

Blankenship RE (2014) Molecular mechanisms of photosynthesis, 2nd edn. Wiley/Blackwell, Chichester, West Sussex

Book LD, Ostafin AE, Ponomarenko IN, Norris JR, Scherer NF (2000) Exciton delocalization and initial dephasing dynamics of purple bacterial LH2. J Phys Chem B 104(34):8295–830710.1021/jp000485d DOI

Caycedo-Soler F, Lim J, Oviedo-Casado S, Van Hulst NF, Huelga SF, Plenio MB (2018) Theory of excitonic delocalization for robust vibronic dynamics in LH2. J Phys Chem Lett 9(12):3446–3453 10.1021/acs.jpclett.8b00933 PubMed DOI

Chachisvilis M, Ku O, Pullerits T, Sundström V (1997) Excitons in photosynthetic purple bacteria: wavelike motion or incoherent hopping? J Phys Chem B 101(37):7275–728310.1021/jp963360a DOI

Cho HS, Rhee H, Song JK, Min CK, Takase M, Aratani N, Cho S, Osuka A, Joo T, Kim D (2003) Excitation energy transport processes of porphyrin monomer, dimer, cyclic trimer, and hexamer probed by ultrafast fluorescence anisotropy decay. J Am Chem Soc 125(19):5849–5860 10.1021/ja021476g PubMed DOI

Cogdell RJ, Gall A, Köhler J (2006) The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes. Q Rev Biophys 39(3):227–324 10.1017/S0033583506004434 PubMed DOI

Dahlbom M, Pullerits T, Mukamel S, Sundström V (2001) Exciton delocalization in the B850 light-harvesting complex: comparison of different measures. J Phys Chem B 105(23):5515–552410.1021/jp004496i DOI

Freiberg A, Rätsep M, Timpman K, Trinkunas G, Woodbury NW (2003) Self-trapped excitons in LH2 antenna complexes between 5 K and ambient temperature. J Phys Chem B 107(41):11510–1151910.1021/jp0344848 DOI

Gardiner AT, Niedzwiedzki DM, Cogdell RJ (2018) Adaptation of Rhodopseudomonas acidophila strain 7050 to growth at different light intensities: what are the benefits to changing the type of LH2? Farad Disc 207:471–48910.1039/C7FD00191F PubMed DOI

Gardiner AT, Naydenova K, Castro-Hartmann P, Nguyen-Phan TC, Russo CJ, Sader K, Hunter CN, Cogdell RJ, Qian P (2021) The 2.4 Å cryo-EM structure of a heptameric light-harvesting 2 complex reveals two carotenoid energy transfer pathways. Sci Adv. 10.1126/sciadv.abe4650 10.1126/sciadv.abe4650 PubMed DOI PMC

Gelzinis A, Augulis R, Butkus V, Robert B, Valkunas L (2019) Two-dimensional spectroscopy for non-specialists. Biochim Biophys Acta Bioenerg 1860(4):271–285 10.1016/j.bbabio.2018.12.006 PubMed DOI

Jang SJ, Mennucci B (2018) Delocalized excitons in natural light-harvesting complexes. Rev Mod Phys 90(3):03500310.1103/RevModPhys.90.035003 DOI

Kennis JTM, Streltsov AM, Vulto SIE, Aartsma TJ, Nozawa T, Amesz J (1997) Femtosecond dynamics in isolated LH2 complexes of various species of purple bacteria. J Phys Chem B 101(39):7827–783410.1021/jp963359b DOI

Koepke J, Hu X, Muenke C, Schulten K, Michel H (1996) The crystal structure of the light-harvesting complex II (B800–850) from Rhodospirillum molischianum. Structure 4(5):581–597 10.1016/S0969-2126(96)00063-9 PubMed DOI

Law CJ, Roszak AW, Southall J, Gardiner AT, Isaacs NW, Cogdell RJ (2004) The structure and function of bacterial light-harvesting complexes. Mol Membr Biol 21(3):183–191 10.1080/09687680410001697224 PubMed DOI

Marciniak H, Lochbrunner S (2014) On the interpretation of decay associated spectra in the presence of time dependent spectral shifts. Chem Phys Lett 609:184–18810.1016/j.cplett.2014.05.006 DOI

Ostroumov EE, Mulvaney RM, Anna JM, Cogdell RJ, Scholes GD (2013) Energy transfer pathways in light-harvesting complexes of purple bacteria as revealed by global kinetic analysis of two-dimensional transient spectra. J Phys Chem B 117(38):11349–11362 10.1021/jp403028x PubMed DOI

Papiz MZ, Prince SM, Howard T, Cogdell RJ, Isaacs NW (2003) The structure and thermal motion of the B800–850 LH2 complex from Rps. Acidophila at 2.0 Å resolution and 100 K: new structural features and functionally relevant motions. J Mol Biol 326(5):1523–1538 10.1016/S0022-2836(03)00024-X PubMed DOI

Perlík V, Seibt J, Cranston LJ, Cogdell RJ, Lincoln CN, Savolainen J, Šanda F, Mančal T, Hauer J (2015) Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters. J Chem Phys 142(21):212434 10.1063/1.4919548 PubMed DOI

Perlík V, Hauer J, Šanda F (2017) Finite pulse effects in single and double quantum spectroscopies. J Opt Soc Am B 34(2):43010.1364/JOSAB.34.000430 DOI

Polívka T, Pullerits T, Herek JL, Sundström V (2000) Exciton relaxation and polaron formation in LH2 at low temperature. J Phys Chem B 104(5):1088–109610.1021/jp9915984 DOI

Rondonuwu FS, Yokoyama K, Fujii R, Koyama Y, Cogdell RJ, Watanabe Y (2004) The role of the 11Bu- state in carotenoid-to-bacteriochlorophyll singlet-energy transfer in the LH2 antenna complexes from Rhodobacter sphaeroides G1C, Rhodobacter sphaeroides 2.4.1, Rhodospirillum molischianum and Rhodopseudomonas acidophila. Chem Phys Lett 390(4–6):314–32210.1016/j.cplett.2004.03.089 DOI

Schröter M, Alcocer MJP, Cogdell RJ, Kühn O, Zigmantas D (2018) Origin of the two bands in the B800 ring and their involvement in the energy transfer network of Allochromatium vinosum. J Phys Chem Lett 9(6):1340–1345 10.1021/acs.jpclett.8b00438 PubMed DOI

Snellenburg JJ, Laptenok S, Seger R, Mullen KM, van Stokkum IHM (2012) Glotaran: a java-based graphical user interface for the R package TIMP. J Stat Softw 49(3):1–2210.18637/jss.v049.i03 DOI

Sundström V, Pullerits T, Van Grondelle R (1999) Photosynthetic light-harvesting: reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. J Phys Chem B 103(13):2327–234610.1021/jp983722+ DOI

Thyrhaug E, Lincoln CN, Branchi F, Cerullo G, Perlík V, Šanda F, Lokstein H, Hauer J (2018) Carotenoid-to-bacteriochlorophyll energy transfer through vibronic coupling in LH2 from Phaeosprillum molischianum. Photosynth Res 135(1–3):45–54 10.1007/s11120-017-0398-3 PubMed DOI PMC

Thyrhaug E, Schröter M, Bukartė E, Kühn O, Cogdell RJ, Hauer J, Zigmantas D (2021) Intraband dynamics and exciton trapping in the LH2 complex of Rhodopseudomonas acidophila. J Chem Phys 154(4):045102 10.1063/5.0033802 PubMed DOI

Timpmann K, Katiliene Z, Woodbury NW, Freiberg A (2001) Exciton self trapping in one-dimensional photosynthetic antennas. J Phys Chem B 105(49):12223–1222510.1021/jp011147v DOI

Tong AL, Fiebig OC, Nairat M, Harris D, Giansily M, Chenu A, Sturgis JN, Schlau-Cohen GS (2020) Comparison of the energy-transfer rates in structural and spectral variants of the B800–850 complex from purple bacteria. J Phys Chem B 124(8):1460–1469 10.1021/acs.jpcb.9b11899 PubMed DOI

Tretiak S, Middleton C, Chernyak V, Mukamel S (2000) Exciton hamiltonian for the bacteriochlorophyll system in the LH2 antenna complex of purple bacteria. J Phys Chem B 104(18):4519–452810.1021/jp9939930 DOI

Van Grondelle R, Novoderezhkin VI (2006) Energy transfer in photosynthesis: experimental insights and quantitative models. Phys Chem Chem Phys 8:793–807 10.1039/B514032C PubMed DOI

Van Stokkum IHM, Larsen DS, Van Grondelle R (2004) Global and target analysis of time-resolved spectra. Biochim Biophys Acta Bioenerg 1657(2–3):82–10410.1016/j.bbabio.2004.04.011 PubMed DOI

Vulto SIE, Kennis JTM, Streltsov AM, Amesz J, Aartsma TJ (1999) Energy relaxation within the B850 absorption band of the isolated light-harvesting complex LH2 from Rhodopseudomonas acidophila at low temperature. J Phys Chem B 103(5):878–88310.1021/jp9825415 DOI

Wu HM, Reddy NRS, Cogdell RJ, Muenke C, Michel H, Small GJA (1996) Comparison of the LH2 antenna complex of three purple bacteria by hole burning and absorption spectroscopies. Mol Cryst Liq Cryst Sci Technol Sect A 291:163–17310.1080/10587259608042744 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...