Understanding Carotenoid Dynamics via the Vibronic Energy Relaxation Approach

. 2022 Jun 09 ; 126 (22) : 3985-3994. [epub] 20220524

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35609122

Carotenoids are an integral part of natural photosynthetic complexes, with tasks ranging from light harvesting to photoprotection. Their underlying energy deactivation network of optically dark and bright excited states is extremely efficient: after excitation of light with up to 2.5 eV of photon energy, the system relaxes back to ground state on a time scale of a few picoseconds. In this article, we summarize how a model based on the vibrational energy relaxation approach (VERA) explains the main characteristics of relaxation dynamics after one-photon excitation with special emphasis on the so-called S* state. Lineshapes after two-photon excitation are beyond the current model of VERA. We outline this future line of research in our article. In terms of experimental method development, we discuss which techniques are needed to better describe energy dissipation effects in carotenoids and within the first solvation shell.

Zobrazit více v PubMed

Polívka T.; Sundström V. Ultrafast Dynamics of Carotenoid Excited States-From Solution to Natural and Artificial Systems. Chem. Rev. 2004, 104, 2021–2071. 10.1021/cr020674n. PubMed DOI

Staleva H.; Zeeshan M.; Chábera P.; Partali V.; Sliwka H. R.; Polívka T. Ultrafast Dynamics of Long Homologues of Carotenoid Zeaxanthin. J. Phys. Chem. A 2015, 119, 11304–11312. 10.1021/acs.jpca.5b08460. PubMed DOI

Andersson P. O.; Gillbro T. Photophysics and Dynamics of the Lowest Excited Singlet State in Long Substituted Polyenes with Implications to the Very Long-Chain Limit. J. Chem. Phys. 1995, 103, 2509–2519. 10.1063/1.469672. DOI

Polívka T.; Sundström V. Dark Excited States of Carotenoids: Consensus and Controversy. Chem. Phys. Lett. 2009, 477, 1–11. 10.1016/j.cplett.2009.06.011. DOI

Gradinaru C. C.; Kennis J. T. M.; Papagiannakis E.; Van Stokkum I. H. M.; Cogdell R. J.; Fleming G. R.; Niederman R. A.; Van Grondelle R. An Unusual Pathway of Excitation Energy Deactivation in Carotenoids: Singlet-to-Triplet Conversion on an Ultrafast Timescale in a Photosynthetic Antenna. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 2364–2369. 10.1073/pnas.051501298. PubMed DOI PMC

Wohlleben W.; Buckup T.; Hashimoto H.; Cogdell R. J.; Herek J. L.; Motzkus M. Pump-Deplete-Probe Spectroscopy and the Puzzle of Carotenoid Dark States. J. Phys. Chem. B 2004, 108, 3320–3325. 10.1021/jp036145k. DOI

Frank H. A.; Cua A.; Chynwat V.; Young A.; Gosztola D.; Wasielewski M. R. Photophysics of the Carotenoids Associated with the Xanthophyll Cycle in Photosynthesis. Photosynth. Res. 1994, 41, 389–395. 10.1007/BF02183041. PubMed DOI

Jailaubekov A. E.; Song S. H.; Vengris M.; Cogdell R. J.; Larsen D. S. Using Narrowband Excitation to Confirm That the S* State in Carotenoids Is Not a Vibrationally-Excited Ground State Species. Chem. Phys. Lett. 2010, 487, 101–107. 10.1016/j.cplett.2010.01.014. DOI

Niedzwiedzki D. M.; Sullivan J. O.; Polívka T.; Birge R. R.; Frank H. A. Femtosecond Time-Resolved Transient Absorption Spectroscopy of Xanthophylls. J. Phys. Chem. B 2006, 110, 22872–22885. 10.1021/jp0622738. PubMed DOI

Niedzwiedzki D.; Koscielecki J. F.; Cong H.; Sullivan J. O.; Gibson G. N.; Birge R. R.; Frank H. A. Ultrafast Dynamics and Excited State Spectra of Open-Chain Carotenoids at Room and Low Temperatures. J. Phys. Chem. B 2007, 111, 5984–5998. 10.1021/jp070500f. PubMed DOI

Jailaubekov A. E.; Vengris M.; Song S. H.; Kusumoto T.; Hashimoto H.; Larsen D. S. Deconstructing the Excited-State Dynamics of β-Carotene in Solution. J. Phys. Chem. A 2011, 115, 3905–3916. 10.1021/jp1082906. PubMed DOI

Papagiannakis E.; Van Stokkum I. H. M.; Vengris M.; Cogdell R. J.; Van Grondelle R.; Larsen D. S. Excited-State Dynamics of Carotenoids in Light-Harvesting Complexes. 1. Exploring the Relationship between the S1 and S* States. J. Phys. Chem. B 2006, 110, 5727–5736. 10.1021/jp054633h. PubMed DOI

Hauer J.; Maiuri M.; Viola D.; Lukes V.; Henry S.; Carey A. M.; Cogdell R. J.; Cerullo G.; Polli D. Explaining the Temperature Dependence of Spirilloxanthin’s S* Signal by an Inhomogeneous Ground State Model. J. Phys. Chem. A 2013, 117, 6303–6310. 10.1021/jp4011372. PubMed DOI PMC

Lukeš V.; Christensson N.; Milota F.; Kauffmann H. F.; Hauer J. Electronic Ground State Conformers of β-Carotene and Their Role in Ultrafast Spectroscopy. Chem. Phys. Lett. 2011, 506, 122–127. 10.1016/j.cplett.2011.02.060. DOI

Kloz M.; Weißenborn J.; Polívka T.; Frank H. A.; Kennis J. T. M. Spectral Watermarking in Femtosecond Stimulated Raman Spectroscopy: Resolving the Nature of the Carotenoid S* State. Phys. Chem. Chem. Phys. 2016, 18, 14619–14628. 10.1039/C6CP01464J. PubMed DOI

Papagiannakis E.; Van Stokkum I. H. M.; Van Grondelle R.; Niederman R. A.; Zigmantas D.; Sundström V.; Polívka T. A Near-Infrared Transient Absorption Study of the Excited-State Dynamics of the Carotenoid Spirilloxanthin in Solution and in the LH1 Complex of Rhodospirillum rubrum. J. Phys. Chem. B 2003, 107, 11216–11223. 10.1021/jp034931j. DOI

Chábera P.; Fuciman M.; Hříbek P.; Polívka T. Effect of Carotenoid Structure on Excited-State Dynamics of Carbonyl Carotenoids. Phys. Chem. Chem. Phys. 2009, 11, 8795–8803. 10.1039/b909924g. PubMed DOI

Lenzer T.; Ehlers F.; Scholz M.; Oswald R.; Oum K. Assignment of Carotene S* State Features to the Vibrationally Hot Ground Electronic State. Phys. Chem. Chem. Phys. 2010, 12, 8832–8839. 10.1039/b925071a. PubMed DOI

Lenzer T.; Schubert S.; Ehlers F.; Lohse P. W.; Scholz M.; Oum K. Femtosecond Pump-Supercontinuum Probe and Transient Lens Spectroscopy of Adonixanthin. Arch. Biochem. Biophys. 2009, 483, 213–218. 10.1016/j.abb.2008.11.026. PubMed DOI

Ehlers F.; Scholz M.; Oum K.; Lenzer T. Excited-State Dynamics of 3,3′-Dihydroxyisorenieratene and (3R,3′R)-Zeaxanthin: Observation of Vibrationally Hot S0 Species. Arch. Biochem. Biophys. 2018, 646, 137–144. 10.1016/j.abb.2018.03.035. PubMed DOI

Ehlers F.; Scholz M.; Schimpfhauser J.; Bienert J.; Oum K.; Lenzer T. Collisional Relaxation of Apocarotenals: Identifying the S* State with Vibrationally Excited Molecules in the Ground Electronic State S0*. Phys. Chem. Chem. Phys. 2015, 17, 10478–10488. 10.1039/C4CP05600K. PubMed DOI

Balevičius V.; Pour A. G.; Savolainen J.; Lincoln C. N.; Lukeš V.; Riedle E.; Valkunas L.; Abramavicius D.; Hauer J. Vibronic Energy Relaxation Approach Highlighting Deactivation Pathways in Carotenoids. Phys. Chem. Chem. Phys. 2015, 17, 19491–19499. 10.1039/C5CP00856E. PubMed DOI

Balevičius V.; Abramavicius D.; Polívka T.; Galestian Pour A.; Hauer J. A Unified Picture of S* in Carotenoids. J. Phys. Chem. Lett. 2016, 7, 3347–3352. 10.1021/acs.jpclett.6b01455. PubMed DOI PMC

Balevičius V.; Wei T.; Di Tommaso D.; Abramavicius D.; Hauer J.; Polívka T.; Duffy C. D. P. The Full Dynamics of Energy Relaxation in Large Organic Molecules: From Photo-Excitation to Solvent Heating. Chem. Sci. 2019, 10, 4792–4804. 10.1039/C9SC00410F. PubMed DOI PMC

Papagiannakis E.; Kennis J. T. M.; Van Stokkum I. H. M.; Cogdell R. J.; Van Grondelle R. An Alternative Carotenoid-to-Bacteriochlorophyll Energy Transfer Pathway in Photosynthetic Light Harvesting. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 6017–6022. 10.1073/pnas.092626599. PubMed DOI PMC

Gould S. L.; Kodis G.; Palacios R. E.; De La Garza L.; Brune A.; Gust D.; Moore T. A.; Moore A. L. Artificial Photosynthetic Reaction Centers with Porphyrins as Primary Electron Acceptors. J. Phys. Chem. B 2004, 108, 10566–10580. 10.1021/jp040143y. PubMed DOI

Liguori N.; Xu P.; Van Stokkum I. H. M.; Van Oort B.; Lu Y.; Karcher D.; Bock R.; Croce R. Different Carotenoid Conformations Have Distinct Functions in Light-Harvesting Regulation in Plants. Nat. Commun. 2017, 8, 1994.10.1038/s41467-017-02239-z. PubMed DOI PMC

Saccon F.; Durchan M.; Bína D.; Duffy C. D. P.; Ruban A. V.; Polívka T. A Protein Environment-Modulated Energy Dissipation Channel in LHCII Antenna Complex. iScience 2020, 23, 101430.10.1016/j.isci.2020.101430. PubMed DOI PMC

Mascoli V.; Gelzinis A.; Chmeliov J.; Valkunas L.; Croce R. Light-Harvesting Complexes Access Analogue Emissive States in Different Environments. Chem. Sci. 2020, 11, 5697–5709. 10.1039/D0SC00781A. PubMed DOI PMC

Konold P. E.; Van Stokkum I. H. M.; Muzzopappa F.; Wilson A.; Groot M. L.; Kirilovsky D.; Kennis J. T. M. Photoactivation Mechanism, Timing of Protein Secondary Structure Dynamics and Carotenoid Translocation in the Orange Carotenoid Protein. J. Am. Chem. Soc. 2019, 141, 520–530. 10.1021/jacs.8b11373. PubMed DOI PMC

Niedzwiedzki D. M.; Hunter C. N.; Blankenship R. E. Evaluating the Nature of So-Called S*-State Feature in Transient Absorption of Carotenoids in Light-Harvesting Complex 2 (LH2) from Purple Photosynthetic Bacteria. J. Phys. Chem. B 2016, 120, 11123–11131. 10.1021/acs.jpcb.6b08639. PubMed DOI PMC

Tavan P.; Schulten K. Electronic Excitations in Finite and Infinite Polyenes. Phys. Rev. B 1987, 36, 4337–4358. 10.1103/PhysRevB.36.4337. PubMed DOI

Pendon Z. D.; Sullivan J. O.; Van Der Hoef I.; Lugtenburg J.; Cua A.; Bocian D. F.; Birge R. R.; Frank H. A. Stereoisomers of Carotenoids: Spectroscopic Properties of Locked and Unlocked Cis-Isomers of Spheroidene. Photosynth. Res. 2005, 86, 5–24. 10.1007/s11120-005-1205-0. PubMed DOI

Macernis M.; Sulskus J.; Duffy C. D. P.; Ruban A. V.; Valkunas L. Electronic Spectra of Structurally Deformed Lutein. J. Phys. Chem. A 2012, 116, 9843–9853. 10.1021/jp304363q. PubMed DOI

Kleinschmidt M.; Marian C. M.; Waletzke M.; Grimme S. Parallel Multireference Configuration Interaction Calculations on Mini-β-Carotenes and β-Carotene. J. Chem. Phys. 2009, 130, 044708.10.1063/1.3062842. PubMed DOI

Greco J. A.; LaFountain A. M.; Kinashi N.; Shinada T.; Sakaguchi K.; Katsumura S.; Magdaong N. C. M.; Niedzwiedzki D. M.; Birge R. R.; Frank H. A. Spectroscopic Investigation of the Carotenoid Deoxyperidinin: Direct Observation of the Forbidden S0 → S1 Transition. J. Phys. Chem. B 2016, 120, 2731–2744. 10.1021/acs.jpcb.6b00439. PubMed DOI

Bondanza M.; Jacquemin D.; Mennucci B. Excited States of Xanthophylls Revisited: Toward the Simulation of Biologically Relevant Systems. J. Phys. Chem. Lett. 2021, 12, 6604–6612. 10.1021/acs.jpclett.1c01929. PubMed DOI PMC

Kurashige Y.; Nakano H.; Nakao Y.; Hirao K. The π → π* Excited States of Long Linear Polyenes Studied by the CASCI-MRMP Method. Chem. Phys. Lett. 2004, 400, 425–429. 10.1016/j.cplett.2004.10.141. DOI

Sugisaki M.; Yanagi K.; Cogdell R. J.; Hashimoto H. Unified Explanation for Linear and Nonlinear Optical Responses in β-Carotene: A Sub-20-Fs Degenerate Four-Wave Mixing Spectroscopic Study. Phys. Rev. B - Condens. Matter Mater. Phys. 2007, 75, 155110.10.1103/PhysRevB.75.155110. DOI

Sugisaki M.; Fujiwara M.; Yanagi K.; Cogdell R. J.; Hashimoto H. Four-Wave Mixing Signals from β-Carotene and Its n = 15 Homologue. Photosynth. Res. 2008, 95, 299–308. 10.1007/s11120-007-9265-y. PubMed DOI

Sugisaki M.; Fujiwara M.; Nair S. V.; Ruda H. E.; Cogdell R. J.; Hashimoto H. Excitation-Energy Dependence of Transient Grating Spectroscopy in β -Carotene. Phys. Rev. B - Condens. Matter Mater. Phys. 2009, 80, 035118.10.1103/PhysRevB.80.035118. DOI

Braem O.; Penfold T. J.; Cannizzo A.; Chergui M. A Femtosecond Fluorescence Study of Vibrational Relaxation and Cooling Dynamics of UV Dyes. Phys. Chem. Chem. Phys. 2012, 14, 3513–3519. 10.1039/c2cp23167k. PubMed DOI

Balevičius V.; Lincoln C. N.; Viola D.; Cerullo G.; Hauer J.; Abramavicius D. Effects of Tunable Excitation in Carotenoids Explained by the Vibrational Energy Relaxation Approach. Photosynth. Res. 2018, 135, 55–64. 10.1007/s11120-017-0423-6. PubMed DOI

Hashimoto H.; Uragami C.; Yukihira N.; Gardiner A. T.; Cogdell R. J. Understanding/Unravelling Carotenoid Excited Singlet States. J. R. Soc. Interface 2018, 15, 20180026.10.1098/rsif.2018.0026. PubMed DOI PMC

Hashimoto H.; Koyama Y. The C=C Stretching Raman Lines of β-Carotene Isomers in the S1 State as Detected by Pump-Probe Resonance Raman Spectroscopy. Chem. Phys. Lett. 1989, 154, 321–325. 10.1016/0009-2614(89)85363-1. DOI

Hauer J.; Buckup T.; Motzkus M. Pump-Degenerate Four Wave Mixing as a Technique for Analyzing Structural and Electronic Evolution: Multidimensional Time-Resolved Dynamics near a Conical Intersection. J. Phys. Chem. A 2007, 111, 10517–10529. 10.1021/jp073727j. PubMed DOI

Kosumi D.; Kusumoto T.; Fujii R.; Sugisaki M.; Iinuma Y.; Oka N.; Takaesu Y.; Taira T.; Iha M.; Frank H. A.; Hashimoto H. One- and Two-Photon Pump-Probe Optical Spectroscopic Measurements Reveal the S1 and Intramolecular Charge Transfer States Are Distinct in Fucoxanthin. Chem. Phys. Lett. 2009, 483, 95–100. 10.1016/j.cplett.2009.10.077. DOI

Šebelík V.; Fuciman M.; West R. G.; Polívka T. Time-Resolved Two-Photon Spectroscopy of Carotenoids. Chem. Phys. 2019, 522, 171–177. 10.1016/j.chemphys.2019.02.023. DOI

Šebelík V.; Kuznetsova V.; Lokstein H.; Polívka T. Transient Absorption of Chlorophylls and Carotenoids after Two-Photon Excitation of LHCII. J. Phys. Chem. Lett. 2021, 12, 3176–3181. 10.1021/acs.jpclett.1c00122. PubMed DOI

Wehling A.; Walla P. J. A Two-Photon Excitation Study on the Role of Carotenoid Dark States in the Regulation of Plant Photosynthesis. Photosynth. Res. 2006, 90, 101–110. 10.1007/s11120-006-9088-2. PubMed DOI

Niedzwiedzki D. M.; Enriquez M. M.; LaFountain A. M.; Frank H. A. Ultrafast Time-Resolved Absorption Spectroscopy of Geometric Isomers of Xanthophylls. Chem. Phys. 2010, 373, 80–89. 10.1016/j.chemphys.2010.01.019. PubMed DOI PMC

Weyer L. G. Near-Infrared Spectroscopy of Organic Substances. Appl. Spectrosc. Rev. 1985, 21, 1–43. 10.1080/05704928508060427. DOI

Yang M.; Fleming G. R. Third-Order Nonlinear Optical Response and Energy Transfer in Static Disordered Systems. J. Chem. Phys. 2000, 113, 2823–2840. 10.1063/1.1305886. DOI

Christensson N.; Milota F.; Nemeth A.; Sperling J.; Kauffmann H. F.; Pullerits T.; Hauer J. Two-Dimensional Electronic Spectroscopy of β-Carotene. J. Phys. Chem. B 2009, 113, 16409–16419. 10.1021/jp906604j. PubMed DOI

Calhoun T. R.; Davis J. A.; Graham M. W.; Fleming G. R. The Separation of Overlapping Transitions in β-Carotene with Broadband 2D Electronic Spectroscopy. Chem. Phys. Lett. 2012, 523, 1–5. 10.1016/j.cplett.2011.10.051. DOI

Miki T.; Buckup T.; Krause M. S.; Southall J.; Cogdell R. J.; Motzkus M. Vibronic Coupling in the Excited-States of Carotenoids. Phys. Chem. Chem. Phys. 2016, 18, 11443–11453. 10.1039/C5CP07542D. PubMed DOI

Kukura P.; McCamant D. W.; Davis P. H.; Mathies R. A. Vibrational Structure of the S2 (1Bu) Excited State of Diphenyloctatetraene Observed by Femtosecond Stimulated Raman Spectroscopy. Chem. Phys. Lett. 2003, 382, 81–86. 10.1016/j.cplett.2003.10.051. DOI

Zigmantas D.; Polívka T.; Hiller R. G.; Yartsev A.; Sundström V. Spectroscopic and Dynamic Properties of the Peridinin Lowest Singlet Excited States. J. Phys. Chem. A 2001, 105, 10296–10306. 10.1021/jp010022n. DOI

West R. G.; Bína D.; Fuciman M.; Kuznetsova V.; Litvín R.; Polívka T. Ultrafast Multi-Pulse Transient Absorption Spectroscopy of Fucoxanthin Chlorophyll a Protein from Phaeodactylum tricornutum. Biochim. Biophys. Acta - Bioenerg. 2018, 1859, 357–365. 10.1016/j.bbabio.2018.02.011. PubMed DOI

Redeckas K.; Voiciuk V.; Zigmantas D.; Hiller R. G.; Vengris M. Unveiling the Excited State Energy Transfer Pathways in Peridinin-Chlorophyll a-Protein by Ultrafast Multi-Pulse Transient Absorption Spectroscopy. Biochim. Biophys. Acta - Bioenerg. 2017, 1858, 297–307. 10.1016/j.bbabio.2017.01.014. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace