The full dynamics of energy relaxation in large organic molecules: from photo-excitation to solvent heating

. 2019 May 14 ; 10 (18) : 4792-4804. [epub] 20190402

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31183032

In some molecular systems, such as nucleobases, polyenes or the active ingredients of sunscreens, substantial amounts of photo-excitation energy are dissipated on a sub-picosecond time scale, raising questions such as: where does this energy go or among which degrees of freedom it is being distributed at such early times? Here we use transient absorption spectroscopy to track excitation energy dispersing from the optically accessible vibronic subsystem into the remaining vibrational subsystem of the solute and solvent. Monitoring the flow of energy during vibrational redistribution enables quantification of local molecular heating. Subsequent heat dissipation away from the solute molecule is characterized by classical thermodynamics and molecular dynamics simulations. Hence, we present a holistic approach that tracks the internal temperature and vibronic distribution from the act of photo-excitation to the restoration of the global equilibrium. Within this framework internal vibrational redistribution and vibrational cooling are emergent phenomena. We demonstrate the validity of the framework by examining a highly controversial example, carotenoids. We show that correctly accounting for the local temperature unambiguously explains their energetically and temporally congested spectral dynamics without the ad hoc postulation of additional 'dark' states. An immediate further application of this approach would be to monitor the excitation and thermal dynamics of pigment-protein systems.

Zobrazit více v PubMed

Rosspeintner A., Lang B., Vauthey E. Annu. Rev. Phys. Chem. 2013;64:247–271. PubMed

Kumpulainen T., Lang B., Rosspeintner A., Vauthey E. Chem. Rev. 2017;117:10826–10939. PubMed

Proteins: Energy, Heat and Signal Flow, ed. D. M. Leitner and J. E. Straub, CRC Press, 2009.

Leitner D. M., in Energy Relaxation and Thermal Transport in Molecules, ed. W. Andreoni and S. Yip, Springer International Publishing, 2018, pp. 1–22.

Carpenter B. K. Chem. Rev. 2013;113:7265–7286. PubMed

Carpenter B. K., Harvey J. N., Orr-Ewing A. J. J. Am. Chem. Soc. 2016;138:4695–4705. PubMed

Jakučionis M., Chorosajev V., Abramavicius D. Chem. Phys. 2018;515:193–202.

Dahinten T., Baier J., Seilmeier A. Chem. Phys. 1998;232:239–245.

Ohta K., Kang T. J., Tominaga K., Yoshihara K. Chem. Phys. 1999;242:103–114.

Iwata K., Hamaguchi H. J. Phys. Chem. A. 1997;101:632–637.

Okamoto H., Nakabayashi T., Tasumi M. J. Raman Spectrosc. 2000;31:305–309.

Kovalenko S. A., Schanz R., Hennig H., Ernsting N. P. J. Chem. Phys. 2001;15:3256–3273.

Lian T., Locke B., Kholodenko Y., Hochstrasser R. M. J. Phys. Chem. 1994;98:11648–11656.

Liu J.-Y., Fan W.-H., Han K.-L., Deng W.-Q., Xu D.-L., Lou N.-Q. J. Phys. Chem. A. 2003;107:10857–10861.

Crespo-Hernández C. E., Cohen B., Hare P. M., Kohler B. Chem. Rev. 2004;104:1977–2019. PubMed

Baker L. A., Greenough S. E., Stavros V. G. J. Phys. Chem. Lett. 2016;7:4655–4665. PubMed

Anderson N. A., Pullen S. H., Walker II L. A., Shiang J., Sension R. J. J. Phys. Chem. A. 1998;102:10588–10598.

Polívka T., Sundström V. Chem. Rev. 2004;104:2021–2071. PubMed

Staleva H., Zeeshan M., Chábera P., Partali V., Sliwka H.-R., Polívka T. J. Phys. Chem. A. 2015;119:11304–11312. PubMed

Middleton C. T., de La Harpe K., Su C., Law Y. K., Crespo-Hernández C. E., Kohler B. Annu. Rev. Phys. Chem. 2009;60:217–239. PubMed

Pecourt J.-M. L., Peon J., Kohler B. J. Am. Chem. Soc. 2001;123:10370–10378. PubMed

Ruban A. V., Johnson M. P., Duffy C. D. Biochim. Biophys. Acta. 2012;1817:167–181. PubMed

Rodrigues N. D. N., Staniforth M., Stavros V. G. Proc. R. Soc. A. 2016:472. PubMed PMC

Elsaesser T., Kaiser W. Annu. Rev. Phys. Chem. 1991;42:83–107.

Owrutsky J. C., Raftery D., Hochstrasser R. M. Annu. Rev. Phys. Chem. 1994;45:519–555. PubMed

Assmann J., Kling M., Abel B. Angew. Chem., Int. Ed. 2003;42:2226–2246. PubMed

Skinner J. L. Theor. Chem. Acc. 2011;128:1. PubMed PMC

Grubb M. P., Coulter P. M., Marroux H. J. B., Orr-Ewing A. J., Ashfold M. N. R. Chem. Sci. 2017;8:3062–3069. PubMed PMC

Sukowski U., Seilmeier A., Elsaesser T., Fischer S. F. J. Chem. Phys. 1990;93:4094–4101.

Schwarzer D., Troe J., Votsmeier M., Zerezke M. J. Chem. Phys. 1996;105:3121–3131.

Chandler D., Introduction to Modern Statistical Mechanics, Oxford University Press, New York, 1987.

Mizutani Y., Kitagawa T. J. Mol. Liq. 2001;90:233–242.

Kondoh M., Mizuno M., Mizutani Y. J. Phys. Chem. Lett. 2016;7:1950–1954. PubMed

Stock G. Phys. Rev. Lett. 2009;102:118301. PubMed

Park S.-M., Nguyen P. H., Stock G. J. Chem. Phys. 2009;131:184503. PubMed

Essafi S., Harvey J. N. J. Phys. Chem. A. 2018;122:3535–3540. PubMed

Polívka T., Sundström V. Chem. Phys. Lett. 2009;477:1–11.

Lin S. H. J. Chem. Phys. 1974;61:3810–3820.

Kühn O., May V., Schreiber M. J. Chem. Phys. 1994;101:10404–10415.

Zhang J.-P., Chen C.-H., Koyama Y., Nagae H. J. Phys. Chem. B. 1998;102:1632–1640.

Kardaś T. M., Ratajska-Gadomska B., Lapini A., Ragnoni E., Righini R., Di Donato M., Foggi P., Gadomski W. J. Chem. Phys. 2014;140:204312. PubMed

Balevičius Jr V., Galestian Pour A., Savolainen J., Lincoln C. N., Lukeš V., Riedle E., Valkunas L., Abramavicius D., Hauer J. Phys. Chem. Chem. Phys. 2015;17:19491–19499. PubMed

Balevičius Jr V., Abramavicius D., Polívka T., Galestian Pour A., Hauer J. J. Phys. Chem. Lett. 2016;7:3347–3352. PubMed PMC

Balevičius Jr V., Lincoln C. N., Viola D., Cerullo G., Hauer J., Abramavicius D. Photosynth. Res. 2017;135:55–64. PubMed

Peng Q., Yi Y., Shuai Z. J. Chem. Phys. 2007;126:114302. PubMed

Valkunas L., Abramavicius D. and Mančal T., Molecular Excitation Dynamics and Relaxation, Wiley-VCH, Weinheim, 2013.

Abramavicius D., Chorosajev V., Valkunas L. Phys. Chem. Chem. Phys. 2018;20:21225–21240. PubMed

Leitner D. M. Adv. Phys. 2015;64:445–517.

Demtröder W., Laser Spectroscopy 2: Experimental Techniques, Springer-Verlag, Berlin, 5th edn, 2015.

Markham J. J. Rev. Mod. Phys. 1959;31:956–989.

Braem O., Penfold T. J., Cannizzo A., Chergui M. Phys. Chem. Chem. Phys. 2012;14:3513–3519. PubMed

Mukamel S., Principles of Nonlinear Optical Spectroscopy, Oxford University Press, New York, 1995.

Velate S., Danilov E. O., Rodgers M. J. J. Phys. Chem. A. 2005;109:8969–8975. PubMed

Lenzer T., Ehlers F., Scholz M., Oswald R., Oum K. Phys. Chem. Chem. Phys. 2010;12:8832–8883. PubMed

Tan X., Gustafson T. L., Lefumeux C., Burdzinski G., Buntinx G., Poizat O. J. Phys. Chem. A. 2002;106:3593–3598.

Pigliucci A., Duvanel G., Lawson Daku L. M., Vauthey E. J. Phys. Chem. A. 2007;111:6135–6145. PubMed

The Photochemistry of Carotenoids, ed. H. Frank, A. Young, G. Britton and R. Cogdell, Springer, Netherlands, 1999, vol. 8.

Liguori N., Xu P., van Stokkum I. H. M., van Oort B., Lu Y., Karcher D., Bock R., Croce R. Nat. Commun. 2017;8:1–9. PubMed PMC

Konold P. E., van Stokkum I. H. M., Muzzopappa F., Wilson A., Groot M. L., Kirilovsky D., Kennis J. T. M. J. Am. Chem. Soc. 2019;141:520–530. PubMed PMC

Andersson P. O., Gillbro T. J. Chem. Phys. 1995;103:2509–2519.

Gradinaru C. C., Kennis J. T. M., Papagiannakis E., van Stokkum I. H. M., Cogdell R. J., Fleming G. R., Niederman R. A., van Grondelle R. Proc. Natl. Acad. Sci. U. S. A. 2001;98:2364–2369. PubMed PMC

Hashimoto H., Uragami C., Yukihira N., Gardiner A. T., Cogdell R. J. J. R. Soc., Interface. 2018;15:20180026. PubMed PMC

Robert B. and Frank H. A., Carotenoids: electronic states and biological functions, in Light Harvesting in Photosynthesis, ed. R. Croce, R. van Grondelle, H. van Amerongen and I. van Stokkum, CRC Press, 2018, ch., pp. 51–70.

Ritz T., Damjanović A., Schulten K. ChemPhysChem. 2002;3:243–248. PubMed

Uragami C., Saito K., Yoshizawa M., Molnár P., Hashimoto H. Arch. Biochem. Biophys. 2018;650:49–58. PubMed

Nakabayashi T., Okamoto H., Tasumi M. J. Phys. Chem. A. 1997;101:3494–3500.

Jailaubekov A. E., Vengris M., Song S.-H., Kusumoto T., Hashimoto H., Larsen D. S. J. Phys. Chem. A. 2011;115:3905–3916. PubMed

Nguyen S. C., Lomont J. P., Caplins B. W., Harris C. B. J. Phys. Chem. Lett. 2014;5:2974–2978. PubMed

Dereka B., Vauthey E. Chem. Sci. 2017;8:5057–5066. PubMed PMC

Chábera P., Fuciman M., Hřibek P., Polívka T. Phys. Chem. Chem. Phys. 2009;11:8795–8803. PubMed

Ehlers F., Scholz M., Schimpfhauser J., Bienert J., Oum K., Lenzer T. Phys. Chem. Chem. Phys. 2015;17:10478–17488. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...