The full dynamics of energy relaxation in large organic molecules: from photo-excitation to solvent heating
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31183032
PubMed Central
PMC6521204
DOI
10.1039/c9sc00410f
PII: c9sc00410f
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
In some molecular systems, such as nucleobases, polyenes or the active ingredients of sunscreens, substantial amounts of photo-excitation energy are dissipated on a sub-picosecond time scale, raising questions such as: where does this energy go or among which degrees of freedom it is being distributed at such early times? Here we use transient absorption spectroscopy to track excitation energy dispersing from the optically accessible vibronic subsystem into the remaining vibrational subsystem of the solute and solvent. Monitoring the flow of energy during vibrational redistribution enables quantification of local molecular heating. Subsequent heat dissipation away from the solute molecule is characterized by classical thermodynamics and molecular dynamics simulations. Hence, we present a holistic approach that tracks the internal temperature and vibronic distribution from the act of photo-excitation to the restoration of the global equilibrium. Within this framework internal vibrational redistribution and vibrational cooling are emergent phenomena. We demonstrate the validity of the framework by examining a highly controversial example, carotenoids. We show that correctly accounting for the local temperature unambiguously explains their energetically and temporally congested spectral dynamics without the ad hoc postulation of additional 'dark' states. An immediate further application of this approach would be to monitor the excitation and thermal dynamics of pigment-protein systems.
Fakultät für Chemie Technical University of Munich Lichtenbergstraße 4 D 85748 Garching Germany
Institute of Chemical Physics Vilnius University Sauletekio av 9 Vilnius LT 10222 Lithuania
Photonics Institute TU Wien Gußhausstraße 27 1040 Vienna Austria
Zobrazit více v PubMed
Rosspeintner A., Lang B., Vauthey E. Annu. Rev. Phys. Chem. 2013;64:247–271. PubMed
Kumpulainen T., Lang B., Rosspeintner A., Vauthey E. Chem. Rev. 2017;117:10826–10939. PubMed
Proteins: Energy, Heat and Signal Flow, ed. D. M. Leitner and J. E. Straub, CRC Press, 2009.
Leitner D. M., in Energy Relaxation and Thermal Transport in Molecules, ed. W. Andreoni and S. Yip, Springer International Publishing, 2018, pp. 1–22.
Carpenter B. K. Chem. Rev. 2013;113:7265–7286. PubMed
Carpenter B. K., Harvey J. N., Orr-Ewing A. J. J. Am. Chem. Soc. 2016;138:4695–4705. PubMed
Jakučionis M., Chorosajev V., Abramavicius D. Chem. Phys. 2018;515:193–202.
Dahinten T., Baier J., Seilmeier A. Chem. Phys. 1998;232:239–245.
Ohta K., Kang T. J., Tominaga K., Yoshihara K. Chem. Phys. 1999;242:103–114.
Iwata K., Hamaguchi H. J. Phys. Chem. A. 1997;101:632–637.
Okamoto H., Nakabayashi T., Tasumi M. J. Raman Spectrosc. 2000;31:305–309.
Kovalenko S. A., Schanz R., Hennig H., Ernsting N. P. J. Chem. Phys. 2001;15:3256–3273.
Lian T., Locke B., Kholodenko Y., Hochstrasser R. M. J. Phys. Chem. 1994;98:11648–11656.
Liu J.-Y., Fan W.-H., Han K.-L., Deng W.-Q., Xu D.-L., Lou N.-Q. J. Phys. Chem. A. 2003;107:10857–10861.
Crespo-Hernández C. E., Cohen B., Hare P. M., Kohler B. Chem. Rev. 2004;104:1977–2019. PubMed
Baker L. A., Greenough S. E., Stavros V. G. J. Phys. Chem. Lett. 2016;7:4655–4665. PubMed
Anderson N. A., Pullen S. H., Walker II L. A., Shiang J., Sension R. J. J. Phys. Chem. A. 1998;102:10588–10598.
Polívka T., Sundström V. Chem. Rev. 2004;104:2021–2071. PubMed
Staleva H., Zeeshan M., Chábera P., Partali V., Sliwka H.-R., Polívka T. J. Phys. Chem. A. 2015;119:11304–11312. PubMed
Middleton C. T., de La Harpe K., Su C., Law Y. K., Crespo-Hernández C. E., Kohler B. Annu. Rev. Phys. Chem. 2009;60:217–239. PubMed
Pecourt J.-M. L., Peon J., Kohler B. J. Am. Chem. Soc. 2001;123:10370–10378. PubMed
Ruban A. V., Johnson M. P., Duffy C. D. Biochim. Biophys. Acta. 2012;1817:167–181. PubMed
Rodrigues N. D. N., Staniforth M., Stavros V. G. Proc. R. Soc. A. 2016:472. PubMed PMC
Elsaesser T., Kaiser W. Annu. Rev. Phys. Chem. 1991;42:83–107.
Owrutsky J. C., Raftery D., Hochstrasser R. M. Annu. Rev. Phys. Chem. 1994;45:519–555. PubMed
Assmann J., Kling M., Abel B. Angew. Chem., Int. Ed. 2003;42:2226–2246. PubMed
Skinner J. L. Theor. Chem. Acc. 2011;128:1. PubMed PMC
Grubb M. P., Coulter P. M., Marroux H. J. B., Orr-Ewing A. J., Ashfold M. N. R. Chem. Sci. 2017;8:3062–3069. PubMed PMC
Sukowski U., Seilmeier A., Elsaesser T., Fischer S. F. J. Chem. Phys. 1990;93:4094–4101.
Schwarzer D., Troe J., Votsmeier M., Zerezke M. J. Chem. Phys. 1996;105:3121–3131.
Chandler D., Introduction to Modern Statistical Mechanics, Oxford University Press, New York, 1987.
Mizutani Y., Kitagawa T. J. Mol. Liq. 2001;90:233–242.
Kondoh M., Mizuno M., Mizutani Y. J. Phys. Chem. Lett. 2016;7:1950–1954. PubMed
Stock G. Phys. Rev. Lett. 2009;102:118301. PubMed
Park S.-M., Nguyen P. H., Stock G. J. Chem. Phys. 2009;131:184503. PubMed
Essafi S., Harvey J. N. J. Phys. Chem. A. 2018;122:3535–3540. PubMed
Polívka T., Sundström V. Chem. Phys. Lett. 2009;477:1–11.
Lin S. H. J. Chem. Phys. 1974;61:3810–3820.
Kühn O., May V., Schreiber M. J. Chem. Phys. 1994;101:10404–10415.
Zhang J.-P., Chen C.-H., Koyama Y., Nagae H. J. Phys. Chem. B. 1998;102:1632–1640.
Kardaś T. M., Ratajska-Gadomska B., Lapini A., Ragnoni E., Righini R., Di Donato M., Foggi P., Gadomski W. J. Chem. Phys. 2014;140:204312. PubMed
Balevičius Jr V., Galestian Pour A., Savolainen J., Lincoln C. N., Lukeš V., Riedle E., Valkunas L., Abramavicius D., Hauer J. Phys. Chem. Chem. Phys. 2015;17:19491–19499. PubMed
Balevičius Jr V., Abramavicius D., Polívka T., Galestian Pour A., Hauer J. J. Phys. Chem. Lett. 2016;7:3347–3352. PubMed PMC
Balevičius Jr V., Lincoln C. N., Viola D., Cerullo G., Hauer J., Abramavicius D. Photosynth. Res. 2017;135:55–64. PubMed
Peng Q., Yi Y., Shuai Z. J. Chem. Phys. 2007;126:114302. PubMed
Valkunas L., Abramavicius D. and Mančal T., Molecular Excitation Dynamics and Relaxation, Wiley-VCH, Weinheim, 2013.
Abramavicius D., Chorosajev V., Valkunas L. Phys. Chem. Chem. Phys. 2018;20:21225–21240. PubMed
Leitner D. M. Adv. Phys. 2015;64:445–517.
Demtröder W., Laser Spectroscopy 2: Experimental Techniques, Springer-Verlag, Berlin, 5th edn, 2015.
Markham J. J. Rev. Mod. Phys. 1959;31:956–989.
Braem O., Penfold T. J., Cannizzo A., Chergui M. Phys. Chem. Chem. Phys. 2012;14:3513–3519. PubMed
Mukamel S., Principles of Nonlinear Optical Spectroscopy, Oxford University Press, New York, 1995.
Velate S., Danilov E. O., Rodgers M. J. J. Phys. Chem. A. 2005;109:8969–8975. PubMed
Lenzer T., Ehlers F., Scholz M., Oswald R., Oum K. Phys. Chem. Chem. Phys. 2010;12:8832–8883. PubMed
Tan X., Gustafson T. L., Lefumeux C., Burdzinski G., Buntinx G., Poizat O. J. Phys. Chem. A. 2002;106:3593–3598.
Pigliucci A., Duvanel G., Lawson Daku L. M., Vauthey E. J. Phys. Chem. A. 2007;111:6135–6145. PubMed
The Photochemistry of Carotenoids, ed. H. Frank, A. Young, G. Britton and R. Cogdell, Springer, Netherlands, 1999, vol. 8.
Liguori N., Xu P., van Stokkum I. H. M., van Oort B., Lu Y., Karcher D., Bock R., Croce R. Nat. Commun. 2017;8:1–9. PubMed PMC
Konold P. E., van Stokkum I. H. M., Muzzopappa F., Wilson A., Groot M. L., Kirilovsky D., Kennis J. T. M. J. Am. Chem. Soc. 2019;141:520–530. PubMed PMC
Andersson P. O., Gillbro T. J. Chem. Phys. 1995;103:2509–2519.
Gradinaru C. C., Kennis J. T. M., Papagiannakis E., van Stokkum I. H. M., Cogdell R. J., Fleming G. R., Niederman R. A., van Grondelle R. Proc. Natl. Acad. Sci. U. S. A. 2001;98:2364–2369. PubMed PMC
Hashimoto H., Uragami C., Yukihira N., Gardiner A. T., Cogdell R. J. J. R. Soc., Interface. 2018;15:20180026. PubMed PMC
Robert B. and Frank H. A., Carotenoids: electronic states and biological functions, in Light Harvesting in Photosynthesis, ed. R. Croce, R. van Grondelle, H. van Amerongen and I. van Stokkum, CRC Press, 2018, ch., pp. 51–70.
Ritz T., Damjanović A., Schulten K. ChemPhysChem. 2002;3:243–248. PubMed
Uragami C., Saito K., Yoshizawa M., Molnár P., Hashimoto H. Arch. Biochem. Biophys. 2018;650:49–58. PubMed
Nakabayashi T., Okamoto H., Tasumi M. J. Phys. Chem. A. 1997;101:3494–3500.
Jailaubekov A. E., Vengris M., Song S.-H., Kusumoto T., Hashimoto H., Larsen D. S. J. Phys. Chem. A. 2011;115:3905–3916. PubMed
Nguyen S. C., Lomont J. P., Caplins B. W., Harris C. B. J. Phys. Chem. Lett. 2014;5:2974–2978. PubMed
Dereka B., Vauthey E. Chem. Sci. 2017;8:5057–5066. PubMed PMC
Chábera P., Fuciman M., Hřibek P., Polívka T. Phys. Chem. Chem. Phys. 2009;11:8795–8803. PubMed
Ehlers F., Scholz M., Schimpfhauser J., Bienert J., Oum K., Lenzer T. Phys. Chem. Chem. Phys. 2015;17:10478–17488. PubMed
Carotenoid responds to excess energy dissipation in the LH2 complex from Rhodoblastus acidophilus
Understanding Carotenoid Dynamics via the Vibronic Energy Relaxation Approach
A Protein Environment-Modulated Energy Dissipation Channel in LHCII Antenna Complex
Comparative ultrafast spectroscopy and structural analysis of OCP1 and OCP2 from Tolypothrix