Insecticidal Activity of Four Essential Oils Extracted from Chilean Patagonian Plants as Potential Organic Pesticides
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35956490
PubMed Central
PMC9370676
DOI
10.3390/plants11152012
PII: plants11152012
Knihovny.cz E-zdroje
- Klíčová slova
- Culex quinquefasciatus, Musca domestica, Spodoptera littoralis, bioinsecticide, contact toxicity, green insecticide, housefly, mosquito, moth,
- Publikační typ
- časopisecké články MeSH
Patagonia is a geographical area characterized by a wide plant biodiversity. Several native plant species are traditionally used in medicine by the local population and demonstrated to be sources of biologically active compounds. Due to the massive need for green and sustainable pesticides, this study was conducted to evaluate the insecticidal activity of essential oils (EOs) from understudied plants growing in this propitious area. Ciprés (Pilgerodendron uviferum), tepa (Laureliopsis philippiana), canelo (Drimys winteri), and paramela (Adesmia boronioides) EOs were extracted through steam distillation, and their compositions were analyzed through GC−MS analysis. EO contact toxicity against Musca domestica L., Spodoptera littoralis (Boisd.), and Culex quinquefasciatus Say was then evaluated. As a general trend, EOs performed better on housefly males over females. Ciprés EO showed the highest insecticidal efficacy. The LD50(90) values were 68.6 (183.7) and 11.3 (75.1) µg adult−1 on housefly females and males, respectively. All EOs were effective against S. littoralis larvae; LD50 values were 33.2−66.7 µg larva−1, and tepa EO was the most effective in terms of LD90 (i.e., <100 µg larva−1). Canelo, tepa, and paramela EOs were highly effective on C. quinquefasciatus larvae, with LC50 values < 100 µL L−1. Again, tepa EO achieved LD90 < 100 µL L−1. This EO was characterized by safrole (43.1%), linalool (27.9%), and methyl eugenol (6.9%) as major constituents. Overall, Patagonian native plant EOs can represent a valid resource for local stakeholders, to develop effective insecticides for pest and vector management, pending a proper focus on their formulation and nontarget effects.
Crop Research Institute Drnovska 507 16106 Prague Czech Republic
Productos Walwalün Valle Mirta La Junta Property Walwalün Región de Aysén 6019105 Chile
Zobrazit více v PubMed
Molares S., Ladio A. Mapuche perceptions and conservation of Andean. Nothofagus forests and their medicinal plants: A case study from a rural community in Patagonia, Argentina. Biodivers. Conserv. 2012;21:1079–1093. doi: 10.1007/s10531-012-0241-2. DOI
Molares S., Ladio A. Medicinal plants in the cultural landscape of a Mapuche-Tehuelche community in arid Argentine Patagonia: An eco-sensorial approach. J. Ethnobiol. Ethnomed. 2014;10:1–14. doi: 10.1186/1746-4269-10-61. PubMed DOI PMC
Martínez Crovetto R. Apuntes sobre la vegetación de los alrededores del Lago Cholila. Publicación Técnica De La Fac. De Cienc. Agrar. 1980;1:1–22.
Silva F., Ullrich T., Hartman P., Medina H., Moraga L., Saini G. Plantas Medicinales de la región de Aysen-Chile. B Lat. Caribe Pl. 2004;3:36–45.
Montes M., Wilkomirsky T. Medicina Tradicional Chilena. Editorial de la Universidad de Concepción; Concepción, Chile: 1987. pp. 72–73.
González S.B., Houghton P.J., Hoult J.R.S. The activity against leukocyte eicosanoid generation of essential oil and polar fractions of Adesmia boronioides Hook. f. Phytother. Res. 2003;3:290–293. doi: 10.1002/ptr.1118. PubMed DOI
González S.B., Ladio A.H., Gastaldi B., Silva Sofrás F.M., Mazzoni A., Sánchez G. Paramela (Adesmia boronioides Hook.f.): From popular uses to commercialization. In: Martinez J.L., Muñoz-Acevedo A., Rai M., editors. Ethnobotany. 1st ed. CRC Press; Boca Raton, FL, USA: 2018. pp. 89–104.
Mølgaard P., Holler J.G., Asar B., Liberna I., Rosenbæk L.B., Jebjerg C.P., Jørgensen Jeanette L., Guzman A., Adsersen A., Simonsen H.T. Antimicrobial evaluation of Huilliche plant medicine used to treat wounds. J. Ethnopharmacol. 2011;138:219–227. doi: 10.1016/j.jep.2011.09.006. PubMed DOI
Rodríguez R., Matthei O., Quezada M. Flora Arbórea de Chile. Editorial de la Universidad de Concepción; Concepción, Chile: 1983. p. 408.
Bittner M., Aguilera M.A., Hernández V., Arbert C., Becerra J., Casanueva M.E. Fungistatic activity of essential oils extracted from Peumus boldus Mol., Laureliopsis philippiana (Looser) Schodde and Laurelia sempervirens (Ruiz & Pav.) Tul. (Chilean Monimiaceae) Chil. J. Agric. Res. 2009;69:30–37. doi: 10.4067/S0717-97072008000100026. DOI
Toledo D., Mutis A., Hormazabal E., Palma R., Parada M., Scheuermann E., Quiroz A. Chemical composition and antibacterial activity of Laureliopsis philippiana (Looser) essential oil. BLACPMA. 2014;13:117–125.
Herrera-Rodríguez C., Ramírez-Mendoza C., Becerra-Morales I., Silva-Aguayo G., Urbina-Parra A., Figueroa-Cares I., Martínez-Bolaños L., Rodríguez-Maciel J.C., Lagunes-Tejeda A., Pastene-Navarrete E., et al. Bioactivity of Peumus boldus Molina, Laurelia sempervirens (Ruiz & Pav.) Tul. and Laureliopsis philippiana (Looser) Schodde (Monimiaceae) essential oils against Sitophilus zeamais Motschulsky) Chil. J. Agric. Res. 2015;75:334–340. doi: 10.4067/S0718-58392015000400010. DOI
Norambuena C., Silva G., Urbina A., Figueroa I., Rodríguez-Maciel J.C. Insecticidal activity of Laureliopsis philippiana (Looser) Schodde (Atherospermataceae) essential oil against Sitophilus spp. (Coleoptera Curculionidae) Chil. J. Agric. Res. 2016;76:330–336. doi: 10.4067/S0718-58392016000300010. DOI
Cordero S., Abello L., Galvez F. Plantas Silvestres Comestibles y Medicinales de Chile y Otras Partes del Mundo. 1st ed. Corporación Chilena de la Madera; Concepción, Chile: 2017. 292p
Zapata N., Lognay G., Smagghe G. Bioactivity of essential oils from leaves and bark of Laurelia sempervirens and Drimys winteri against Acyrthosiphon pisum. Pest. Manag. 2010;66:1324–1331. doi: 10.1002/ps.2018. PubMed DOI
Tampe J., Espinoza J., Chacón-Fuentes M., Quiroz A., Rubilar M. Evaluation of Drimys winteri (Canelo) Essential Oil as Insecticide against Acanthoscelides obtectus (Coleoptera: Bruchidae) and Aegorhinus superciliosus (Coleoptera: Curculionidae) Insects. 2020;11:335. doi: 10.3390/insects11060335. PubMed DOI PMC
Cruz Madariaga G., Lara Aguilar A. Tipificación, Cambio de Estructura y Normas de Manejo para Ciprés de las Guaytecas (Pilgerodendron uvifera (D. Don) Florin.) en la Isla Grande de Chiloé; Castro, Chile: 1981.
Espinoza J., Urzúa A., Tampe J., Parra L., Quiroz A. Repellent activity of the essential oil from the heartwood of Pilgerodendron uviferum (D. Don) Florin against Aegorhinus superciliosus (Coleoptera: Curculionidae) Molecules. 2016;21:1–7. doi: 10.3390/molecules21040533. PubMed DOI PMC
Espinoza J., Urzúa A., Bardehle L., Quiroz A., Echeverría J., González-Teuber M. Antifeedant effects of essential oil, extracts, and isolated sesquiterpenes from Pilgerodendron uviferum (D. Don) florin heartwood on red clover borer Hylastinus obscurus (Coleoptera: Curculionidae) Molecules. 2018;23:1282. doi: 10.3390/molecules23061282. PubMed DOI PMC
Di Giovanni F., Wilke A.B.B., Beier J.C., Pombi M., Mendoza-Roldan J.A., Desneux N., Canale A., Lucchi A., Dantas-Torres F., Otranto D., et al. Parasitic strategies of arthropods of medical and veterinary importance. Entomol. Gen. 2021;41:511–522. doi: 10.1127/entomologia/2021/1155. DOI
Bass C., Denholm I., Williamson M.S., Nauen R. The global status of insect resistance to neonicotinoid insecticides. Pestic Biochem. Phys. 2015;121:78–87. doi: 10.1016/j.pestbp.2015.04.004. PubMed DOI
Benelli G., Wilke A.B., Bloomquist J.R., Desneux N., Beier J.C. Overexposing mosquitoes to insecticides under global warming: A public health concern? Sci. Total Environ. 2021;762:143069. doi: 10.1016/j.scitotenv.2020.143069. PubMed DOI
Yang X., Wei X., Yang J., Du T., Yin C., Fu B., Huang M., Liang J., Gong P., Liu S., et al. Epitranscriptomic regulation of insecticide resistance. Sci. Adv. 2021;7:eabe5903. doi: 10.1126/sciadv.abe5903. PubMed DOI PMC
Malizia R.A., Cardell D.A., Molli J.S., González S., Guerra P.E., Grau R.J. Volatile constituents of leaf oils from the Cupressacea family: Part II. Austrocedrus chilensis, Fitzroya cupressoides and Pilgerodendron uviferum species growing in Argentina. J. Essent. 2000;12:233–237. doi: 10.1080/10412905.2000.9699506. DOI
Oyarzún M.L., Garbarino J.A. Sesquiterpenoids from Pilgerodendron uvífera. Phytochemistry. 1988;27:1121–1123. doi: 10.1016/0031-9422(88)80286-3. DOI
Madrid A., Godoy P., González S., Zaror L., Moller A., Werner E., Cuellar M., Villena J., Montenegro I. Chemical characterization and anti-oomycete activity of Laureliopsis philippianna essential oils against Saprolegnia parasitica and S. australis. Molecules. 2015;20:8033–8047. doi: 10.3390/molecules20058033. PubMed DOI PMC
Barrero A.F., Herrador M.M., Arteaga P., Lara A., Cortes M. Chemical composition of the essential oil from Drimys winteri Forst. wood. J. Essent. 2000;12:685–688. doi: 10.1080/10412905.2000.9712190. DOI
Monsalvez M., Zapata N., Vargas M., Berti M., Bittner M., Hernández V. Antifungal effects of n-hexane extract and essential oil of Drimys winteri bark against Take-All disease. Ind. Crop. Prod. 2010;31:239–244. doi: 10.1016/j.indcrop.2009.10.013. DOI
Muñoz O., Christen P., Cretton S., Barrero A.F., Lara A., Herrador M.M. Comparison of the essential oils of leaves and stem bark from two different populations of Drimys winteri a Chilean herbal medicine. Nat. Prod. Commun. 2011;6:879–882. doi: 10.1177/1934578X1100600630. PubMed DOI
Verdeguer M., García-Rellán D., Boira H., Pérez E., Gandolfo S., Blázquez M.A. Herbicidal Activity of Peumus boldus and Drimys winterii Essential Oils from Chile. Molecules. 2011;16:403–411. doi: 10.3390/molecules16010403. PubMed DOI PMC
González S.B., Bandoni A.L., van Baren C., Lira P.D.L., Cerda-García-Rojas C.M., Joseph-Nathan P. Structure, conformation and absolute configuration of novel bisnorsesquiterpenes from the Adesmia boronioides essential oil. Tetrahedron. 2002;58:3065–3071. doi: 10.1016/S0040-4020(02)00191-6. DOI
González S.B., Bandoni A.L., Van Baren C., Di Leo Lira P., Cerda-García-Rojas C.M., Joseph-Nathan P. The Essential Oil of the Aerial Parts of Adesmia boronioides Hook. F. J. Essent. Oil Res. 2004;16:513–516. doi: 10.1080/10412905.2004.9698784. DOI
Pavela R., Benelli G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant. Sci. 2016;21:1000–1007. doi: 10.1016/j.tplants.2016.10.005. PubMed DOI
Pavela R. Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitol. Res. 2015;114:3835–3853. doi: 10.1007/s00436-015-4614-9. PubMed DOI
Pavela R. Acute, synergistic and antagonistic effects of some aromatic compounds on the Spodoptera littoralis Boisd. (Lep., Noctuidae) larvae. Ind. Crop. Prod. 2014;60:247–258. doi: 10.1016/j.indcrop.2014.06.030. DOI
Stepanycheva E., Petrova M., Chermenskaya T., Pavela R. Fumigant effect of essential oils on mortality and fertility of thrips Frankliniella occidentalis Perg. Environ. Sci. Pollut. Res. 2019;26:30885–30892. doi: 10.1007/s11356-019-06239-y. PubMed DOI
Pavela R., Žabka M., Bednář J., Tříska J., Vrchotová N. New knowledge for yield, composition and insecticidal activity of essential oils obtained from the aerial parts or seeds of fennel (Foeniculum vulgare Mill.) Ind. Crop. Prod. 2016;83:275–282. doi: 10.1016/j.indcrop.2015.11.090. DOI
Espinoza J., Medina C., Aniñir W., Escobar-Bahamondes P., Ungerfeld E., Urzúa A., Quiroz A. Insecticidal, Repellent and Antifeedant Activity of Essential Oils from Blepharocalyx cruckshanksii (Hook. & Arn.) Nied. Leaves and Pilgerodendron uviferum (D. Don) Florin Heartwood against Horn Flies, Haematobia irritans (Diptera: Muscidae) Molecules. 2021;26:6936. doi: 10.3390/molecules26226936. PubMed DOI PMC
Paz C., Burgos V., Iturra A., Rebolledo R., Ortiz L., Baggio R., Cespedes-acuña C.L. Industrial Crops & Products Assessment of insecticidal responses of extracts and compounds of Drimys winteri, Lobelia tupa, Viola portalesia and Vestia foetida against the granary weevil Sitophilus granarius. Ind. Crop. Prod. 2018;122:232–238. doi: 10.1016/j.indcrop.2018.06.009. DOI
Zapata N., Smagghe G. Repellency and toxicity of essential oils from the leaves and bark of Laurelia sempervirens and Drimys winteri against Tribolium castaneum. Ind. Crop. Prod. 2010;32:405–410. doi: 10.1016/j.indcrop.2010.06.005. PubMed DOI
Govindarajan M., Rajeswary M., Benelli G. δ-Cadinene, calarene and δ-4-carene from Kadsura heteroclita essential oil as novel larvicides against malaria, dengue and filariasis mosquitoes. Comb. Chem High. Throughput Screen. 2016;19:565–571. doi: 10.2174/1386207319666160506123520. PubMed DOI
Pavela R., Morshedloo M.R., Mumivand H., Khorsand G.J., Karami A., Maggi F., Desneux N., Benelli G. Phenolic monoterpene-rich essential oils from Apiaceae and Lamiaceae species: Insecticidal activity and safety evaluation on non-target earthworms. Entomol. Gen. 2020;40:421–435. doi: 10.1127/entomologia/2020/1131. DOI
Sánchez-Gómez S., Pagán R., Pavela R., Mazzara E., Spinozzi E., Marinelli O., Zeppa L., Morshedloog M.R., Maggi F., Canale A., et al. Lethal and sublethal effects of essential oil-loaded zein nanocapsules on a zoonotic disease vector mosquito, and their non-target impact. Ind. Crop. Prod. 2022;176:114413. doi: 10.1016/j.indcrop.2021.114413. DOI
Benelli G., Pavela R., Giordani C., Casettari L., Curzi G., Cappellacci L., Petrelli R., Maggi F. Acute and sub-lethal toxicity of eight essential oils of commercial interest against the filariasis mosquito Culex quinquefasciatus and the housefly Musca domestica. Ind. Crop. Prod. 2018;112:668–680. doi: 10.1016/j.indcrop.2017.12.062. DOI
Benelli G., Pavoni L., Zeni V., Ricciardi R., Cosci F., Cacopardo G., Gendusa S., Spinozzi E., Petrelli R., Cappellacci L., et al. Developing a highly stable Carlina acaulis essential oil nanoemulsion for managing Lobesia botrana. Nanomaterials. 2020;10:1867. doi: 10.3390/nano10091867. PubMed DOI PMC
WHO . Report of the WHO Informal Consultation on the Evaluation and Testing of Insecticides. WHO; Geneva, Switzerland: 1996. CTD/WHOPES/IC/96.1.
Pavela R., Sedlák P. Post-application temperature as a factor influencing the insecticidal activity of essential oil from Thymus vulgaris. Ind. Crop. Prod. 2018;113:46–49. doi: 10.1016/j.indcrop.2018.01.021. DOI
Abbott W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925;18:265–267. doi: 10.1093/jee/18.2.265a. DOI
Finney D.J. Statistical logic in the monitoring of reactions to therapeutic drugs. Methods Inf. Med. 1971;10:237–245. doi: 10.1055/s-0038-1636052. PubMed DOI
Kenis M., Benelli G., Biondi A., Calatayud P.A., Day R., Desneux N., Harrison R.D., Kriticos D., Rwomushana I., van den Berg J., et al. Invasiveness, biology, ecology, and management of the fall armyworm, Spodoptera frugiperda. Entomol. Gen. 2022. in press . DOI