Insecticidal Activity of Four Essential Oils Extracted from Chilean Patagonian Plants as Potential Organic Pesticides

. 2022 Aug 02 ; 11 (15) : . [epub] 20220802

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35956490

Patagonia is a geographical area characterized by a wide plant biodiversity. Several native plant species are traditionally used in medicine by the local population and demonstrated to be sources of biologically active compounds. Due to the massive need for green and sustainable pesticides, this study was conducted to evaluate the insecticidal activity of essential oils (EOs) from understudied plants growing in this propitious area. Ciprés (Pilgerodendron uviferum), tepa (Laureliopsis philippiana), canelo (Drimys winteri), and paramela (Adesmia boronioides) EOs were extracted through steam distillation, and their compositions were analyzed through GC−MS analysis. EO contact toxicity against Musca domestica L., Spodoptera littoralis (Boisd.), and Culex quinquefasciatus Say was then evaluated. As a general trend, EOs performed better on housefly males over females. Ciprés EO showed the highest insecticidal efficacy. The LD50(90) values were 68.6 (183.7) and 11.3 (75.1) µg adult−1 on housefly females and males, respectively. All EOs were effective against S. littoralis larvae; LD50 values were 33.2−66.7 µg larva−1, and tepa EO was the most effective in terms of LD90 (i.e., <100 µg larva−1). Canelo, tepa, and paramela EOs were highly effective on C. quinquefasciatus larvae, with LC50 values < 100 µL L−1. Again, tepa EO achieved LD90 < 100 µL L−1. This EO was characterized by safrole (43.1%), linalool (27.9%), and methyl eugenol (6.9%) as major constituents. Overall, Patagonian native plant EOs can represent a valid resource for local stakeholders, to develop effective insecticides for pest and vector management, pending a proper focus on their formulation and nontarget effects.

Zobrazit více v PubMed

Molares S., Ladio A. Mapuche perceptions and conservation of Andean. Nothofagus forests and their medicinal plants: A case study from a rural community in Patagonia, Argentina. Biodivers. Conserv. 2012;21:1079–1093. doi: 10.1007/s10531-012-0241-2. DOI

Molares S., Ladio A. Medicinal plants in the cultural landscape of a Mapuche-Tehuelche community in arid Argentine Patagonia: An eco-sensorial approach. J. Ethnobiol. Ethnomed. 2014;10:1–14. doi: 10.1186/1746-4269-10-61. PubMed DOI PMC

Martínez Crovetto R. Apuntes sobre la vegetación de los alrededores del Lago Cholila. Publicación Técnica De La Fac. De Cienc. Agrar. 1980;1:1–22.

Silva F., Ullrich T., Hartman P., Medina H., Moraga L., Saini G. Plantas Medicinales de la región de Aysen-Chile. B Lat. Caribe Pl. 2004;3:36–45.

Montes M., Wilkomirsky T. Medicina Tradicional Chilena. Editorial de la Universidad de Concepción; Concepción, Chile: 1987. pp. 72–73.

González S.B., Houghton P.J., Hoult J.R.S. The activity against leukocyte eicosanoid generation of essential oil and polar fractions of Adesmia boronioides Hook. f. Phytother. Res. 2003;3:290–293. doi: 10.1002/ptr.1118. PubMed DOI

González S.B., Ladio A.H., Gastaldi B., Silva Sofrás F.M., Mazzoni A., Sánchez G. Paramela (Adesmia boronioides Hook.f.): From popular uses to commercialization. In: Martinez J.L., Muñoz-Acevedo A., Rai M., editors. Ethnobotany. 1st ed. CRC Press; Boca Raton, FL, USA: 2018. pp. 89–104.

Mølgaard P., Holler J.G., Asar B., Liberna I., Rosenbæk L.B., Jebjerg C.P., Jørgensen Jeanette L., Guzman A., Adsersen A., Simonsen H.T. Antimicrobial evaluation of Huilliche plant medicine used to treat wounds. J. Ethnopharmacol. 2011;138:219–227. doi: 10.1016/j.jep.2011.09.006. PubMed DOI

Rodríguez R., Matthei O., Quezada M. Flora Arbórea de Chile. Editorial de la Universidad de Concepción; Concepción, Chile: 1983. p. 408.

Bittner M., Aguilera M.A., Hernández V., Arbert C., Becerra J., Casanueva M.E. Fungistatic activity of essential oils extracted from Peumus boldus Mol., Laureliopsis philippiana (Looser) Schodde and Laurelia sempervirens (Ruiz & Pav.) Tul. (Chilean Monimiaceae) Chil. J. Agric. Res. 2009;69:30–37. doi: 10.4067/S0717-97072008000100026. DOI

Toledo D., Mutis A., Hormazabal E., Palma R., Parada M., Scheuermann E., Quiroz A. Chemical composition and antibacterial activity of Laureliopsis philippiana (Looser) essential oil. BLACPMA. 2014;13:117–125.

Herrera-Rodríguez C., Ramírez-Mendoza C., Becerra-Morales I., Silva-Aguayo G., Urbina-Parra A., Figueroa-Cares I., Martínez-Bolaños L., Rodríguez-Maciel J.C., Lagunes-Tejeda A., Pastene-Navarrete E., et al. Bioactivity of Peumus boldus Molina, Laurelia sempervirens (Ruiz & Pav.) Tul. and Laureliopsis philippiana (Looser) Schodde (Monimiaceae) essential oils against Sitophilus zeamais Motschulsky) Chil. J. Agric. Res. 2015;75:334–340. doi: 10.4067/S0718-58392015000400010. DOI

Norambuena C., Silva G., Urbina A., Figueroa I., Rodríguez-Maciel J.C. Insecticidal activity of Laureliopsis philippiana (Looser) Schodde (Atherospermataceae) essential oil against Sitophilus spp. (Coleoptera Curculionidae) Chil. J. Agric. Res. 2016;76:330–336. doi: 10.4067/S0718-58392016000300010. DOI

Cordero S., Abello L., Galvez F. Plantas Silvestres Comestibles y Medicinales de Chile y Otras Partes del Mundo. 1st ed. Corporación Chilena de la Madera; Concepción, Chile: 2017. 292p

Zapata N., Lognay G., Smagghe G. Bioactivity of essential oils from leaves and bark of Laurelia sempervirens and Drimys winteri against Acyrthosiphon pisum. Pest. Manag. 2010;66:1324–1331. doi: 10.1002/ps.2018. PubMed DOI

Tampe J., Espinoza J., Chacón-Fuentes M., Quiroz A., Rubilar M. Evaluation of Drimys winteri (Canelo) Essential Oil as Insecticide against Acanthoscelides obtectus (Coleoptera: Bruchidae) and Aegorhinus superciliosus (Coleoptera: Curculionidae) Insects. 2020;11:335. doi: 10.3390/insects11060335. PubMed DOI PMC

Cruz Madariaga G., Lara Aguilar A. Tipificación, Cambio de Estructura y Normas de Manejo para Ciprés de las Guaytecas (Pilgerodendron uvifera (D. Don) Florin.) en la Isla Grande de Chiloé; Castro, Chile: 1981.

Espinoza J., Urzúa A., Tampe J., Parra L., Quiroz A. Repellent activity of the essential oil from the heartwood of Pilgerodendron uviferum (D. Don) Florin against Aegorhinus superciliosus (Coleoptera: Curculionidae) Molecules. 2016;21:1–7. doi: 10.3390/molecules21040533. PubMed DOI PMC

Espinoza J., Urzúa A., Bardehle L., Quiroz A., Echeverría J., González-Teuber M. Antifeedant effects of essential oil, extracts, and isolated sesquiterpenes from Pilgerodendron uviferum (D. Don) florin heartwood on red clover borer Hylastinus obscurus (Coleoptera: Curculionidae) Molecules. 2018;23:1282. doi: 10.3390/molecules23061282. PubMed DOI PMC

Di Giovanni F., Wilke A.B.B., Beier J.C., Pombi M., Mendoza-Roldan J.A., Desneux N., Canale A., Lucchi A., Dantas-Torres F., Otranto D., et al. Parasitic strategies of arthropods of medical and veterinary importance. Entomol. Gen. 2021;41:511–522. doi: 10.1127/entomologia/2021/1155. DOI

Bass C., Denholm I., Williamson M.S., Nauen R. The global status of insect resistance to neonicotinoid insecticides. Pestic Biochem. Phys. 2015;121:78–87. doi: 10.1016/j.pestbp.2015.04.004. PubMed DOI

Benelli G., Wilke A.B., Bloomquist J.R., Desneux N., Beier J.C. Overexposing mosquitoes to insecticides under global warming: A public health concern? Sci. Total Environ. 2021;762:143069. doi: 10.1016/j.scitotenv.2020.143069. PubMed DOI

Yang X., Wei X., Yang J., Du T., Yin C., Fu B., Huang M., Liang J., Gong P., Liu S., et al. Epitranscriptomic regulation of insecticide resistance. Sci. Adv. 2021;7:eabe5903. doi: 10.1126/sciadv.abe5903. PubMed DOI PMC

Malizia R.A., Cardell D.A., Molli J.S., González S., Guerra P.E., Grau R.J. Volatile constituents of leaf oils from the Cupressacea family: Part II. Austrocedrus chilensis, Fitzroya cupressoides and Pilgerodendron uviferum species growing in Argentina. J. Essent. 2000;12:233–237. doi: 10.1080/10412905.2000.9699506. DOI

Oyarzún M.L., Garbarino J.A. Sesquiterpenoids from Pilgerodendron uvífera. Phytochemistry. 1988;27:1121–1123. doi: 10.1016/0031-9422(88)80286-3. DOI

Madrid A., Godoy P., González S., Zaror L., Moller A., Werner E., Cuellar M., Villena J., Montenegro I. Chemical characterization and anti-oomycete activity of Laureliopsis philippianna essential oils against Saprolegnia parasitica and S. australis. Molecules. 2015;20:8033–8047. doi: 10.3390/molecules20058033. PubMed DOI PMC

Barrero A.F., Herrador M.M., Arteaga P., Lara A., Cortes M. Chemical composition of the essential oil from Drimys winteri Forst. wood. J. Essent. 2000;12:685–688. doi: 10.1080/10412905.2000.9712190. DOI

Monsalvez M., Zapata N., Vargas M., Berti M., Bittner M., Hernández V. Antifungal effects of n-hexane extract and essential oil of Drimys winteri bark against Take-All disease. Ind. Crop. Prod. 2010;31:239–244. doi: 10.1016/j.indcrop.2009.10.013. DOI

Muñoz O., Christen P., Cretton S., Barrero A.F., Lara A., Herrador M.M. Comparison of the essential oils of leaves and stem bark from two different populations of Drimys winteri a Chilean herbal medicine. Nat. Prod. Commun. 2011;6:879–882. doi: 10.1177/1934578X1100600630. PubMed DOI

Verdeguer M., García-Rellán D., Boira H., Pérez E., Gandolfo S., Blázquez M.A. Herbicidal Activity of Peumus boldus and Drimys winterii Essential Oils from Chile. Molecules. 2011;16:403–411. doi: 10.3390/molecules16010403. PubMed DOI PMC

González S.B., Bandoni A.L., van Baren C., Lira P.D.L., Cerda-García-Rojas C.M., Joseph-Nathan P. Structure, conformation and absolute configuration of novel bisnorsesquiterpenes from the Adesmia boronioides essential oil. Tetrahedron. 2002;58:3065–3071. doi: 10.1016/S0040-4020(02)00191-6. DOI

González S.B., Bandoni A.L., Van Baren C., Di Leo Lira P., Cerda-García-Rojas C.M., Joseph-Nathan P. The Essential Oil of the Aerial Parts of Adesmia boronioides Hook. F. J. Essent. Oil Res. 2004;16:513–516. doi: 10.1080/10412905.2004.9698784. DOI

Pavela R., Benelli G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant. Sci. 2016;21:1000–1007. doi: 10.1016/j.tplants.2016.10.005. PubMed DOI

Pavela R. Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitol. Res. 2015;114:3835–3853. doi: 10.1007/s00436-015-4614-9. PubMed DOI

Pavela R. Acute, synergistic and antagonistic effects of some aromatic compounds on the Spodoptera littoralis Boisd. (Lep., Noctuidae) larvae. Ind. Crop. Prod. 2014;60:247–258. doi: 10.1016/j.indcrop.2014.06.030. DOI

Stepanycheva E., Petrova M., Chermenskaya T., Pavela R. Fumigant effect of essential oils on mortality and fertility of thrips Frankliniella occidentalis Perg. Environ. Sci. Pollut. Res. 2019;26:30885–30892. doi: 10.1007/s11356-019-06239-y. PubMed DOI

Pavela R., Žabka M., Bednář J., Tříska J., Vrchotová N. New knowledge for yield, composition and insecticidal activity of essential oils obtained from the aerial parts or seeds of fennel (Foeniculum vulgare Mill.) Ind. Crop. Prod. 2016;83:275–282. doi: 10.1016/j.indcrop.2015.11.090. DOI

Espinoza J., Medina C., Aniñir W., Escobar-Bahamondes P., Ungerfeld E., Urzúa A., Quiroz A. Insecticidal, Repellent and Antifeedant Activity of Essential Oils from Blepharocalyx cruckshanksii (Hook. & Arn.) Nied. Leaves and Pilgerodendron uviferum (D. Don) Florin Heartwood against Horn Flies, Haematobia irritans (Diptera: Muscidae) Molecules. 2021;26:6936. doi: 10.3390/molecules26226936. PubMed DOI PMC

Paz C., Burgos V., Iturra A., Rebolledo R., Ortiz L., Baggio R., Cespedes-acuña C.L. Industrial Crops & Products Assessment of insecticidal responses of extracts and compounds of Drimys winteri, Lobelia tupa, Viola portalesia and Vestia foetida against the granary weevil Sitophilus granarius. Ind. Crop. Prod. 2018;122:232–238. doi: 10.1016/j.indcrop.2018.06.009. DOI

Zapata N., Smagghe G. Repellency and toxicity of essential oils from the leaves and bark of Laurelia sempervirens and Drimys winteri against Tribolium castaneum. Ind. Crop. Prod. 2010;32:405–410. doi: 10.1016/j.indcrop.2010.06.005. PubMed DOI

Govindarajan M., Rajeswary M., Benelli G. δ-Cadinene, calarene and δ-4-carene from Kadsura heteroclita essential oil as novel larvicides against malaria, dengue and filariasis mosquitoes. Comb. Chem High. Throughput Screen. 2016;19:565–571. doi: 10.2174/1386207319666160506123520. PubMed DOI

Pavela R., Morshedloo M.R., Mumivand H., Khorsand G.J., Karami A., Maggi F., Desneux N., Benelli G. Phenolic monoterpene-rich essential oils from Apiaceae and Lamiaceae species: Insecticidal activity and safety evaluation on non-target earthworms. Entomol. Gen. 2020;40:421–435. doi: 10.1127/entomologia/2020/1131. DOI

Sánchez-Gómez S., Pagán R., Pavela R., Mazzara E., Spinozzi E., Marinelli O., Zeppa L., Morshedloog M.R., Maggi F., Canale A., et al. Lethal and sublethal effects of essential oil-loaded zein nanocapsules on a zoonotic disease vector mosquito, and their non-target impact. Ind. Crop. Prod. 2022;176:114413. doi: 10.1016/j.indcrop.2021.114413. DOI

Benelli G., Pavela R., Giordani C., Casettari L., Curzi G., Cappellacci L., Petrelli R., Maggi F. Acute and sub-lethal toxicity of eight essential oils of commercial interest against the filariasis mosquito Culex quinquefasciatus and the housefly Musca domestica. Ind. Crop. Prod. 2018;112:668–680. doi: 10.1016/j.indcrop.2017.12.062. DOI

Benelli G., Pavoni L., Zeni V., Ricciardi R., Cosci F., Cacopardo G., Gendusa S., Spinozzi E., Petrelli R., Cappellacci L., et al. Developing a highly stable Carlina acaulis essential oil nanoemulsion for managing Lobesia botrana. Nanomaterials. 2020;10:1867. doi: 10.3390/nano10091867. PubMed DOI PMC

WHO . Report of the WHO Informal Consultation on the Evaluation and Testing of Insecticides. WHO; Geneva, Switzerland: 1996. CTD/WHOPES/IC/96.1.

Pavela R., Sedlák P. Post-application temperature as a factor influencing the insecticidal activity of essential oil from Thymus vulgaris. Ind. Crop. Prod. 2018;113:46–49. doi: 10.1016/j.indcrop.2018.01.021. DOI

Abbott W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925;18:265–267. doi: 10.1093/jee/18.2.265a. DOI

Finney D.J. Statistical logic in the monitoring of reactions to therapeutic drugs. Methods Inf. Med. 1971;10:237–245. doi: 10.1055/s-0038-1636052. PubMed DOI

Kenis M., Benelli G., Biondi A., Calatayud P.A., Day R., Desneux N., Harrison R.D., Kriticos D., Rwomushana I., van den Berg J., et al. Invasiveness, biology, ecology, and management of the fall armyworm, Spodoptera frugiperda. Entomol. Gen. 2022. in press . DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace