• This record comes from PubMed

The Essential Oil from the Resurrection Plant Myrothamnus moschatus Is Effective against Arthropods of Agricultural and Medical Interest

. 2022 Dec 03 ; 15 (12) : . [epub] 20221203

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

This work aimed to evaluate the chemical composition, insecticidal and acaricidal potential of the essential oil (EO) obtained from the resurrection plant Myrothamnus moschatus (Baill.) Baill. (Myrothamnaceae) from Madagascar. The EO bioactivity was evaluated against selected arthropod pests and vectors of agricultural and public health relevance. The most abundant volatile compounds were trans-pinocarveol (37.7 ± 4.2%) and pinocarvone (20.8 ± 3.1%), similar to the EO of the chemotype collected from the same region. Lethal concentrations (LC50) or doses (LD50) from acute toxicity tests were estimated for Musca domestica (L.) adults at 22.7 µg adult-1, for Spodoptera littoralis (Boisduval) larvae at 35.6 µg larva-1, for Culex quinquefasciatus (Say) at 43.6 µg mL-1, for adults of Metopolophium dirhodum (Walker) at 2.4 mL L-1, and for adults of Tetranychus urticae (Koch) at 1.2 mL L-1. The good insecticidal and acaricidal activities determined in this work may open a new perspective on the use of this plant as a source of botanical insecticide ingredients. The exploitation of this species could also be important for the African economy, helping local farmers cultivating this plant.

See more in PubMed

Poveda J. Insect frass in the development of sustainable agriculture. A review. Agron. Sustain. Dev. 2021;41:5. doi: 10.1007/s13593-020-00656-x. DOI

Tudi M., Daniel Ruan H., Wang L., Lyu J., Sadler R., Connell D., Chu C., Phung D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health. 2021;18:1112. doi: 10.3390/ijerph18031112. PubMed DOI PMC

Zhao J., Liang D., Li W., Yan X., Qiao J., Caiyin Q. Research Progress on the Synthetic Biology of Botanical Biopesticides. Bioengineering. 2022;9:207. doi: 10.3390/bioengineering9050207. PubMed DOI PMC

Benelli G., Pavela R., Petrelli R., Nzekoue F.K., Cappellacci L., Lupidi G., Quassinti L., Bramucci M., Sut S., Dall’Acqua S., et al. Carlina oxide from Carlina acaulis root essential oil acts as a potent mosquito larvicide. Ind. Crops Prod. 2019;137:356–366. doi: 10.1016/j.indcrop.2019.05.037. DOI

Tataridas A., Kanatas P., Chatzigeorgiou A., Zannopoulos S., Travlos I. Sustainable crop and weed management in the era of the EU Green Deal: A survival guide. Agronomy. 2022;12:589. doi: 10.3390/agronomy12030589. DOI

Tian T., Sun B., Li H., Li Y., Gao T., Li Y., Zeng Q., Wang Q. Commercialization and Regulatory Requirements of Biopesticides in China. In: Singh H.B., Sarma B.K., Keswani C., editors. Agriculturally Important Microorganisms. Volume 1. Springer; Singapore: 2016. pp. 237–254. DOI

Zoubiri S., Baaliouamer A. Potentiality of plants as source of insecticide principles. J. Saudi Chem. Soc. 2014;18:925–938. doi: 10.1016/j.jscs.2011.11.015. DOI

Ikbal C., Pavela R. Essential oils as active ingredients of botanical insecticides against aphids. J. Pest Sci. 2019;92:971–986. doi: 10.1007/s10340-019-01089-6. DOI

Pavela R., Maggi F., Petrelli R., Cappellacci L., Buccioni M., Palmieri A., Canale A., Benelli G. Outstanding insecticidal activity and sublethal effects of Carlina acaulis root essential oil on the housefly, Musca domestica, with insights on its toxicity on human cells. Food Chem. Toxicol. 2020;136:111037. doi: 10.1016/j.fct.2019.111037. PubMed DOI

Benelli G., Pavela R., Maggi F., Wandjou J.G.N., Koné-Bamba D., Sagratini G., Vittori S., Caprioli G. Insecticidal activity of the essential oil and polar extracts from Ocimum gratissimum grown in Ivory Coast: Efficacy on insect pests and vectors and impact on non-target species. Ind. Crops Prod. 2019;132:377–385. doi: 10.1016/j.indcrop.2019.02.047. DOI

Giordani C., Spinozzi E., Baldassarri C., Ferrati M., Cappellacci L., Nieto D.S., Pavela R., Ricciardi R., Benelli G., Petrelli R., et al. Insecticidal Activity of Four Essential Oils Extracted from Chilean Patagonian Plants as Potential Organic Pesticides. Plants. 2022;11:2012. doi: 10.3390/plants11152012. PubMed DOI PMC

Sarma R., Adhikari K., Mahanta S., Khanikor B. Combinations of plant essential oil based terpene compounds as larvicidal and adulticidal agent against Aedes aegypti (Diptera: Culicidae) Sci. Rep. 2019;9:9471. doi: 10.1038/s41598-019-45908-3. PubMed DOI PMC

Lavoir A.V., Michel T., Poëssel J.L., Siegwart M. Challenges in Developing Botanical Biopesticides for Pest Control. In: Fauvergue X., Rusch A., Barret M., Bardin M., Jacquin-Joly M., Malausa T., Lannou C., editors. Extended Biocontrol. Volume 3. Springer; Dordrecht, The Netherlands: 2022. pp. 161–170. DOI

Millogo-Rasolodimby J. Flore de Madagascar et des Comores. Publications du Museum National d’Historie Naturelle; Paris, France: 1991. Myrothamnaceae, Famille 94; pp. 81–85.

Scott P. Resurrection plants and the secrets of eternal leaves. Ann. Bot. 2000;85:159–166. doi: 10.1006/anbo.1999.1006. DOI

Boiteau P. Sur deux plantes autochtones de Madagascar utilisées à la manière du Chanvre comme stupéfiant. Comptes Rendus Acad. Sci. 1967;264:41–42. PubMed

Razafindrambao R. Contribution à l’inventaire des Plantes Médicinales des Hauts Plateaux de Madagascar. In: Debray M., Jacquemin H., Razafindrambao R., editors. Contribution à L’Inventaire des Plantes Médicinales de Madagascar. ORSTOM; Paris, France: 1971. pp. 49–150.

Nicoletti M., Maggi F., Papa F., Vittori S., Quassinti L., Bramucci M., Lupidi G., Petrelli D., Vitali L.A., Ralaibia E., et al. In vitro biological activities of the essential oil from the ‘resurrection plant’ Myrothamnus moschatus (Baillon) Niedenzu endemic to Madagascar. Nat. Prod. Res. 2012;26:2291–2300. doi: 10.1080/14786419.2012.665916. PubMed DOI

Rasoanaivo P., Ralaibia E., Maggi F., Papa F., Vittori S., Nicoletti M. Phytochemical investigation of the essential oil from the ‘resurrection plant’ Myrothamnus moschatus (Baillon) Niedenzu endemic to Madagascar. J. Essent. Oil Res. 2012;24:299–304. doi: 10.1080/10412905.2012.676801. PubMed DOI

Suarez Rodriguez M.C., Edsgärd D., Hussain S.S., Alquezar D., Rasmussen M., Gilbert T., Nielsen B.H., Bartels D., Mundy J. Transcriptomes of the desiccation-tolerant resurrection plant Craterostigma plantagineum. Plant J. 2010;63:212–228. doi: 10.1111/j.1365-313X.2010.04243.x. PubMed DOI

Yobi A., Wone B.W., Xu W., Alexander D.C., Guo L., Ryals J.A., Oliver M.J., Cushman J.C. Comparative metabolic profiling between desiccation-sensitive and desiccation-tolerant species of Selaginella reveals insights into the resurrection trait. Plant J. 2012;72:983–999. doi: 10.1111/tpj.12008. PubMed DOI

Yobi A., Wone B.W., Xu W., Alexander D.C., Guo L., Ryals J.A., Oliver M.J., Cushman J.C. Metabolomic profiling in Selaginella lepidophylla at various hydration states provides new insights into the mechanistic basis of desiccation tolerance. Mol. Plant. 2013;6:369–385. doi: 10.1093/mp/sss155. PubMed DOI

Cheng X.L., Ma S.C., Yu J.D., Yang S.Y., Xiao X.Y., Hu J.Y., Lu Y., Shaw P.C., But P.P.H., Lin R.C. Selaginellin A and B, two novel natural pigments isolated from Selaginella tamariscina. Chem. Pharm. Bull. 2008;56:982–984. doi: 10.1248/cpb.56.982. PubMed DOI

Gao L.L., Yin S.L., Li Z.L., Sha Y., Pei Y.H., Shi G., Jing Y., Hua H. Three novel sterols isolated from Selaginella tamariscina with antiproliferative activity in leukemia cells. Planta Med. 2007;73:1112–1115. doi: 10.1055/s-2007-981562. PubMed DOI

Kamng’ona A., Moore J.P., Lindsey G., Brandt W. Inhibition of HIV-1 and M-MLV reverse transcriptases by a major polyphenol (3,4,5 tri-O-galloylquinic acid) present in the leaves of the South African resurrection plant, Myrothamnus flabellifolia. J. Enzym. Inhib. Med. Chem. 2011;26:843–853. doi: 10.3109/14756366.2011.566220. PubMed DOI

Randrianarivo E., Maggi F., Nicoletti M., Rasoanaivo P. Evaluation of the anticonvulsant activity of the essential oil of Myrothamnus moschatus in convulsion induced by pentylenetetrazole and picrotoxin. Asian Pac. J. Trop. Biomed. 2016;6:501–505. doi: 10.1016/j.apjtb.2016.01.017. DOI

Van den Dool H., Kratz P.D. A generalization of the retention index system including linear temperature programmed gas-liquidpartition chromatography. J. Chromatogr. 1963;2:463–471. doi: 10.1016/S0021-9673(01)80947-X. PubMed DOI

Randrianarivo E., Rasoanaivo P., Nicoletti M., Razafimahefa S., Lefebvre M., Papa F., Vittori S., Maggi F. Essential-Oil Polymorphism in the ‘Resurrection Plant’ Myrothamnus moschatus and Associated Ethnobotanical Knowledge. Chem. Biodivers. 2013;10:1987–1998. doi: 10.1002/cbdv.201300179. PubMed DOI

Chagonda L.S., Makanda C., Chalcat J.C. Essential oils of four wild and semi-wild plants from Zimbabwe: Colospermum mopane (Kirk ex Benth.) Kirk ex Leonard, Helichrysum splendidum (Thunb.) Less, Myrothamnus flabellifolia (Welw.) and Tagetes minuta L. J. Essent. Oil Res. 1999;11:573–578. doi: 10.1080/10412905.1999.9701217. DOI

Viljoen A.M., Klepser M.E., Ernst E.J., Keele D., Roling E., Van Vuuren S., Demirci B., BaSer K.H.C., van Wyk B.-E., Jäger A.K. The composition and antimicrobial activity of the essential oil of the resurrection plant Myrothamnus flabellifolius. S. Afr. J. Bot. 2002;68:100–105. doi: 10.1016/S0254-6299(16)30464-1. DOI

Haag J.D., Gould M.N. Mammary carcinoma regression induced by perillyl alcohol, a hydroxylated analog of limonene. Cancer Chemother. Pharmacol. 1994;34:477–483. doi: 10.1007/BF00685658. PubMed DOI

Kerrola K., Galambosi B., Kallio H. Volatile components and odor intensity of four phenotypes of Hyssop (Hyssopus officinalis L.) J. Agric. Food Chem. 1994;42:776–781. doi: 10.1021/jf00039a035. DOI

Isman M.B., Grieneisen M.L. Botanical insecticide research: Many publications, limited useful data. Trends Plant Sci. 2014;19:140–145. doi: 10.1016/j.tplants.2013.11.005. PubMed DOI

Ribeiro L.P., Akhtar Y., Vendramim J.D., Isman M.B. Comparative bioactivity of selected seed extracts from Brazilian Annona species and an acetogenin-based commercial bioinsecticide against Trichoplusia ni and Myzus persicae. Crop Prot. 2014;62:100–106. doi: 10.1016/j.cropro.2014.04.013. DOI

de Souza Tavares W., Akhtar Y., Gonçalves G.L.P., Zanuncio J.C., Isman M.B. Turmeric powder and its derivatives from Curcuma longa rhizomes: Insecticidal effects on cabbage looper and the role of synergists. Sci. Rep. 2016;6:34093. doi: 10.1038/srep34093. PubMed DOI PMC

Isman M.B. Botanical Insecticides in the Twenty-First Century—Fulfilling Their Promise? Annu. Rev. Entomol. 2020;65:233–249. doi: 10.1146/annurev-ento-011019-025010. PubMed DOI

Pavela R. Essential oils for the development of eco-friendly mosquito larvicides: A review. Ind. Crops Prod. 2015;76:174–187. doi: 10.1016/j.indcrop.2015.06.050. DOI

Seo S.M., Kim J., Kang J., Koh S.H., Ahn Y.J., Kang K.S., Park I.K. Fumigant toxicity and acetylcholinesterase inhibitory activity of 4 Asteraceae plant essential oils and their constituents against Japanese termite (Reticulitermes speratus Kolbe) Pestic. Biochem. Physiol. 2014;113:55–61. doi: 10.1016/j.pestbp.2014.06.001. PubMed DOI

Ulukanli Z., Karabörklü S., Cenet M., Sagdic O., Ozturk I., Balcilar M. Essential oil composition, insecticidal and antibacterial activities of Salvia tomentosa Miller. Med. Chem. Res. 2013;22:832–840. doi: 10.1007/s00044-012-0075-1. DOI

Aref S.P., Valizadegan O. Eucalyptus krueseana Muel essential oil: Chemical composition and insecticidal effects against the lesser grain borer, Rhyzopertha dominica F. (Coleoptera: Bostrichidae) Biharean Biol. 2015;9:93–97.

de Andrade Brito F., Bacci L., da Silva Santana A., da Silva J.E., de Castro Nizio D.A., de Lima Nogueira P.C., de Fátima Arrigoni-Blank M., Melo C.R., de Melo J.O., Blank A.F. Toxicity and behavioral alterations caused by essential oils of Croton tetradenius and their major compounds on Acromyrmex balzani. Crop Prot. 2020;137:105259. doi: 10.1016/j.cropro.2020.105259. DOI

Liang J.Y., Wang W.T., Zheng Y.F., Zhang D., Wang J.L., Guo S.S., Zhang W.-J., Du S., Zhang J. Bioactivities and chemical constituents of essential oil extracted from Artemisia anethoides against two stored product insects. J. Oleo Sci. 2017;66:71–76. doi: 10.5650/jos.ess16080. PubMed DOI

Eder E., Henschler D., Neudecker T. Mutagenic properties of allylic and α, β-unsaturated compounds: Consideration of alkylating mechanisms. Xenobiotica. 1982;12:831–848. doi: 10.3109/00498258209038955. PubMed DOI

Herrera J.M., Zunino M.P., Dambolena J.S., Pizzolitto R.P., Gañan N.A., Lucini E.I., Zygadlo J.A. Terpene ketones as natural insecticides against Sitophilus zeamais. Ind. Crops Prod. 2015;70:435–442. doi: 10.1016/j.indcrop.2015.03.074. DOI

Pavela R., Morshedloo M.R., Mumivand H., Khorsand G.J., Karami A., Maggi F., Desneux N., Benelli G. Phenolic monoterpene-rich essential oils from Apiaceae and Lamiaceae species: Insecticidal activity and safety evaluation on non-target earthworms. Entomol. Gen. 2020;40:421–435. doi: 10.1127/entomologia/2020/1131. DOI

Giunti G., Benelli G., Palmeri V., Laudani F., Ricupero M., Ricciardi R., Maggi F., Lucchi A., Guedes R.N.C., Desneux N., et al. Non-target effects of essential oil-based biopesticides for crop protection: Impact on natural enemies, pollinators, and soil invertebrates. Biol. Control. 2022;176:105071. doi: 10.1016/j.biocontrol.2022.105071. DOI

Athanassiou C.G., Kavallieratos N.G., Benelli G., Losic D., Rani U.P., Desneux N. Nanoparticles for pest control: Current status and future perspectives. J. Pest Sci. 2018;91:1–15. doi: 10.1007/s10340-017-0898-0. DOI

Pavela R., Pavoni L., Desneux N., Canale A., Maggi F., Benelli G., Bonacucina G., Cespi M., Cappellacci L., Petrelli R., et al. Encapsulation of Carlina acaulis essential oil and carlina oxide to develop long-lasting mosquito larvicides: Microemulsions versus nanoemulsions. J. Pest Sci. 2021;94:899–915. doi: 10.1007/s10340-020-01327-2. DOI

Ibrahim S.S. Essential Oil Nanoformulations as a Novel Method for Insect Pest Control in Horticulture. In: Baimaey H.K., Hamamouch N., Kolombia A., editors. Horticultural Crops. IntechOpen; London, UK: 2019. pp. 195–209.

Khoshraftar Z., Safekordi A.A., Shamel A., Zaefizadeh M. Evaluation of insecticidal activity of nanoformulation of Melia azedarach (leaf) extract as a safe environmental insecticide. Int. J. Environ. Sci. Technol. 2020;17:1159–1170. doi: 10.1007/s13762-019-02448-7. DOI

Pavela R., Murugan K., Canale A., Benelli G. Saponaria officinalis-synthesized silver nanocrystals as effective biopesticides and oviposition inhibitors against Tetranychus urticae Koch. Ind. Crops Prod. 2017;97:338–344. doi: 10.1016/j.indcrop.2016.12.046. DOI

Pavela R., Sedlák P. Post-application temperature as a factor influencing the insecticidal activity of essential oil from Thymus vulgaris. Ind. Crops Prod. 2013;113:46–49. doi: 10.1016/j.indcrop.2018.01.021. DOI

Abbott W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925;18:265–267. doi: 10.1093/jee/18.2.265a. DOI

Finney D.J. Probit Analysis. Cambridge University Press; London, UK: 1971.

Stevenson P.C., Isman M.B., Belmain S.R. Pesticidal plants in Africa: A global vision of new biological control products from local uses. Ind. Crops Prod. 2017;110:2–9. doi: 10.1016/j.indcrop.2017.08.034. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...